commit 19d4fd0172df7c1d5eb2f2de725351f493a7280a Author: Nikolai Rodionov Date: Thu Oct 20 09:26:58 2022 +0200 first commit diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..496ee2c --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.DS_Store \ No newline at end of file diff --git a/README.md b/README.md new file mode 100644 index 0000000..80fadca --- /dev/null +++ b/README.md @@ -0,0 +1,304 @@ +# Flocking with Go + +I have been writing flocking simulations for a long time. I played around with it with Java but the earliest one I still have record of was with JRuby and Swing called [Utopia](https://youtu.be/x44s8TTWm5E). I subsequently wrote one using [Shoes](http://shoesrb.com) and that was the one in my [_Exploring Everyday Things witn R and Ruby_](http://shop.oreilly.com/product/0636920022626.do) book. Some time after (I was unhappy with Shoes in general), I re-wrote it again using [Gosu](https://github.com/gosu/gosu), a 2D game development library for Ruby and C++. This version can be found [here](https://github.com/sausheong/utopia). + +[Flocking](https://en.wikipedia.org/wiki/Flocking_(behavior)) simulations are basically a software program that simulates the flocking behavior of birds. This flocking behavior is very somewhat similar to the swarming behavior of insects or the shoaling behavior of fish. It's considered an emergent behavior -- a behavior that arises from individuals following simple rules and doesn't involve any central coordination. Such behavior, especially seen in murmurations of starlings or swarms of barracuda can be a breath-taking phenomenon. + +![murmuration of starlings](imgs/flocking.jpg) + +## Boids + +Flocking was first simulated in software by Craig Reynolds, a programmer who developed a software program called [_boids_](http://www.red3d.com/cwr/boids/) and published a paper on the topic in 1987 in the proceedings of the ACM SIGGRAPH conference. Since then, there has been a number of advancements in simulating flocking but nonetheless the basic idea still remains pretty simple. + +Boids itself used three basic rules to describe how an individual boid moves around: + +* _Separation_ -- avoid crowding other flockmates that are close by +* _Alignment_ -- move towards the average direction of nearby flockmates +* _Cohesion_ -- move towards the average position of nearby flockmates + +![separation](imgs/Rule_separation.gif) +![alignment](imgs/Rule_alignment.gif) +![cohesion](imgs/Rule_cohesion.gif) + +These rules have been expanded and in some cases, more rules have been added but the fundamental idea is that a localised reaction by an individual following a few simple rules can result in complex, unexpected behavior. + +## Doing it in Go + +While I have been programming in Go seriously for a few years (it's my primary programming language now), I haven't been able to figure out a good way to write a flocking simulation with Go all this time. The biggest problem is that Go is mostly a backend programming language and doesn't really have a GUI toolkit. While there were a few attempts, including bindings to GTK and QT, none of them fit what I wanted. If you're looking for one for a desktop application, you are probably better off using [Electron](https://github.com/electron/electron) and building a web application in Go to back that up. + +That is, until I was fiddling around with genetic algorithms in my post [_A gentle introduction to genetic algorithms_](https://sausheong.github.io/posts/a-gentle-introduction-to-genetic-algorithms/). In that post I was trying to display an image to the terminal, in my case, the excellent [iTerm2](https://www.iterm2.com/). There's where I stumbled on this hack on iTerm2 that allows me to display images on the screen. + +Naturally if I can