paulxstretch/deps/juce/modules/juce_dsp/frequency/juce_Convolution_test.cpp

582 lines
22 KiB
C++
Raw Normal View History

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
#if JUCE_ENABLE_ALLOCATION_HOOKS
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE const UnitTestAllocationChecker checker (*this)
#else
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE
#endif
namespace juce
{
namespace dsp
{
namespace
{
class ConvolutionTest : public UnitTest
{
template <typename Callback>
static void nTimes (int n, Callback&& callback)
{
for (auto i = 0; i < n; ++i)
callback();
}
static AudioBuffer<float> makeRamp (int length)
{
AudioBuffer<float> result (1, length);
result.clear();
const auto writePtr = result.getWritePointer (0);
std::fill (writePtr, writePtr + length, 1.0f);
result.applyGainRamp (0, length, 1.0f, 0.0f);
return result;
}
static AudioBuffer<float> makeStereoRamp (int length)
{
AudioBuffer<float> result (2, length);
result.clear();
auto** channels = result.getArrayOfWritePointers();
std::for_each (channels, channels + result.getNumChannels(), [length] (auto* channel)
{
std::fill (channel, channel + length, 1.0f);
});
result.applyGainRamp (0, 0, length, 1.0f, 0.0f);
result.applyGainRamp (1, 0, length, 0.0f, 1.0f);
return result;
}
static void addDiracImpulse (const AudioBlock<float>& block)
{
block.clear();
for (size_t channel = 0; channel != block.getNumChannels(); ++channel)
block.setSample ((int) channel, 0, 1.0f);
}
void checkForNans (const AudioBlock<float>& block)
{
for (size_t channel = 0; channel != block.getNumChannels(); ++channel)
for (size_t sample = 0; sample != block.getNumSamples(); ++sample)
expect (! std::isnan (block.getSample ((int) channel, (int) sample)));
}
void checkAllChannelsNonZero (const AudioBlock<float>& block)
{
for (size_t i = 0; i != block.getNumChannels(); ++i)
{
const auto* channel = block.getChannelPointer (i);
expect (std::any_of (channel, channel + block.getNumSamples(), [] (float sample)
{
return sample != 0.0f;
}));
}
}
template <typename T>
void nonAllocatingExpectWithinAbsoluteError (const T& a, const T& b, const T& error)
{
expect (std::abs (a - b) < error);
}
enum class InitSequence { prepareThenLoad, loadThenPrepare };
void checkLatency (const Convolution& convolution, const Convolution::Latency& latency)
{
const auto reportedLatency = convolution.getLatency();
if (latency.latencyInSamples == 0)
expect (reportedLatency == 0);
expect (reportedLatency >= latency.latencyInSamples);
}
void checkLatency (const Convolution&, const Convolution::NonUniform&) {}
template <typename ConvolutionConfig>
void testConvolution (const ProcessSpec& spec,
const ConvolutionConfig& config,
const AudioBuffer<float>& ir,
double irSampleRate,
Convolution::Stereo stereo,
Convolution::Trim trim,
Convolution::Normalise normalise,
const AudioBlock<const float>& expectedResult,
InitSequence initSequence)
{
AudioBuffer<float> buffer (static_cast<int> (spec.numChannels),
static_cast<int> (spec.maximumBlockSize));
AudioBlock<float> block { buffer };
ProcessContextReplacing<float> context { block };
const auto numBlocksPerSecond = (int) std::ceil (spec.sampleRate / spec.maximumBlockSize);
const auto numBlocksForImpulse = (int) std::ceil ((double) expectedResult.getNumSamples() / spec.maximumBlockSize);
AudioBuffer<float> outBuffer (static_cast<int> (spec.numChannels),
numBlocksForImpulse * static_cast<int> (spec.maximumBlockSize));
Convolution convolution (config);
auto copiedIr = ir;
if (initSequence == InitSequence::loadThenPrepare)
convolution.loadImpulseResponse (std::move (copiedIr), irSampleRate, stereo, trim, normalise);
convolution.prepare (spec);
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
if (initSequence == InitSequence::prepareThenLoad)
convolution.loadImpulseResponse (std::move (copiedIr), irSampleRate, stereo, trim, normalise);
checkLatency (convolution, config);
auto processBlocksWithDiracImpulse = [&]
{
for (auto i = 0; i != numBlocksForImpulse; ++i)
{
if (i == 0)
addDiracImpulse (block);
else
block.clear();
convolution.process (context);
for (auto c = 0; c != static_cast<int> (spec.numChannels); ++c)
{
outBuffer.copyFrom (c,
i * static_cast<int> (spec.maximumBlockSize),
block.getChannelPointer (static_cast<size_t> (c)),
static_cast<int> (spec.maximumBlockSize));
}
}
};
// If we load an IR while the convolution is already running, we'll need to wait
// for it to be loaded on a background thread
if (initSequence == InitSequence::prepareThenLoad)
{
const auto time = Time::getMillisecondCounter();
// Wait 10 seconds to load the impulse response
while (Time::getMillisecondCounter() - time < 10'000)
