migrating to the latest JUCE version
This commit is contained in:
		@@ -1,170 +1,170 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2ChainShape.h"
 | 
			
		||||
#include "b2EdgeShape.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
b2ChainShape::~b2ChainShape()
 | 
			
		||||
{
 | 
			
		||||
	b2Free(m_vertices);
 | 
			
		||||
	m_vertices = NULL;
 | 
			
		||||
	m_count = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(m_vertices == NULL && m_count == 0);
 | 
			
		||||
	b2Assert(count >= 3);
 | 
			
		||||
	m_count = count + 1;
 | 
			
		||||
	m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
 | 
			
		||||
	memcpy(m_vertices, vertices, count * sizeof(b2Vec2));
 | 
			
		||||
	m_vertices[count] = m_vertices[0];
 | 
			
		||||
	m_prevVertex = m_vertices[m_count - 2];
 | 
			
		||||
	m_nextVertex = m_vertices[1];
 | 
			
		||||
	m_hasPrevVertex = true;
 | 
			
		||||
	m_hasNextVertex = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(m_vertices == NULL && m_count == 0);
 | 
			
		||||
	b2Assert(count >= 2);
 | 
			
		||||
	m_count = count;
 | 
			
		||||
	m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2));
 | 
			
		||||
	memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2));
 | 
			
		||||
	m_hasPrevVertex = false;
 | 
			
		||||
	m_hasNextVertex = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::SetPrevVertex(const b2Vec2& prevVertex)
 | 
			
		||||
{
 | 
			
		||||
	m_prevVertex = prevVertex;
 | 
			
		||||
	m_hasPrevVertex = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::SetNextVertex(const b2Vec2& nextVertex)
 | 
			
		||||
{
 | 
			
		||||
	m_nextVertex = nextVertex;
 | 
			
		||||
	m_hasNextVertex = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2ChainShape));
 | 
			
		||||
	b2ChainShape* clone = new (mem) b2ChainShape;
 | 
			
		||||
	clone->CreateChain(m_vertices, m_count);
 | 
			
		||||
	clone->m_prevVertex = m_prevVertex;
 | 
			
		||||
	clone->m_nextVertex = m_nextVertex;
 | 
			
		||||
	clone->m_hasPrevVertex = m_hasPrevVertex;
 | 
			
		||||
	clone->m_hasNextVertex = m_hasNextVertex;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2ChainShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	// edge count = vertex count - 1
 | 
			
		||||
	return m_count - 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= index && index < m_count - 1);
 | 
			
		||||
	edge->m_type = b2Shape::e_edge;
 | 
			
		||||
	edge->m_radius = m_radius;
 | 
			
		||||
 | 
			
		||||
	edge->m_vertex1 = m_vertices[index + 0];
 | 
			
		||||
	edge->m_vertex2 = m_vertices[index + 1];
 | 
			
		||||
 | 
			
		||||
	if (index > 0)
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex0 = m_vertices[index - 1];
 | 
			
		||||
		edge->m_hasVertex0 = true;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex0 = m_prevVertex;
 | 
			
		||||
		edge->m_hasVertex0 = m_hasPrevVertex;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (index < m_count - 2)
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex3 = m_vertices[index + 2];
 | 
			
		||||
		edge->m_hasVertex3 = true;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex3 = m_nextVertex;
 | 
			
		||||
		edge->m_hasVertex3 = m_hasNextVertex;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(xf);
 | 
			
		||||
	B2_NOT_USED(p);
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
							const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(childIndex < m_count);
 | 
			
		||||
 | 
			
		||||
	b2EdgeShape edgeShape;
 | 
			
		||||
 | 
			
		||||
	int32 i1 = childIndex;
 | 
			
		||||
	int32 i2 = childIndex + 1;
 | 
			
		||||
	if (i2 == m_count)
 | 
			
		||||
	{
 | 
			
		||||
		i2 = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	edgeShape.m_vertex1 = m_vertices[i1];
 | 
			
		||||
	edgeShape.m_vertex2 = m_vertices[i2];
 | 
			
		||||
 | 
			
		||||
	return edgeShape.RayCast(output, input, xf, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(childIndex < m_count);
 | 
			
		||||
 | 
			
		||||
	int32 i1 = childIndex;
 | 
			
		||||
	int32 i2 = childIndex + 1;
 | 
			
		||||
	if (i2 == m_count)
 | 
			
		||||
	{
 | 
			
		||||
		i2 = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = b2Mul(xf, m_vertices[i1]);
 | 
			
		||||
	b2Vec2 v2 = b2Mul(xf, m_vertices[i2]);
 | 
			
		||||
 | 
			
		||||
	aabb->lowerBound = b2Min(v1, v2);
 | 
			
		||||
	aabb->upperBound = b2Max(v1, v2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(density);
 | 
			
		||||
 | 
			
		||||
	massData->mass = 0.0f;
 | 
			
		||||
	massData->center.SetZero();
 | 
			
		||||
	massData->I = 0.0f;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2ChainShape.h"
 | 
			
		||||
#include "b2EdgeShape.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
b2ChainShape::~b2ChainShape()
 | 
			
		||||
{
 | 
			
		||||
	b2Free(m_vertices);
 | 
			
		||||
	m_vertices = NULL;
 | 
			
		||||
	m_count = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::CreateLoop(const b2Vec2* vertices, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(m_vertices == NULL && m_count == 0);
 | 
			
		||||
	b2Assert(count >= 3);
 | 
			
		||||
	m_count = count + 1;
 | 
			
		||||
	m_vertices = (b2Vec2*)b2Alloc(m_count * sizeof(b2Vec2));
 | 
			
		||||
	memcpy(m_vertices, vertices, count * sizeof(b2Vec2));
 | 
			
		||||
	m_vertices[count] = m_vertices[0];
 | 
			
		||||
	m_prevVertex = m_vertices[m_count - 2];
 | 
			
		||||
	m_nextVertex = m_vertices[1];
 | 
			
		||||
	m_hasPrevVertex = true;
 | 
			
		||||
	m_hasNextVertex = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::CreateChain(const b2Vec2* vertices, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(m_vertices == NULL && m_count == 0);
 | 
			
		||||
	b2Assert(count >= 2);
 | 
			
		||||
	m_count = count;
 | 
			
		||||
	m_vertices = (b2Vec2*)b2Alloc(count * sizeof(b2Vec2));
 | 
			
		||||
	memcpy(m_vertices, vertices, m_count * sizeof(b2Vec2));
 | 
			
		||||
	m_hasPrevVertex = false;
 | 
			
		||||
	m_hasNextVertex = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::SetPrevVertex(const b2Vec2& prevVertex)
 | 
			