display one image, I can always display multiple images. And if I can display multiple images, I can also display them overlaying each other, one after another. And if I can display them fast enough ... + +![flipbook](imgs/flip.gif) + +## Goids + +I call them _goids_, of course. A `Goid` is a simple struct with information on its position, velocity and color. + +```go +type Goid struct { + X int // position + Y int + Vx int // velocity + Vy int + R int // radius + Color color.Color +} +``` + +Position and color is pretty easy to understand. Velocity here is not simply the speed the goid is moving but also direction it is moving. In this case, `Vx` and `Vy` is how far away the goid is going to be away the next loop, and also directionally where it's going to be. Mathematically speaking, while `X` and `Y` is the _scalar_ position (it tells you how far away from origin on a 2D plane), `Vx` and `Vy` is a [_vector_](http://mathinsight.org/vector_introduction). + +Creating goids is relatively simple. Each goid must be within the window and its starting velocity is smaller than its size. + +```go +func createRandomGoid() (g Goid) { + g = Goid{ + X: rand.Intn(windowWidth), + Y: rand.Intn(windowHeight), + Vx: rand.Intn(goidSize), + Vy: rand.Intn(goidSize), + R: goidSize, + Color: goidColor, + } + return +} +``` + +The bulk of the work is in the `move` function. + +```go +// move the goids with the 3 classic boid rules +func move(goids []*Goid) { + for _, goid := range goids { + neighbours := goid.nearestNeighbours(goids) + separate(goid, neighbours) + align(goid, neighbours) + cohere(goid, neighbours) + + stayInWindow(goid) + } +} +``` + +Flocking simulations have advanced considerably since 30 years ago, but for this simple simulation I used the 3 classic rules from boids. All 3 rules require the goid to know who its neighbours are so it makes sense to figure that out first. + +```go +// find the nearest neighbours +func (g *Goid) nearestNeighbours(goids []*Goid) (neighbours []Goid) { + neighbours = make([]Goid, len(goids)) + for _, goid := range goids { + neighbours = append(neighbours, *goid) + } + sort.SliceStable(neighbours, func(i, j int) bool { + return g.distance(neighbours[i]) < g.distance(neighbours[j]) + }) + return +} + +// distance between 2 goids +func (g *Goid) distance(n Goid) float64 { + x := g.X - n.X + y := g.Y - n.Y + return math.Sqrt(float64(x*x + y*y)) + +} +``` + +First, we clone the entire population of goids, then we use `sort.SliceStable` to sort the cloned array by distance from the goid in question. Finding the distance is just a matter of using the Pythagoras theorem. + +![Pythagoras theorem](imgs/pythagoras.png) + +This gives us a list of neighbouring goids, sorted by distances away. Let's look at the first rule. + +### Separation rule + +This is the _personal space_ rule. Let's say you're in a train with a number of other commuters, and it stops at a station where there are a number of people getting in. As they come in, they will fill up the space, and there will be some who end up too close to you. What would you do? You're going to move a bit away from them but not too close to others, and finally settling down to a comfortable distance from everyone else. This is that rule. + +```go +// steer to avoid crowding local goids +func separate(g *Goid, neighbours []Goid) { + x, y := 0, 0 + for _, n := range neighbours[0:numNeighbours] { + if g.distance(n) < separationFactor { + x += g.X - n.X + y += g.Y - n.Y + } + } + g.Vx = x + g.Vy = y + g.X += x + g.Y += y +} +``` + +We're only interested in a limited number of neighbouring goids, which is specified by the parameter `numNeighbours`. The neighbouring goids must also be within the parameter `separationFactor` (not all neighbouring goids are close