{
processBlocksWithDiracImpulse();
// Check if the impulse response was loaded
if (block.getSample (0, 1) != 0.0f)
break;
}
}
// At this point, our convolution should be loaded and the current IR size should
// match the expected result size
expect (convolution.getCurrentIRSize() == static_cast<int> (expectedResult.getNumSamples()));
// Make sure we get any smoothing out of the way
nTimes (numBlocksPerSecond, processBlocksWithDiracImpulse);
nTimes (5, [&]
{
processBlocksWithDiracImpulse();
const auto actualLatency = static_cast<size_t> (convolution.getLatency());
// The output should be the same as the IR
for (size_t c = 0; c != static_cast<size_t> (expectedResult.getNumChannels()); ++c)
{
for (size_t i = 0; i != static_cast<size_t> (expectedResult.getNumSamples()); ++i)
{
const auto equivalentSample = i + actualLatency;
if (static_cast<int> (equivalentSample) >= outBuffer.getNumSamples())
continue;
nonAllocatingExpectWithinAbsoluteError (outBuffer.getSample ((int) c, (int) equivalentSample),
expectedResult.getSample ((int) c, (int) i),
0.01f);
}
}
});
}
template <typename ConvolutionConfig>
void testConvolution (const ProcessSpec& spec,
const ConvolutionConfig& config,
const AudioBuffer<float>& ir,
double irSampleRate,
Convolution::Stereo stereo,
Convolution::Trim trim,
Convolution::Normalise normalise,
const AudioBlock<const float>& expectedResult)
{
for (const auto sequence : { InitSequence::prepareThenLoad, InitSequence::loadThenPrepare })
testConvolution (spec, config, ir, irSampleRate, stereo, trim, normalise, expectedResult, sequence);
}
public:
ConvolutionTest()
: UnitTest ("Convolution", UnitTestCategories::dsp)
{}
void runTest() override
{
const ProcessSpec spec { 44100.0, 512, 2 };
AudioBuffer<float> buffer (static_cast<int> (spec.numChannels),
static_cast<int> (spec.maximumBlockSize));
AudioBlock<float> block { buffer };
ProcessContextReplacing<float> context { block };
const auto impulseData = []
{
Random random;
AudioBuffer<float> result (2, 1000);
for (auto channel = 0; channel != result.getNumChannels(); ++channel)
for (auto sample = 0; sample != result.getNumSamples(); ++sample)
result.setSample (channel, sample, random.nextFloat());
return result;
}();
beginTest ("Impulse responses can be loaded without allocating on the audio thread");
{
Convolution convolution;
convolution.prepare (spec);
auto copy = impulseData;
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
nTimes (100, [&]
{
convolution.loadImpulseResponse (std::move (copy),
1000,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::no);
addDiracImpulse (block);
convolution.process (context);
checkForNans (block);
});
}
beginTest ("Convolution can be reset without allocating on the audio thread");
{
Convolution convolution;
convolution.prepare (spec);
auto copy = impulseData;
convolution.loadImpulseResponse (std::move (copy),
1000,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::yes);
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
nTimes (100, [&]
{
addDiracImpulse (block);
convolution.reset();
convolution.process (context);
convolution.reset();
});
checkForNans (block);
}
beginTest ("Completely empty IRs don't crash");
{
AudioBuffer<float> emptyBuffer;
Convolution convolution;
convolution.prepare (spec);
auto copy = impulseData;
convolution.loadImpulseResponse (std::move (copy),
2000,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::yes);
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
nTimes (100, [&]
{
addDiracImpulse (block);
convolution.reset();
convolution.process (context);
convolution.reset();
});
checkForNans (block);
}
beginTest ("Convolutions can cope with a change in samplerate and blocksize");
{
Convolution convolution;
auto copy = impulseData;
convolution.loadImpulseResponse (std::move (copy),
2000,
Convolution::Stereo::yes,
Convolution::Trim::no,
Convolution::Normalise::yes);
const dsp::ProcessSpec specs[] = { { 96'000.0, 1024, 2 },
{ 48'000.0, 512, 2 },
{ 44'100.0, 256, 2 } };
for (const auto& thisSpec : specs)
{
convolution.prepare (thisSpec);
expectWithinAbsoluteError ((double) convolution.getCurrentIRSize(),
thisSpec.sampleRate * 0.5,
1.0);
juce::AudioBuffer<float> thisBuffer ((int) thisSpec.numChannels,
(int) thisSpec.maximumBlockSize);
AudioBlock<float> thisBlock { thisBuffer };
ProcessContextReplacing<float> thisContext { thisBlock };
nTimes (100, [&]
{
addDiracImpulse (thisBlock);
convolution.process (thisContext);
checkForNans (thisBlock);
checkAllChannelsNonZero (thisBlock);
});
}
}
beginTest ("Short uniform convolutions work");
{
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) / 2);
testConvolution (spec,