		||||
{
 | 
			
		||||
	m_prevVertex = prevVertex;
 | 
			
		||||
	m_hasPrevVertex = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::SetNextVertex(const b2Vec2& nextVertex)
 | 
			
		||||
{
 | 
			
		||||
	m_nextVertex = nextVertex;
 | 
			
		||||
	m_hasNextVertex = true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
b2Shape* b2ChainShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2ChainShape));
 | 
			
		||||
	b2ChainShape* clone = new (mem) b2ChainShape;
 | 
			
		||||
	clone->CreateChain(m_vertices, m_count);
 | 
			
		||||
	clone->m_prevVertex = m_prevVertex;
 | 
			
		||||
	clone->m_nextVertex = m_nextVertex;
 | 
			
		||||
	clone->m_hasPrevVertex = m_hasPrevVertex;
 | 
			
		||||
	clone->m_hasNextVertex = m_hasNextVertex;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2ChainShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	// edge count = vertex count - 1
 | 
			
		||||
	return m_count - 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::GetChildEdge(b2EdgeShape* edge, int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= index && index < m_count - 1);
 | 
			
		||||
	edge->m_type = b2Shape::e_edge;
 | 
			
		||||
	edge->m_radius = m_radius;
 | 
			
		||||
 | 
			
		||||
	edge->m_vertex1 = m_vertices[index + 0];
 | 
			
		||||
	edge->m_vertex2 = m_vertices[index + 1];
 | 
			
		||||
 | 
			
		||||
	if (index > 0)
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex0 = m_vertices[index - 1];
 | 
			
		||||
		edge->m_hasVertex0 = true;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex0 = m_prevVertex;
 | 
			
		||||
		edge->m_hasVertex0 = m_hasPrevVertex;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (index < m_count - 2)
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex3 = m_vertices[index + 2];
 | 
			
		||||
		edge->m_hasVertex3 = true;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		edge->m_vertex3 = m_nextVertex;
 | 
			
		||||
		edge->m_hasVertex3 = m_hasNextVertex;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2ChainShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(xf);
 | 
			
		||||
	B2_NOT_USED(p);
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2ChainShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
							const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(childIndex < m_count);
 | 
			
		||||
 | 
			
		||||
	b2EdgeShape edgeShape;
 | 
			
		||||
 | 
			
		||||
	int32 i1 = childIndex;
 | 
			
		||||
	int32 i2 = childIndex + 1;
 | 
			
		||||
	if (i2 == m_count)
 | 
			
		||||
	{
 | 
			
		||||
		i2 = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	edgeShape.m_vertex1 = m_vertices[i1];
 | 
			
		||||
	edgeShape.m_vertex2 = m_vertices[i2];
 | 
			
		||||
 | 
			
		||||
	return edgeShape.RayCast(output, input, xf, 0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(childIndex < m_count);
 | 
			
		||||
 | 
			
		||||
	int32 i1 = childIndex;
 | 
			
		||||
	int32 i2 = childIndex + 1;
 | 
			
		||||
	if (i2 == m_count)
 | 
			
		||||
	{
 | 
			
		||||
		i2 = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = b2Mul(xf, m_vertices[i1]);
 | 
			
		||||
	b2Vec2 v2 = b2Mul(xf, m_vertices[i2]);
 | 
			
		||||
 | 
			
		||||
	aabb->lowerBound = b2Min(v1, v2);
 | 
			
		||||
	aabb->upperBound = b2Max(v1, v2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2ChainShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(density);
 | 
			
		||||
 | 
			
		||||
	massData->mass = 0.0f;
 | 
			
		||||
	massData->center.SetZero();
 | 
			
		||||
	massData->I = 0.0f;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,102 +1,102 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_CHAIN_SHAPE_H
 | 
			
		||||
#define B2_CHAIN_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Shape.h"
 | 
			
		||||
 | 
			
		||||
class b2EdgeShape;
 | 
			
		||||
 | 
			
		||||
/// A chain shape is a free form sequence of line segments.
 | 
			
		||||
/// The chain has two-sided collision, so you can use inside and outside collision.
 | 
			
		||||
/// Therefore, you may use any winding order.
 | 
			
		||||
/// Since there may be many vertices, they are allocated using b2Alloc.
 | 
			
		||||
/// Connectivity information is used to create smooth collisions.
 | 
			
		||||
/// WARNING: The chain will not collide properly if there are self-intersections.
 | 
			
		||||
class b2ChainShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2ChainShape();
 | 
			
		||||
 | 
			
		||||
	/// The destructor frees the vertices using b2Free.
 | 
			
		||||
	~b2ChainShape();
 | 
			
		||||
 | 
			
		||||
	/// Create a loop. This automatically adjusts connectivity.
 | 
			
		||||
	/// @param vertices an array of vertices, these are copied
 | 
			
		||||
	/// @param count the vertex count
 | 
			
		||||
	void CreateLoop(const b2Vec2* vertices, juce::int32 count);
 | 
			
		||||
 | 
			
		||||
	/// Create a chain with isolated end vertices.
 | 
			
		||||
	/// @param vertices an array of vertices, these are copied
 | 
			
		||||
	/// @param count the vertex count
 | 
			
		||||
	void CreateChain(const b2Vec2* vertices, juce::int32 count);
 | 
			
		||||
 | 
			
		||||
	/// Establish connectivity to a vertex that precedes the first vertex.
 | 
			
		||||
	/// Don't call this for loops.
 | 
			
		||||
	void SetPrevVertex(const b2Vec2& prevVertex);
 | 
			
		||||
 | 
			
		||||
	/// Establish connectivity to a vertex that follows the last vertex.
 | 
			
		||||
	/// Don't call this for loops.
 | 
			
		||||
	void SetNextVertex(const b2Vec2& nextVertex);
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape. Vertices are cloned using b2Alloc.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Get a child edge.
 | 
			
		||||
	void GetChildEdge(b2EdgeShape* edge, juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	/// This always return false.
 | 
			
		||||
	/// @see b2Shape::TestPoint
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
					const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// Chains have zero mass.
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// The vertices. Owned by this class.
 | 
			
		||||
	b2Vec2* m_vertices;
 | 
			
		||||
 | 
			
		||||
	/// The vertex count.
 | 
			
		||||
	juce::int32 m_count;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 m_prevVertex, m_nextVertex;
 | 
			