enough for it to be uncomfortable). Once these goids are in that space, we move a bit away from each one of them. Then we update the velocity to that distance away, and then move the goid by that velocity. + + +### Alignment rule + +This is the _peer pressure_ rule. Peer pressure is direct influence on people by their peers to change their behaviour to conform to their of the group. You might be familiar with peer pressure -- when you see your neighbours with their shiny new 4K TV or iPhone X you might be tempted to get one for yourself as well. There are plenty of other examples of peer pressure in our lives that it doesn't need further explanation, and this is exactly what the alignment rule is. + +![lemmings](imgs/lemmings.jpg) + +```go +// steer towards the average heading of local goids +func align(g *Goid, neighbours []Goid) { + x, y := 0, 0 + for _, n := range neighbours[0:numNeighbours] { + x += n.Vx + y += n.Vy + } + dx, dy := x/numNeighbours, y/numNeighbours + g.Vx += dx + g.Vy += dy + g.X += dx + g.Y += dy +} +``` + +As before, we are only interested in a limited number of neighbouring goids specified by `numNeighbours`. However instead of affecting the position of the goid, this rule changes the velocity of the goid and we add up the velocity of all the neighbouring goids, and divide it by the number of neighbours. The final value modifies the velocity instead of replacing it altogether, while the position of the goid is modified by the new value. + +### Cohesion rule + +This is the _phalanx_ rule. The Greek phalanx was a rectangular, close-rank infantry formation that marched and fought as one entity. It was one of the most effective and enduring military formation in ancient warfare. Its effectiveness lie in the tight formation of impenetrable shields and spears that slowly advanced forward, breaking through enemy ranks. The Romans later took the same idea to create the three-line Roman legion that was used to conquer the known world. + +![phalanx](imgs/phalanx.jpg) + + +```go +// steer to move toward the average position of local goids +func cohere(g *Goid, neighbours []Goid) { + x, y := 0, 0 + for _, n := range neighbours[0:numNeighbours] { + x += n.X + y += n.Y + } + dx, dy := ((x/numNeighbours)-g.X)/coherenceFactor, ((y/numNeighbours)-g.Y)/coherenceFactor + g.Vx += dx + g.Vy += dy + g.X += dx + g.Y += dy +} +``` + +As with the other rules, we are only interested in the neighbouring goids. We take the average position of all these neighbours (adding up the positions of all the neighbours and dividing it by the number of neighbours), and subtract the goid's position from it. This value is then divided by a `coherenceFactor` that determines how much the goids want to cohere with its neighbours. If the `coherenceFactor` is too high, the goids will end up not moving, if it's too low it will end up sticking too closely with each other, forming clusters of tightly-knit goids. + +### Staying within view + +Now that we have the rules we can run simulation, but since our view is limited to the parameters `windowWidth` and `windowHeight`, once the goids wander off the screen we can't see it anymore. Which means after a while, it's just an empty screen. To stop that from happening, if a goid wanders off the screen, we magically transport it to the other side of the window. + +```go +// if goid goes out of the window frame it comes back on the other side +func stayInWindow(goid *Goid) { + if goid.X < 0 { + goid.X = windowWidth + goid.X + } else if goid.X > windowWidth { + goid.X = windowWidth - goid.X + } + if goid.Y < 0 { + goid.Y = windowHeight + goid.Y + } else if goid.Y > windowHeight { + goid.Y = windowHeight - goid.Y + } +} +``` + +### Showing the frame + +The final piece of the puzzle is drawing the