Convolution::Latency { 0 },
ramp,
spec.sampleRate,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::no,
ramp);
}
beginTest ("Longer uniform convolutions work");
{
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
testConvolution (spec,
Convolution::Latency { 0 },
ramp,
spec.sampleRate,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::no,
ramp);
}
beginTest ("Normalisation works");
{
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
auto copy = ramp;
const auto channels = copy.getArrayOfWritePointers();
const auto numChannels = copy.getNumChannels();
const auto numSamples = copy.getNumSamples();
const auto factor = 0.125f / std::sqrt (std::accumulate (channels, channels + numChannels, 0.0f,
[numSamples] (auto max, auto* channel)
{
return juce::jmax (max, std::accumulate (channel, channel + numSamples, 0.0f,
[] (auto sum, auto sample)
{
return sum + sample * sample;
}));
}));
std::for_each (channels, channels + numChannels, [factor, numSamples] (auto* channel)
{
FloatVectorOperations::multiply (channel, factor, numSamples);
});
testConvolution (spec,
Convolution::Latency { 0 },
ramp,
spec.sampleRate,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::yes,
copy);
}
beginTest ("Stereo convolutions work");
{
const auto ramp = makeStereoRamp (static_cast<int> (spec.maximumBlockSize) * 5);
testConvolution (spec,
Convolution::Latency { 0 },
ramp,
spec.sampleRate,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::no,
ramp);
}
beginTest ("Stereo IRs only use first channel if stereo is disabled");
{
const auto length = static_cast<int> (spec.maximumBlockSize) * 5;
const auto ramp = makeStereoRamp (length);
const float* channels[] { ramp.getReadPointer (0), ramp.getReadPointer (0) };
testConvolution (spec,
Convolution::Latency { 0 },
ramp,
spec.sampleRate,
Convolution::Stereo::no,
Convolution::Trim::yes,
Convolution::Normalise::no,
AudioBlock<const float> (channels, numElementsInArray (channels), length));
}
beginTest ("IRs with extra silence are trimmed appropriately");
{
const auto length = static_cast<int> (spec.maximumBlockSize) * 3;
const auto ramp = makeRamp (length);
AudioBuffer<float> paddedRamp (ramp.getNumChannels(), ramp.getNumSamples() * 2);
paddedRamp.clear();
const auto offset = (paddedRamp.getNumSamples() - ramp.getNumSamples()) / 2;
for (auto channel = 0; channel != ramp.getNumChannels(); ++channel)
paddedRamp.copyFrom (channel, offset, ramp.getReadPointer (channel), length);
testConvolution (spec,
Convolution::Latency { 0 },
paddedRamp,
spec.sampleRate,
Convolution::Stereo::no,
Convolution::Trim::yes,
Convolution::Normalise::no,
ramp);
}
beginTest ("IRs are resampled if their sample rate is different to the playback rate");
{
for (const auto resampleRatio : { 0.1, 0.5, 2.0, 10.0 })
{
const auto length = static_cast<int> (spec.maximumBlockSize) * 2;
const auto ramp = makeStereoRamp (length);
const auto resampled = [&]
{
AudioBuffer<float> original = ramp;
MemoryAudioSource memorySource (original, false);
ResamplingAudioSource resamplingSource (&memorySource, false, original.getNumChannels());
const auto finalSize = roundToInt (original.getNumSamples() / resampleRatio);
resamplingSource.setResamplingRatio (resampleRatio);
resamplingSource.prepareToPlay (finalSize, spec.sampleRate * resampleRatio);
AudioBuffer<float> result (original.getNumChannels(), finalSize);
resamplingSource.getNextAudioBlock ({ &result, 0, result.getNumSamples() });
result.applyGain ((float) resampleRatio);
return result;
}();
testConvolution (spec,
Convolution::Latency { 0 },
ramp,
spec.sampleRate * resampleRatio,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::no,
resampled);
}
}
beginTest ("Non-uniform convolutions work");
{
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
for (auto headSize : { spec.maximumBlockSize / 2, spec.maximumBlockSize, spec.maximumBlockSize * 9 })
{
testConvolution (spec,
Convolution::NonUniform { static_cast<int> (headSize) },
ramp,
spec.sampleRate,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::no,
ramp);
}
}
beginTest ("Convolutions with latency work");
{
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
using BlockSize = decltype (spec.maximumBlockSize);
for (auto latency : { static_cast<BlockSize> (0),
spec.maximumBlockSize / 3,
spec.maximumBlockSize,
spec.maximumBlockSize * 2,
static_cast<BlockSize> (spec.maximumBlockSize * 2.5) })
{
testConvolution (spec,
Convolution::Latency { static_cast<int> (latency) },
ramp,
spec.sampleRate,
Convolution::Stereo::yes,
Convolution::Trim::yes,
Convolution::Normalise::no,
ramp);
}
}
}
};
ConvolutionTest convolutionUnitTest;
}
}
}
#undef JUCE_FAIL_ON_ALLOCATION_IN_SCOPE