		||||
	bool m_hasPrevVertex, m_hasNextVertex;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2ChainShape::b2ChainShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_chain;
 | 
			
		||||
	m_radius = b2_polygonRadius;
 | 
			
		||||
	m_vertices = NULL;
 | 
			
		||||
	m_count = 0;
 | 
			
		||||
	m_hasPrevVertex = 0;
 | 
			
		||||
	m_hasNextVertex = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_CHAIN_SHAPE_H
 | 
			
		||||
#define B2_CHAIN_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Shape.h"
 | 
			
		||||
 | 
			
		||||
class b2EdgeShape;
 | 
			
		||||
 | 
			
		||||
/// A chain shape is a free form sequence of line segments.
 | 
			
		||||
/// The chain has two-sided collision, so you can use inside and outside collision.
 | 
			
		||||
/// Therefore, you may use any winding order.
 | 
			
		||||
/// Since there may be many vertices, they are allocated using b2Alloc.
 | 
			
		||||
/// Connectivity information is used to create smooth collisions.
 | 
			
		||||
/// WARNING: The chain will not collide properly if there are self-intersections.
 | 
			
		||||
class b2ChainShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2ChainShape();
 | 
			
		||||
 | 
			
		||||
	/// The destructor frees the vertices using b2Free.
 | 
			
		||||
	~b2ChainShape();
 | 
			
		||||
 | 
			
		||||
	/// Create a loop. This automatically adjusts connectivity.
 | 
			
		||||
	/// @param vertices an array of vertices, these are copied
 | 
			
		||||
	/// @param count the vertex count
 | 
			
		||||
	void CreateLoop(const b2Vec2* vertices, juce::int32 count);
 | 
			
		||||
 | 
			
		||||
	/// Create a chain with isolated end vertices.
 | 
			
		||||
	/// @param vertices an array of vertices, these are copied
 | 
			
		||||
	/// @param count the vertex count
 | 
			
		||||
	void CreateChain(const b2Vec2* vertices, juce::int32 count);
 | 
			
		||||
 | 
			
		||||
	/// Establish connectivity to a vertex that precedes the first vertex.
 | 
			
		||||
	/// Don't call this for loops.
 | 
			
		||||
	void SetPrevVertex(const b2Vec2& prevVertex);
 | 
			
		||||
 | 
			
		||||
	/// Establish connectivity to a vertex that follows the last vertex.
 | 
			
		||||
	/// Don't call this for loops.
 | 
			
		||||
	void SetNextVertex(const b2Vec2& nextVertex);
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape. Vertices are cloned using b2Alloc.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Get a child edge.
 | 
			
		||||
	void GetChildEdge(b2EdgeShape* edge, juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	/// This always return false.
 | 
			
		||||
	/// @see b2Shape::TestPoint
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
					const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// Chains have zero mass.
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// The vertices. Owned by this class.
 | 
			
		||||
	b2Vec2* m_vertices;
 | 
			
		||||
 | 
			
		||||
	/// The vertex count.
 | 
			
		||||
	juce::int32 m_count;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 m_prevVertex, m_nextVertex;
 | 
			
		||||
	bool m_hasPrevVertex, m_hasNextVertex;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2ChainShape::b2ChainShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_chain;
 | 
			
		||||
	m_radius = b2_polygonRadius;
 | 
			
		||||
	m_vertices = NULL;
 | 
			
		||||
	m_count = 0;
 | 
			
		||||
	m_hasPrevVertex = 0;
 | 
			
		||||
	m_hasNextVertex = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,100 +1,100 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2CircleShape.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
b2Shape* b2CircleShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2CircleShape));
 | 
			
		||||
	b2CircleShape* clone = new (mem) b2CircleShape;
 | 
			
		||||
	*clone = *this;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2CircleShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2CircleShape::TestPoint(const b2Transform& transform, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 center = transform.p + b2Mul(transform.q, m_p);
 | 
			
		||||
	b2Vec2 d = p - center;
 | 
			
		||||
	return b2Dot(d, d) <= m_radius * m_radius;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Collision Detection in Interactive 3D Environments by Gino van den Bergen
 | 
			
		||||
// From Section 3.1.2
 | 
			
		||||
// x = s + a * r
 | 
			
		||||
// norm(x) = radius
 | 
			
		||||
bool b2CircleShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
							const b2Transform& transform, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 position = transform.p + b2Mul(transform.q, m_p);
 | 
			
		||||
	b2Vec2 s = input.p1 - position;
 | 
			
		||||
	float32 b = b2Dot(s, s) - m_radius * m_radius;
 | 
			
		||||
 | 
			
		||||
	// Solve quadratic equation.
 | 
			
		||||
	b2Vec2 r = input.p2 - input.p1;
 | 
			
		||||
	float32 c =  b2Dot(s, r);
 | 
			
		||||
	float32 rr = b2Dot(r, r);
 | 
			
		||||
	float32 sigma = c * c - rr * b;
 | 
			
		||||
 | 
			
		||||
	// Check for negative discriminant and short segment.
 | 
			
		||||
	if (sigma < 0.0f || rr < b2_epsilon)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Find the point of intersection of the line with the circle.
 | 
			
		||||
	float32 a = -(c + b2Sqrt(sigma));
 | 
			
		||||
 | 
			
		||||
	// Is the intersection point on the segment?
 | 
			
		||||
	if (0.0f <= a && a <= input.maxFraction * rr)
 | 
			
		||||
	{
 | 
			
		||||
		a /= rr;
 | 
			
		||||
		output->fraction = a;
 | 
			
		||||
		output->normal = s + a * r;
 | 
			
		||||
		output->normal.Normalize();
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 p = transform.p + b2Mul(transform.q, m_p);
 | 
			
		||||
	aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius);
 | 
			
		||||
	aabb->upperBound.Set(p.x + m_radius, p.y + m_radius);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2CircleShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	massData->mass = density * b2_pi * m_radius * m_radius;
 | 
			
		||||
	massData->center = m_p;
 | 
			
		||||
 | 
			
		||||
	// inertia about the local origin
 | 
			
		||||
	massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_p, m_p));
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2CircleShape.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
b2Shape* b2CircleShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2CircleShape));
 | 
			
		||||
	b2CircleShape* clone = new (mem) b2CircleShape;
 | 
			
		||||
	*clone = *this;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2CircleShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2CircleShape::TestPoint(const b2Transform& transform, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 center = transform.p + b2Mul(transform.q, m_p);
 | 
			