goids themselves. + +```go +// draw the goids +func draw(goids []*Goid) *image.RGBA { + dest := image.NewRGBA(image.Rect(0, 0, windowWidth, windowHeight)) + gc := draw2dimg.NewGraphicContext(dest) + for _, goid := range goids { + gc.SetFillColor(goid.Color) + gc.MoveTo(float64(goid.X), float64(goid.Y)) + gc.ArcTo(float64(goid.X), float64(goid.Y), float64(goid.R), float64(goid.R), 0, -math.Pi*2) + gc.LineTo(float64(goid.X-goid.Vx), float64(goid.Y-goid.Vy)) + gc.Close() + gc.Fill() + } + return dest +} +``` + +Each frame is an image of width `windowWidth` and height `windowHeight`. WIthin this frame, we draw each goid as a circle, and then we draw a line to represent the goid's tail. This line goes against the direction of where the goid is going, so we subtract the position of the goid from its velocity. + +### Displaying the simulation + +We have all the functions needed now, so let's put it all together in the `main` function. + +```go +func main() { + clearScreen() + hideCursor() + + goids := make([]*Goid, 0) + for i := 0; i < populationSize; i++ { + g := createRandomGoid() + goids = append(goids, &g) + } + + for i := 0; i < loops; i++ { + move(goids) + frame := draw(goids) + printImage(frame.SubImage(frame.Rect)) + fmt.Printf("\nLoop: %d", i) + + } + showCursor() +} +``` + +There are a few more functions that you're not seen before. What are `clearScreen`, `hideCursor`, `showCursor` and `printImage`? These are the functions that actually display the simulation. + +Let's look at `clearScreen`, `hideCursor` and `showCursor`. + +```go +func hideCursor() { + fmt.Print("\x1b[?25l") +} + +func showCursor() { + fmt.Print("\x1b[?25h\n") +} + +func clearScreen() { + fmt.Print("\x1b[2J") +} +``` + +So what's the strange escape sequences we used? These are [ANSI escape sequences](https://en.wikipedia.org/wiki/ANSI_escape_code) used to control the various options on text terminals. They are mostly a relic of the past but still widely implemented in terminal emulators such as iTerm2. All sequences start with `ESC` (27 or in hex 0x1B), followed by a second byte that provides the control option. In particular, `ESC` followed by `[` indicates that the next byte is a Control Sequence Introducer (CSI), which is a set of useful sequences. For example, `?25h` shows the cursor and `?25l` hides the cursor. And as you would have probably guessed, `2J` clears the entire screen and moves the cursor to the upper left of the screen. + +Let's look at how we print the image to the screen. + +```go +// this only works for iTerm! +func printImage(img image.Image) { + var buf bytes.Buffer + png.Encode(&buf, img) + imgBase64Str := base64.StdEncoding.EncodeToString(buf.Bytes()) + fmt.Printf("\x1b[2;0H\x1b]1337;File=inline=1:%s\a", imgBase64Str) +} +``` + +This is an interesting hack that is only found (as far as I know) in [iTerm2](https://www.iterm2.com/documentation-images.html). that allows you to take the base64 representation of a binary image and prints it inline on the terminal. The escape sequence `2;0H` at the start of the line is a CSI that moves the cursor to row 2, column 0, where we want to print the image. + + +## Final simulation + +This is how it looks when I run it. + +![Goids](imgs/goids.gif) + + +## Code + +All the code found here can get found at http://github.com/sausheong/goids. + +## Why did I do this? + +Flocking simulations have been done to the death, but I enjoy writing it. I guess that's probably why I did it for the I-don't-know-how-many-times. Also, it gives me ideas and practice on where else to take it, and also doing more with the idea of printing frames on a terminal. You'll probably see more of this later. \ No newline at end of file diff --git a/go.mod b/go.mod new file mode 100644 index 0000000..4041e27 --- /dev/null +++ b/go.mod @@ -0,0 +1,10 @@ +module goids + +go 1.19 + +require github.com/llgcode/draw2d v0.0.0-20210904075650-80aa0a2a901d + +require ( + github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 // indirect + golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81 // indirect +) diff --git a/go.sum b/go.sum new file mode 100644 index 0000000..88b247b --- /dev/null +++ b/go.sum @@ -0,0 +1,11 @@ +github.com/go-gl/gl v0.0.0-20180407155706-68e253793080/go.mod h1:482civXOzJJCPzJ4ZOX/pwvXBWSnzD4OKMdH4ClKGbk= +github.com/go-gl/glfw v0.0.0-20180426074136-46a8d530c326/go.mod h1:vR7hzQXu2zJy9AVAgeJqvqgH9Q5CA+iKCZ2gyEVpxRU= +github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 h1:DACJavvAHhabrF08vX0COfcOBJRhZ8lUbR+ZWIs0Y5g= +github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0/go.mod h1:E/TSTwGwJL78qG/PmXZO1EjYhfJinVAhrmmHX6Z8B9k= +github.com/jung-kurt/gofpdf v1.0.0/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes= +github.com/llgcode/draw2d v0.0.0-20210904075650-80aa0a2a901d h1:4/ycg+VrwjGurTqiHv2xM/h6Qm81qSra+KbfT4FH2FA= +github.com/llgcode/draw2d v0.0.0-20210904075650-80aa0a2a901d/go.mod h1:mVa0dA29Db2S4LVqDYLlsePDzRJLDfdhVZiI15uY0FA= +github.com/llgcode/ps v0.0.0-20150911083025-f1443b32eedb h1:61ndUreYSlWFeCY44JxDDkngVoI7/1MVhEl98Nm0KOk= +github.com/llgcode/ps v0.0.0-20150911083025-f1443b32eedb/go.mod h1:1l8ky+Ew27CMX29uG+a2hNOKpeNYEQjjtiALiBlFQbY= +golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81 h1:00VmoueYNlNz/aHIilyyQz/MHSqGoWJzpFv/HW8xpzI= +golang.org/x/image v0.0.0-20180708004352-c73c2afc3b81/go.mod h1:ux5Hcp/YLpHSI86hEcLt0YII63i6oz57MZXIpbrjZUs= diff --git a/imgs/Rule_alignment.gif b/imgs/Rule_alignment.gif new file mode 100644 index 0000000..dfd4377 Binary files /dev/null and b/imgs/Rule_alignment.gif differ diff --git a/imgs/Rule_cohesion.gif b/imgs/Rule_cohesion.gif new file mode 100644 index 0000000..d3f3888 Binary files /dev/null and b/imgs/Rule_cohesion.gif differ diff --git a/imgs/Rule_separation.gif b/imgs/Rule_separation.gif new file mode 100644 index 0000000..df38321 Binary files /dev/null and b/imgs/Rule_separation.gif differ diff --git a/imgs/flip.gif b/imgs/flip.gif new file mode 100644 index 0000000..0aca72e Binary files /dev/null and b/imgs/flip.gif differ diff --git a/imgs/flocking.jpg b/imgs/flocking.jpg new file mode 100644 index 0000000..f8ff72b Binary files /dev/null and b/imgs/flocking.jpg differ diff --git a/imgs/goids.gif b/imgs/goids.gif new file mode 100644 index 0000000..b76f7ea Binary files /dev/null and b/imgs/goids.gif differ diff --git a/imgs/lemmings.jpg b/imgs/lemmings.jpg new file mode 100644 index 0000000..900282e Binary files /dev/null and b/imgs/lemmings.jpg differ diff --git a/imgs/phalanx.jpg b/imgs/phalanx.jpg new file mode 100644 index 0000000..771cd48 Binary files /dev/null and b/imgs/phalanx.jpg differ diff --git a/imgs/pythagoras.png b/imgs/pythagoras.png new file mode 100644 index 0000000..a6ac763 Binary files /dev/null and b/imgs/pythagoras.png differ diff --git a/main.go b/main.go new file mode 100644 index 0000000..0c72e16 --- /dev/null +++ b/main.go @@ -0,0 +1,203 @@ +package main + +import ( + "bytes" + "encoding/base64" + "fmt" + "image" + "image/color" + "image/png" + "math" + "math/rand" + "os" + "sort" + + "github.com/llgcode/draw2d/draw2dimg" +) + +// parameters +var windowWidth, windowHeight = 800, 600 +var goidSize = 3 +var goidColor = color.RGBA{200, 200, 100, 255} // gray, 50% transparency +var populationSize = 2 +var loops = 10000 +var numNeighbours = 2 +var separationFactor = float64(goidSize * 5) +var coherenceFactor = 8 + +func main() { + fo, err := os.Create("/tmp/goids.txt") + if err != nil { + panic(err) + } + defer func() { + if err := fo.Close(); err != nil { + panic(err) + } + }() + clearScreen() + hideCursor() + + goids := make([]*Goid, 0) + for i := 0; i < populationSize; i++ { + g := createRandomGoid() + goids = append(goids, &g) + } + + for i := 0; i < loops; i++ { + move(goids, fo) + frame := draw(goids) + printImage(frame.SubImage(frame.Rect)) + // fo.Write() + + } + showCursor() +} + +// Goid represents a drawn goid +type Goid struct { + X int // position + Y int + Vx int // velocity + Vy int + R int // radius + Color color.Color +} + +func createRandomGoid() (g Goid) { + g = Goid{ + X: rand.Intn(windowWidth), + Y: rand.Intn(windowHeight), + Vx: rand.Intn(goidSize), + Vy: rand.Intn(goidSize), + R: goidSize, + Color: goidColor, + } + return +} + +// find the nearest neighbours +func (g *Goid) nearestNeighbours(goids []*Goid) (neighbours []Goid) { + neighbours = make([]Goid, len(goids)) + for _, goid := range goids { + neighbours = append(neighbours, *goid) + } + sort.SliceStable(neighbours, func(i, j int) bool { + return g.distance(neighbours[i]) < g.distance(neighbours[j]) + }) + return +} + +// distance between 2 goids +func (g *Goid) distance(n Goid) float64 { + x := g.X - n.X + y := g.Y - n.Y + return math.Sqrt(float64(x*x + y*y)) + +} + +// move the goids with the 3 classic boid rules +func move(goids []*Goid, file *os.File) { + for i, goid := range goids { + neighbours := goid.nearestNeighbours(goids) + separate(goid, neighbours) + align(goid, neighbours) + cohere(goid, neighbours) + position := fmt.Sprintf("- coor: %d\n data:\n x: %d\n y: %d\n", i, goid.X, goid.Y) + file.Write([]byte(position)) + stayInWindow(goid) + } +} + +// if goid goes out of the window frame it comes back on the other side +func stayInWindow(goid *Goid) { + if goid.X < 0 { + goid.X = windowWidth - goid.X + } else if goid.X > windowWidth { + goid.X = windowWidth - goid.X + } + if goid.Y < 0 { + goid.Y = windowHeight - goid.Y + } else if goid.Y > windowHeight { + goid.Y = windowHeight - goid.Y + } +} + +// steer to avoid crowding local goids +func separate(g *Goid, neighbours []Goid) { + x, y := 0, 0 + for _, n := range neighbours[0:numNeighbours] { + if g.distance(n) < separationFactor { + x += g.X - n.X + y += g.Y - n.Y + } + } + g.Vx = x + g.Vy = y + g.X += x + g.Y += y +} + +// steer towards the average heading of local goids +func align(g *Goid, neighbours []Goid) { + x, y := 0, 0 + for _, n := range neighbours[0:numNeighbours] { + x += n.Vx + y += n.Vy + } + dx, dy := x/numNeighbours, y/numNeighbours + g.Vx += dx + g.Vy += dy + g.X += dx + g.Y += dy +} + +// steer to move toward the average position of local goids +func cohere(g *Goid, neighbours []Goid) { + x, y := 0, 0 + for _, n := range neighbours[0:numNeighbours] { + x += n.X + y += n.Y + } + dx, dy := ((x/numNeighbours)-g.X)/coherenceFactor, ((y/numNeighbours)-g.Y)/coherenceFactor + g.Vx += dx + g.Vy += dy + g.X += dx + g.Y += dy +} + +// draw the goids +func draw(goids []*Goid) *image.RGBA { + dest := image.NewRGBA(image.Rect(0, 0, windowWidth, windowHeight)) + gc := draw2dimg.NewGraphicContext(dest) + for _, goid := range goids { + gc.SetFillColor(goid.Color) + gc.MoveTo(float64(goid.X), float64(goid.Y)) + gc.ArcTo(float64(goid.X), float64(goid.Y), float64(goid.R), float64(goid.R), 0, -math.Pi*2) + gc.LineTo(float64(goid.X-goid.Vx), float64(goid.Y-goid.Vy)) + gc.Close() + gc.Fill() + } + return dest +} + +// ANSI escape sequence codes to perform action on terminal +func hideCursor() { + fmt.Print("\033[?25l") +} + +func showCursor() { + fmt.Print("\x1b[?25h\n") +} + +func clearScreen() { + fmt.Print("\x1b[2J") +} + +// this only works for iTerm! +func printImage(img image.Image) { + var buf bytes.Buffer + png.Encode(&buf, img) + imgBase64Str := base64.StdEncoding.EncodeToString(buf.Bytes()) + fmt.Printf("\x1b[2;0H\x1b]1337;File=inline=1:%s\a", imgBase64Str) +}