paulxstretch/deps/juce/examples/CMake/GuiApp/CMakeLists.txt

103 lines
5.9 KiB
CMake
Raw Normal View History

# Example GUI App CMakeLists.txt
# To get started on a new GUI app, copy this entire folder (containing this file and C++ sources) to
# a convenient location, and then start making modifications. For other examples of CMakeLists for
# GUI apps, check `extras/Projucer` and `examples/DemoRunner` in the JUCE repo.
# The first line of any CMake project should be a call to `cmake_minimum_required`, which checks
# that the installed CMake will be able to understand the following CMakeLists, and ensures that
# CMake's behaviour is compatible with the named version. This is a standard CMake command, so more
# information can be found in the CMake docs.
cmake_minimum_required(VERSION 3.15)
# The top-level CMakeLists.txt file for a project must contain a literal, direct call to the
# `project()` command. `project()` sets up some helpful variables that describe source/binary
# directories, and the current project version. This is a standard CMake command.
project(GUI_APP_EXAMPLE VERSION 0.0.1)
# If you've installed JUCE somehow (via a package manager, or directly using the CMake install
# target), you'll need to tell this project that it depends on the installed copy of JUCE. If you've
# included JUCE directly in your source tree (perhaps as a submodule), you'll need to tell CMake to
# include that subdirectory as part of the build.
# find_package(JUCE CONFIG REQUIRED) # If you've installed JUCE to your system
# or
# add_subdirectory(JUCE) # If you've put JUCE in a subdirectory called JUCE
# If your app depends the VST2 SDK, perhaps to host VST2 plugins, CMake needs to be told where
# to find the SDK on your system. This setup should be done before calling `juce_add_gui_app`.
# juce_set_vst2_sdk_path(...)
# `juce_add_gui_app` adds an executable target with the name passed as the first argument
# (GuiAppExample here). This target is a normal CMake target, but has a lot of extra properties set
# up by default. This function accepts many optional arguments. Check the readme at
# `docs/CMake API.md` in the JUCE repo for the full list.
juce_add_gui_app(GuiAppExample
# VERSION ... # Set this if the app version is different to the project version
# ICON_BIG ... # ICON_* arguments specify a path to an image file to use as an icon
# ICON_SMALL ...
# DOCUMENT_EXTENSIONS ... # Specify file extensions that should be associated with this app
# COMPANY_NAME ... # Specify the name of the app's author
PRODUCT_NAME "Gui App Example") # The name of the final executable, which can differ from the target name
# `juce_generate_juce_header` will create a JuceHeader.h for a given target, which will be generated
# into your build tree. This should be included with `#include <JuceHeader.h>`. The include path for
# this header will be automatically added to the target. The main function of the JuceHeader is to
# include all your JUCE module headers; if you're happy to include module headers directly, you
# probably don't need to call this.
# juce_generate_juce_header(GuiAppExample)
# `target_sources` adds source files to a target. We pass the target that needs the sources as the
# first argument, then a visibility parameter for the sources which should normally be PRIVATE.
# Finally, we supply a list of source files that will be built into the target. This is a standard
# CMake command.
target_sources(GuiAppExample
PRIVATE
Main.cpp
MainComponent.cpp)
# `target_compile_definitions` adds some preprocessor definitions to our target. In a Projucer
# project, these might be passed in the 'Preprocessor Definitions' field. JUCE modules also make use
# of compile definitions to switch certain features on/off, so if there's a particular feature you
# need that's not on by default, check the module header for the correct flag to set here. These
# definitions will be visible both to your code, and also the JUCE module code, so for new
# definitions, pick unique names that are unlikely to collide! This is a standard CMake command.
target_compile_definitions(GuiAppExample
PRIVATE
# JUCE_WEB_BROWSER and JUCE_USE_CURL would be on by default, but you might not need them.
JUCE_WEB_BROWSER=0 # If you remove this, add `NEEDS_WEB_BROWSER TRUE` to the `juce_add_gui_app` call
JUCE_USE_CURL=0 # If you remove this, add `NEEDS_CURL TRUE` to the `juce_add_gui_app` call
JUCE_APPLICATION_NAME_STRING="$<TARGET_PROPERTY:GuiAppExample,JUCE_PRODUCT_NAME>"
JUCE_APPLICATION_VERSION_STRING="$<TARGET_PROPERTY:GuiAppExample,JUCE_VERSION>")
# If your target needs extra binary assets, you can add them here. The first argument is the name of
# a new static library target that will include all the binary resources. There is an optional
# `NAMESPACE` argument that can specify the namespace of the generated binary data class. Finally,
# the SOURCES argument should be followed by a list of source files that should be built into the
# static library. These source files can be of any kind (wav data, images, fonts, icons etc.).
# Conversion to binary-data will happen when your target is built.
# juce_add_binary_data(GuiAppData SOURCES ...)
# `target_link_libraries` links libraries and JUCE modules to other libraries or executables. Here,
# we're linking our executable target to the `juce::juce_gui_extra` module. Inter-module
# dependencies are resolved automatically, so `juce_core`, `juce_events` and so on will also be
# linked automatically. If we'd generated a binary data target above, we would need to link to it
# here too. This is a standard CMake command.
target_link_libraries(GuiAppExample
PRIVATE
# GuiAppData # If we'd created a binary data target, we'd link to it here
juce::juce_gui_extra
PUBLIC
juce::juce_recommended_config_flags
juce::juce_recommended_lto_flags
juce::juce_recommended_warning_flags)