		||||
	b2Vec2 d = p - center;
 | 
			
		||||
	return b2Dot(d, d) <= m_radius * m_radius;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Collision Detection in Interactive 3D Environments by Gino van den Bergen
 | 
			
		||||
// From Section 3.1.2
 | 
			
		||||
// x = s + a * r
 | 
			
		||||
// norm(x) = radius
 | 
			
		||||
bool b2CircleShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
							const b2Transform& transform, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 position = transform.p + b2Mul(transform.q, m_p);
 | 
			
		||||
	b2Vec2 s = input.p1 - position;
 | 
			
		||||
	float32 b = b2Dot(s, s) - m_radius * m_radius;
 | 
			
		||||
 | 
			
		||||
	// Solve quadratic equation.
 | 
			
		||||
	b2Vec2 r = input.p2 - input.p1;
 | 
			
		||||
	float32 c =  b2Dot(s, r);
 | 
			
		||||
	float32 rr = b2Dot(r, r);
 | 
			
		||||
	float32 sigma = c * c - rr * b;
 | 
			
		||||
 | 
			
		||||
	// Check for negative discriminant and short segment.
 | 
			
		||||
	if (sigma < 0.0f || rr < b2_epsilon)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Find the point of intersection of the line with the circle.
 | 
			
		||||
	float32 a = -(c + b2Sqrt(sigma));
 | 
			
		||||
 | 
			
		||||
	// Is the intersection point on the segment?
 | 
			
		||||
	if (0.0f <= a && a <= input.maxFraction * rr)
 | 
			
		||||
	{
 | 
			
		||||
		a /= rr;
 | 
			
		||||
		output->fraction = a;
 | 
			
		||||
		output->normal = s + a * r;
 | 
			
		||||
		output->normal.Normalize();
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 p = transform.p + b2Mul(transform.q, m_p);
 | 
			
		||||
	aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius);
 | 
			
		||||
	aabb->upperBound.Set(p.x + m_radius, p.y + m_radius);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2CircleShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	massData->mass = density * b2_pi * m_radius * m_radius;
 | 
			
		||||
	massData->center = m_p;
 | 
			
		||||
 | 
			
		||||
	// inertia about the local origin
 | 
			
		||||
	massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_p, m_p));
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,91 +1,91 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_CIRCLE_SHAPE_H
 | 
			
		||||
#define B2_CIRCLE_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Shape.h"
 | 
			
		||||
 | 
			
		||||
/// A circle shape.
 | 
			
		||||
class b2CircleShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2CircleShape();
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
				const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex index in the given direction.
 | 
			
		||||
	juce::int32 GetSupport(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex in the given direction.
 | 
			
		||||
	const b2Vec2& GetSupportVertex(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the vertex count.
 | 
			
		||||
	juce::int32 GetVertexCount() const { return 1; }
 | 
			
		||||
 | 
			
		||||
	/// Get a vertex by index. Used by b2Distance.
 | 
			
		||||
	const b2Vec2& GetVertex(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	/// Position
 | 
			
		||||
	b2Vec2 m_p;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2CircleShape::b2CircleShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_circle;
 | 
			
		||||
	m_radius = 0.0f;
 | 
			
		||||
	m_p.SetZero();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2CircleShape::GetSupport(const b2Vec2 &d) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(d);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2CircleShape::GetSupportVertex(const b2Vec2 &d) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(d);
 | 
			
		||||
	return m_p;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2CircleShape::GetVertex(juce::int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(index);
 | 
			
		||||
	b2Assert(index == 0);
 | 
			
		||||
	return m_p;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_CIRCLE_SHAPE_H
 | 
			
		||||
#define B2_CIRCLE_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Shape.h"
 | 
			
		||||
 | 
			
		||||
/// A circle shape.
 | 
			
		||||
class b2CircleShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2CircleShape();
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
				const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex index in the given direction.
 | 
			
		||||
	juce::int32 GetSupport(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex in the given direction.
 | 
			
		||||
	const b2Vec2& GetSupportVertex(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the vertex count.
 | 
			
		||||
	juce::int32 GetVertexCount() const { return 1; }
 | 
			
		||||
 | 
			
		||||
	/// Get a vertex by index. Used by b2Distance.
 | 
			
		||||
	const b2Vec2& GetVertex(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	/// Position
 | 
			
		||||
	b2Vec2 m_p;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2CircleShape::b2CircleShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_circle;
 | 
			
		||||
	m_radius = 0.0f;
 | 
			
		||||
	m_p.SetZero();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2CircleShape::GetSupport(const b2Vec2 &d) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(d);
 | 
			
		||||
	return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2CircleShape::GetSupportVertex(const b2Vec2 &d) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(d);
 | 
			
		||||
	return m_p;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2CircleShape::GetVertex(juce::int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(index);
 | 
			
		||||
	b2Assert(index == 0);
 | 
			
		||||
	return m_p;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,139 +1,139 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2EdgeShape.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
void b2EdgeShape::Set(const b2Vec2& v1, const b2Vec2& v2)
 | 
			
		||||
{
 | 
			
		||||
	m_vertex1 = v1;
 | 
			
		||||
	m_vertex2 = v2;
 | 
			
		||||
	m_hasVertex0 = false;
 | 
			
		||||
	m_hasVertex3 = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
b2Shape* b2EdgeShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2EdgeShape));
 | 
			
		||||
	b2EdgeShape* clone = new (mem) b2EdgeShape;
 | 
			
		||||
	*clone = *this;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2EdgeShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2EdgeShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(xf);
 | 
			
		||||
	B2_NOT_USED(p);
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// p = p1 + t * d
 | 
			
		||||
// v = v1 + s * e
 | 
			
		||||
// p1 + t * d = v1 + s * e
 | 
			
		||||
// s * e - t * d = p1 - v1
 | 
			
		||||
bool b2EdgeShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
							const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	// Put the ray into the edge's frame of reference.
 | 
			
		||||
	b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
 | 
			
		||||
	b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
 | 
			
		||||
	b2Vec2 d = p2 - p1;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = m_vertex1;
 | 
			
		||||
	b2Vec2 v2 = m_vertex2;
 | 
			
		||||
	b2Vec2 e = v2 - v1;
 | 
			
		||||
	b2Vec2 normal(e.y, -e.x);
 | 
			
		||||
	normal.Normalize();
 | 
			
		||||
 | 
			
		||||
	// q = p1 + t * d
 | 
			
		||||
	// dot(normal, q - v1) = 0
 | 
			
		||||
	// dot(normal, p1 - v1) + t * dot(normal, d) = 0
 | 
			
		||||
	float32 numerator = b2Dot(normal, v1 - p1);
 | 
			
		||||
	float32 denominator = b2Dot(normal, d);
 | 
			
		||||
 | 
			
		||||
	if (denominator == 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 t = numerator / denominator;
 | 
			
		||||
	if (t < 0.0f || input.maxFraction < t)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 q = p1 + t * d;
 | 
			
		||||
 | 
			
		||||
	// q = v1 + s * r
 | 
			
		||||
	// s = dot(q - v1, r) / dot(r, r)
 | 
			
		||||
	b2Vec2 r = v2 - v1;
 | 
			
		||||
	float32 rr = b2Dot(r, r);
 | 
			
		||||
	if (rr == 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 s = b2Dot(q - v1, r) / rr;
 | 
			
		||||
	if (s < 0.0f || 1.0f < s)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	output->fraction = t;
 | 
			
		||||
	if (numerator > 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		output->normal = -normal;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		output->normal = normal;
 | 
			
		||||
	}
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2EdgeShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = b2Mul(xf, m_vertex1);
 | 
			
		||||
	b2Vec2 v2 = b2Mul(xf, m_vertex2);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 lower = b2Min(v1, v2);
 | 
			
		||||
	b2Vec2 upper = b2Max(v1, v2);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 r(m_radius, m_radius);
 | 
			
		||||
	aabb->lowerBound = lower - r;
 | 
			
		||||
	aabb->upperBound = upper + r;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2EdgeShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(density);
 | 
			
		||||
 | 
			
		||||
	massData->mass = 0.0f;
 | 
			
		||||
	massData->center = 0.5f * (m_vertex1 + m_vertex2);
 | 
			
		||||
	massData->I = 0.0f;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2EdgeShape.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
void b2EdgeShape::Set(const b2Vec2& v1, const b2Vec2& v2)
 | 
			
		||||
{
 | 
			
		||||
	m_vertex1 = v1;
 | 
			
		||||
	m_vertex2 = v2;
 | 
			
		||||
	m_hasVertex0 = false;
 | 
			
		||||
	m_hasVertex3 = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
b2Shape* b2EdgeShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2EdgeShape));
 | 
			
		||||
	b2EdgeShape* clone = new (mem) b2EdgeShape;
 | 
			
		||||
	*clone = *this;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2EdgeShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2EdgeShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(xf);
 | 
			
		||||
	B2_NOT_USED(p);
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// p = p1 + t * d
 | 
			
		||||
// v = v1 + s * e
 | 
			
		||||
// p1 + t * d = v1 + s * e
 | 
			
		||||
// s * e - t * d = p1 - v1
 | 
			
		||||
bool b2EdgeShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
							const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	// Put the ray into the edge's frame of reference.
 | 
			
		||||
	b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
 | 
			
		||||
	b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
 | 
			
		||||
	b2Vec2 d = p2 - p1;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = m_vertex1;
 | 
			
		||||
	b2Vec2 v2 = m_vertex2;
 | 
			
		||||
	b2Vec2 e = v2 - v1;
 | 
			
		||||
	b2Vec2 normal(e.y, -e.x);
 | 
			
		||||
	normal.Normalize();
 | 
			
		||||
 | 
			
		||||
	// q = p1 + t * d
 | 
			
		||||
	// dot(normal, q - v1) = 0
 | 
			
		||||
	// dot(normal, p1 - v1) + t * dot(normal, d) = 0
 | 
			
		||||
	float32 numerator = b2Dot(normal, v1 - p1);
 | 
			
		||||
	float32 denominator = b2Dot(normal, d);
 | 
			
		||||
 | 
			
		||||
	if (denominator == 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 t = numerator / denominator;
 | 
			
		||||
	if (t < 0.0f || input.maxFraction < t)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 q = p1 + t * d;
 | 
			
		||||
 | 
			
		||||
	// q = v1 + s * r
 | 
			
		||||
	// s = dot(q - v1, r) / dot(r, r)
 | 
			
		||||
	b2Vec2 r = v2 - v1;
 | 
			
		||||
	float32 rr = b2Dot(r, r);
 | 
			
		||||
	if (rr == 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 s = b2Dot(q - v1, r) / rr;
 | 
			
		||||
	if (s < 0.0f || 1.0f < s)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	output->fraction = t;
 | 
			
		||||
	if (numerator > 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		output->normal = -normal;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		output->normal = normal;
 | 
			
		||||
	}
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2EdgeShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = b2Mul(xf, m_vertex1);
 | 
			
		||||
	b2Vec2 v2 = b2Mul(xf, m_vertex2);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 lower = b2Min(v1, v2);
 | 
			
		||||
	b2Vec2 upper = b2Max(v1, v2);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 r(m_radius, m_radius);
 | 
			
		||||
	aabb->lowerBound = lower - r;
 | 
			
		||||
	aabb->upperBound = upper + r;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2EdgeShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(density);
 | 
			
		||||
 | 
			
		||||
	massData->mass = 0.0f;
 | 
			
		||||
	massData->center = 0.5f * (m_vertex1 + m_vertex2);
 | 
			
		||||
	massData->I = 0.0f;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,74 +1,74 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_EDGE_SHAPE_H
 | 
			
		||||
#define B2_EDGE_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Shape.h"
 | 
			
		||||
 | 
			
		||||
/// A line segment (edge) shape. These can be connected in chains or loops
 | 
			
		||||
/// to other edge shapes. The connectivity information is used to ensure
 | 
			
		||||
/// correct contact normals.
 | 
			
		||||
class b2EdgeShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2EdgeShape();
 | 
			
		||||
 | 
			
		||||
	/// Set this as an isolated edge.
 | 
			
		||||
	void Set(const b2Vec2& v1, const b2Vec2& v2);
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::TestPoint
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
				const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// These are the edge vertices
 | 
			
		||||
	b2Vec2 m_vertex1, m_vertex2;
 | 
			
		||||
 | 
			
		||||
	/// Optional adjacent vertices. These are used for smooth collision.
 | 
			
		||||
	b2Vec2 m_vertex0, m_vertex3;
 | 
			
		||||
	bool m_hasVertex0, m_hasVertex3;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2EdgeShape::b2EdgeShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_edge;
 | 
			
		||||
	m_radius = b2_polygonRadius;
 | 
			
		||||
	m_vertex0.x = 0.0f;
 | 
			
		||||
	m_vertex0.y = 0.0f;
 | 
			
		||||
	m_vertex3.x = 0.0f;
 | 
			
		||||
	m_vertex3.y = 0.0f;
 | 
			
		||||
	m_hasVertex0 = false;
 | 
			
		||||
	m_hasVertex3 = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2010 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_EDGE_SHAPE_H
 | 
			
		||||
#define B2_EDGE_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Shape.h"
 | 
			
		||||
 | 
			
		||||
/// A line segment (edge) shape. These can be connected in chains or loops
 | 
			
		||||
/// to other edge shapes. The connectivity information is used to ensure
 | 
			
		||||
/// correct contact normals.
 | 
			
		||||
class b2EdgeShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2EdgeShape();
 | 
			
		||||
 | 
			
		||||
	/// Set this as an isolated edge.
 | 
			
		||||
	void Set(const b2Vec2& v1, const b2Vec2& v2);
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::TestPoint
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
				const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// These are the edge vertices
 | 
			
		||||
	b2Vec2 m_vertex1, m_vertex2;
 | 
			
		||||
 | 
			
		||||
	/// Optional adjacent vertices. These are used for smooth collision.
 | 
			
		||||
	b2Vec2 m_vertex0, m_vertex3;
 | 
			
		||||
	bool m_hasVertex0, m_hasVertex3;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2EdgeShape::b2EdgeShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_edge;
 | 
			
		||||
	m_radius = b2_polygonRadius;
 | 
			
		||||
	m_vertex0.x = 0.0f;
 | 
			
		||||
	m_vertex0.y = 0.0f;
 | 
			
		||||
	m_vertex3.x = 0.0f;
 | 
			
		||||
	m_vertex3.y = 0.0f;
 | 
			
		||||
	m_hasVertex0 = false;
 | 
			
		||||
	m_hasVertex3 = false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,360 +1,360 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2PolygonShape));
 | 
			
		||||
	b2PolygonShape* clone = new (mem) b2PolygonShape;
 | 
			
		||||
	*clone = *this;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::SetAsBox(float32 hx, float32 hy)
 | 
			
		||||
{
 | 
			
		||||
	m_vertexCount = 4;
 | 
			
		||||
	m_vertices[0].Set(-hx, -hy);
 | 
			
		||||
	m_vertices[1].Set( hx, -hy);
 | 
			
		||||
	m_vertices[2].Set( hx,  hy);
 | 
			
		||||
	m_vertices[3].Set(-hx,  hy);
 | 
			
		||||
	m_normals[0].Set(0.0f, -1.0f);
 | 
			
		||||
	m_normals[1].Set(1.0f, 0.0f);
 | 
			
		||||
	m_normals[2].Set(0.0f, 1.0f);
 | 
			
		||||
	m_normals[3].Set(-1.0f, 0.0f);
 | 
			
		||||
	m_centroid.SetZero();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle)
 | 
			
		||||
{
 | 
			
		||||
	m_vertexCount = 4;
 | 
			
		||||
	m_vertices[0].Set(-hx, -hy);
 | 
			
		||||
	m_vertices[1].Set( hx, -hy);
 | 
			
		||||
	m_vertices[2].Set( hx,  hy);
 | 
			
		||||
	m_vertices[3].Set(-hx,  hy);
 | 
			
		||||
	m_normals[0].Set(0.0f, -1.0f);
 | 
			
		||||
	m_normals[1].Set(1.0f, 0.0f);
 | 
			
		||||
	m_normals[2].Set(0.0f, 1.0f);
 | 
			
		||||
	m_normals[3].Set(-1.0f, 0.0f);
 | 
			
		||||
	m_centroid = center;
 | 
			
		||||
 | 
			
		||||
	b2Transform xf;
 | 
			
		||||
	xf.p = center;
 | 
			
		||||
	xf.q.Set(angle);
 | 
			
		||||
 | 
			
		||||
	// Transform vertices and normals.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		m_vertices[i] = b2Mul(xf, m_vertices[i]);
 | 
			
		||||
		m_normals[i] = b2Mul(xf.q, m_normals[i]);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2PolygonShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(count >= 3);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 c; c.Set(0.0f, 0.0f);
 | 
			
		||||
	float32 area = 0.0f;
 | 
			
		||||
 | 
			
		||||
	// pRef is the reference point for forming triangles.
 | 
			
		||||
	// It's location doesn't change the result (except for rounding error).
 | 
			
		||||
	b2Vec2 pRef(0.0f, 0.0f);
 | 
			
		||||
#if 0
 | 
			
		||||
	// This code would put the reference point inside the polygon.
 | 
			
		||||
	for (int32 i = 0; i < count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		pRef += vs[i];
 | 
			
		||||
	}
 | 
			
		||||
	pRef *= 1.0f / count;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	const float32 inv3 = 1.0f / 3.0f;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		// Triangle vertices.
 | 
			
		||||
		b2Vec2 p1 = pRef;
 | 
			
		||||
		b2Vec2 p2 = vs[i];
 | 
			
		||||
		b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];
 | 
			
		||||
 | 
			
		||||
		b2Vec2 e1 = p2 - p1;
 | 
			
		||||
		b2Vec2 e2 = p3 - p1;
 | 
			
		||||
 | 
			
		||||
		float32 D = b2Cross(e1, e2);
 | 
			
		||||
 | 
			
		||||
		float32 triangleArea = 0.5f * D;
 | 
			
		||||
		area += triangleArea;
 | 
			
		||||
 | 
			
		||||
		// Area weighted centroid
 | 
			
		||||
		c += triangleArea * inv3 * (p1 + p2 + p3);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Centroid
 | 
			
		||||
	b2Assert(area > b2_epsilon);
 | 
			
		||||
	c *= 1.0f / area;
 | 
			
		||||
	return c;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::Set(const b2Vec2* vertices, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(3 <= count && count <= b2_maxPolygonVertices);
 | 
			
		||||
	m_vertexCount = count;
 | 
			
		||||
 | 
			
		||||
	// Copy vertices.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		m_vertices[i] = vertices[i];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Compute normals. Ensure the edges have non-zero length.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		int32 i1 = i;
 | 
			
		||||
		int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
 | 
			
		||||
		b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
 | 
			
		||||
		b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon);
 | 
			
		||||
		m_normals[i] = b2Cross(edge, 1.0f);
 | 
			
		||||
		m_normals[i].Normalize();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
#ifdef _DEBUG
 | 
			
		||||
	// Ensure the polygon is convex and the interior
 | 
			
		||||
	// is to the left of each edge.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		int32 i1 = i;
 | 
			
		||||
		int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
 | 
			
		||||
		b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
 | 
			
		||||
 | 
			
		||||
		for (int32 j = 0; j < m_vertexCount; ++j)
 | 
			
		||||
		{
 | 
			
		||||
			// Don't check vertices on the current edge.
 | 
			
		||||
			if (j == i1 || j == i2)
 | 
			
		||||
			{
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			b2Vec2 r = m_vertices[j] - m_vertices[i1];
 | 
			
		||||
 | 
			
		||||
			// If this crashes, your polygon is non-convex, has colinear edges,
 | 
			
		||||
			// or the winding order is wrong.
 | 
			
		||||
			float32 s = b2Cross(edge, r);
 | 
			
		||||
			b2Assert(s > 0.0f && "ERROR: Please ensure your polygon is convex and has a CCW winding order");
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	// Compute the polygon centroid.
 | 
			
		||||
	m_centroid = ComputeCentroid(m_vertices, m_vertexCount);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 pLocal = b2MulT(xf.q, p - xf.p);
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
 | 
			
		||||
		if (dot > 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
								const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	// Put the ray into the polygon's frame of reference.
 | 
			
		||||
	b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
 | 
			
		||||
	b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
 | 
			
		||||
	b2Vec2 d = p2 - p1;
 | 
			
		||||
 | 
			
		||||
	float32 lower = 0.0f, upper = input.maxFraction;
 | 
			
		||||
 | 
			
		||||
	int32 index = -1;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		// p = p1 + a * d
 | 
			
		||||
		// dot(normal, p - v) = 0
 | 
			
		||||
		// dot(normal, p1 - v) + a * dot(normal, d) = 0
 | 
			
		||||
		float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
 | 
			
		||||
		float32 denominator = b2Dot(m_normals[i], d);
 | 
			
		||||
 | 
			
		||||
		if (denominator == 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			if (numerator < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				return false;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			// Note: we want this predicate without division:
 | 
			
		||||
			// lower < numerator / denominator, where denominator < 0
 | 
			
		||||
			// Since denominator < 0, we have to flip the inequality:
 | 
			
		||||
			// lower < numerator / denominator <==> denominator * lower > numerator.
 | 
			
		||||
			if (denominator < 0.0f && numerator < lower * denominator)
 | 
			
		||||
			{
 | 
			
		||||
				// Increase lower.
 | 
			
		||||
				// The segment enters this half-space.
 | 
			
		||||
				lower = numerator / denominator;
 | 
			
		||||
				index = i;
 | 
			
		||||
			}
 | 
			
		||||
			else if (denominator > 0.0f && numerator < upper * denominator)
 | 
			
		||||
			{
 | 
			
		||||
				// Decrease upper.
 | 
			
		||||
				// The segment exits this half-space.
 | 
			
		||||
				upper = numerator / denominator;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// The use of epsilon here causes the assert on lower to trip
 | 
			
		||||
		// in some cases. Apparently the use of epsilon was to make edge
 | 
			
		||||
		// shapes work, but now those are handled separately.
 | 
			
		||||
		//if (upper < lower - b2_epsilon)
 | 
			
		||||
		if (upper < lower)
 | 
			
		||||
		{
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Assert(0.0f <= lower && lower <= input.maxFraction);
 | 
			
		||||
 | 
			
		||||
	if (index >= 0)
 | 
			
		||||
	{
 | 
			
		||||
		output->fraction = lower;
 | 
			
		||||
		output->normal = b2Mul(xf.q, m_normals[index]);
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 lower = b2Mul(xf, m_vertices[0]);
 | 
			
		||||
	b2Vec2 upper = lower;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 1; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		b2Vec2 v = b2Mul(xf, m_vertices[i]);
 | 
			
		||||
		lower = b2Min(lower, v);
 | 
			
		||||
		upper = b2Max(upper, v);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 r(m_radius, m_radius);
 | 
			
		||||
	aabb->lowerBound = lower - r;
 | 
			
		||||
	aabb->upperBound = upper + r;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	// Polygon mass, centroid, and inertia.
 | 
			
		||||
	// Let rho be the polygon density in mass per unit area.
 | 
			
		||||
	// Then:
 | 
			
		||||
	// mass = rho * int(dA)
 | 
			
		||||
	// centroid.x = (1/mass) * rho * int(x * dA)
 | 
			
		||||
	// centroid.y = (1/mass) * rho * int(y * dA)
 | 
			
		||||
	// I = rho * int((x*x + y*y) * dA)
 | 
			
		||||
	//
 | 
			
		||||
	// We can compute these integrals by summing all the integrals
 | 
			
		||||
	// for each triangle of the polygon. To evaluate the integral
 | 
			
		||||
	// for a single triangle, we make a change of variables to
 | 
			
		||||
	// the (u,v) coordinates of the triangle:
 | 
			
		||||
	// x = x0 + e1x * u + e2x * v
 | 
			
		||||
	// y = y0 + e1y * u + e2y * v
 | 
			
		||||
	// where 0 <= u && 0 <= v && u + v <= 1.
 | 
			
		||||
	//
 | 
			
		||||
	// We integrate u from [0,1-v] and then v from [0,1].
 | 
			
		||||
	// We also need to use the Jacobian of the transformation:
 | 
			
		||||
	// D = cross(e1, e2)
 | 
			
		||||
	//
 | 
			
		||||
	// Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
 | 
			
		||||
	//
 | 
			
		||||
	// The rest of the derivation is handled by computer algebra.
 | 
			
		||||
 | 
			
		||||
	b2Assert(m_vertexCount >= 3);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 center; center.Set(0.0f, 0.0f);
 | 
			
		||||
	float32 area = 0.0f;
 | 
			
		||||
	float32 I = 0.0f;
 | 
			
		||||
 | 
			
		||||
	// s is the reference point for forming triangles.
 | 
			
		||||
	// It's location doesn't change the result (except for rounding error).
 | 
			
		||||
	b2Vec2 s(0.0f, 0.0f);
 | 
			
		||||
 | 
			
		||||
	// This code would put the reference point inside the polygon.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		s += m_vertices[i];
 | 
			
		||||
	}
 | 
			
		||||
	s *= 1.0f / m_vertexCount;
 | 
			
		||||
 | 
			
		||||
	const float32 k_inv3 = 1.0f / 3.0f;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		// Triangle vertices.
 | 
			
		||||
		b2Vec2 e1 = m_vertices[i] - s;
 | 
			
		||||
		b2Vec2 e2 = i + 1 < m_vertexCount ? m_vertices[i+1] - s : m_vertices[0] - s;
 | 
			
		||||
 | 
			
		||||
		float32 D = b2Cross(e1, e2);
 | 
			
		||||
 | 
			
		||||
		float32 triangleArea = 0.5f * D;
 | 
			
		||||
		area += triangleArea;
 | 
			
		||||
 | 
			
		||||
		// Area weighted centroid
 | 
			
		||||
		center += triangleArea * k_inv3 * (e1 + e2);
 | 
			
		||||
 | 
			
		||||
		float32 ex1 = e1.x, ey1 = e1.y;
 | 
			
		||||
		float32 ex2 = e2.x, ey2 = e2.y;
 | 
			
		||||
 | 
			
		||||
		float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2;
 | 
			
		||||
		float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2;
 | 
			
		||||
 | 
			
		||||
		I += (0.25f * k_inv3 * D) * (intx2 + inty2);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Total mass
 | 
			
		||||
	massData->mass = density * area;
 | 
			
		||||
 | 
			
		||||
	// Center of mass
 | 
			
		||||
	b2Assert(area > b2_epsilon);
 | 
			
		||||
	center *= 1.0f / area;
 | 
			
		||||
	massData->center = center + s;
 | 
			
		||||
 | 
			
		||||
	// Inertia tensor relative to the local origin (point s).
 | 
			
		||||
	massData->I = density * I;
 | 
			
		||||
 | 
			
		||||
	// Shift to center of mass then to original body origin.
 | 
			
		||||
	massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center));
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const
 | 
			
		||||
{
 | 
			
		||||
	void* mem = allocator->Allocate(sizeof(b2PolygonShape));
 | 
			
		||||
	b2PolygonShape* clone = new (mem) b2PolygonShape;
 | 
			
		||||
	*clone = *this;
 | 
			
		||||
	return clone;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::SetAsBox(float32 hx, float32 hy)
 | 
			
		||||
{
 | 
			
		||||
	m_vertexCount = 4;
 | 
			
		||||
	m_vertices[0].Set(-hx, -hy);
 | 
			
		||||
	m_vertices[1].Set( hx, -hy);
 | 
			
		||||
	m_vertices[2].Set( hx,  hy);
 | 
			
		||||
	m_vertices[3].Set(-hx,  hy);
 | 
			
		||||
	m_normals[0].Set(0.0f, -1.0f);
 | 
			
		||||
	m_normals[1].Set(1.0f, 0.0f);
 | 
			
		||||
	m_normals[2].Set(0.0f, 1.0f);
 | 
			
		||||
	m_normals[3].Set(-1.0f, 0.0f);
 | 
			
		||||
	m_centroid.SetZero();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle)
 | 
			
		||||
{
 | 
			
		||||
	m_vertexCount = 4;
 | 
			
		||||
	m_vertices[0].Set(-hx, -hy);
 | 
			
		||||
	m_vertices[1].Set( hx, -hy);
 | 
			
		||||
	m_vertices[2].Set( hx,  hy);
 | 
			
		||||
	m_vertices[3].Set(-hx,  hy);
 | 
			
		||||
	m_normals[0].Set(0.0f, -1.0f);
 | 
			
		||||
	m_normals[1].Set(1.0f, 0.0f);
 | 
			
		||||
	m_normals[2].Set(0.0f, 1.0f);
 | 
			
		||||
	m_normals[3].Set(-1.0f, 0.0f);
 | 
			
		||||
	m_centroid = center;
 | 
			
		||||
 | 
			
		||||
	b2Transform xf;
 | 
			
		||||
	xf.p = center;
 | 
			
		||||
	xf.q.Set(angle);
 | 
			
		||||
 | 
			
		||||
	// Transform vertices and normals.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		m_vertices[i] = b2Mul(xf, m_vertices[i]);
 | 
			
		||||
		m_normals[i] = b2Mul(xf.q, m_normals[i]);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2PolygonShape::GetChildCount() const
 | 
			
		||||
{
 | 
			
		||||
	return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(count >= 3);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 c; c.Set(0.0f, 0.0f);
 | 
			
		||||
	float32 area = 0.0f;
 | 
			
		||||
 | 
			
		||||
	// pRef is the reference point for forming triangles.
 | 
			
		||||
	// It's location doesn't change the result (except for rounding error).
 | 
			
		||||
	b2Vec2 pRef(0.0f, 0.0f);
 | 
			
		||||
#if 0
 | 
			
		||||
	// This code would put the reference point inside the polygon.
 | 
			
		||||
	for (int32 i = 0; i < count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		pRef += vs[i];
 | 
			
		||||
	}
 | 
			
		||||
	pRef *= 1.0f / count;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	const float32 inv3 = 1.0f / 3.0f;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		// Triangle vertices.
 | 
			
		||||
		b2Vec2 p1 = pRef;
 | 
			
		||||
		b2Vec2 p2 = vs[i];
 | 
			
		||||
		b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];
 | 
			
		||||
 | 
			
		||||
		b2Vec2 e1 = p2 - p1;
 | 
			
		||||
		b2Vec2 e2 = p3 - p1;
 | 
			
		||||
 | 
			
		||||
		float32 D = b2Cross(e1, e2);
 | 
			
		||||
 | 
			
		||||
		float32 triangleArea = 0.5f * D;
 | 
			
		||||
		area += triangleArea;
 | 
			
		||||
 | 
			
		||||
		// Area weighted centroid
 | 
			
		||||
		c += triangleArea * inv3 * (p1 + p2 + p3);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Centroid
 | 
			
		||||
	b2Assert(area > b2_epsilon);
 | 
			
		||||
	c *= 1.0f / area;
 | 
			
		||||
	return c;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::Set(const b2Vec2* vertices, int32 count)
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(3 <= count && count <= b2_maxPolygonVertices);
 | 
			
		||||
	m_vertexCount = count;
 | 
			
		||||
 | 
			
		||||
	// Copy vertices.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		m_vertices[i] = vertices[i];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Compute normals. Ensure the edges have non-zero length.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		int32 i1 = i;
 | 
			
		||||
		int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
 | 
			
		||||
		b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
 | 
			
		||||
		b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon);
 | 
			
		||||
		m_normals[i] = b2Cross(edge, 1.0f);
 | 
			
		||||
		m_normals[i].Normalize();
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
#ifdef _DEBUG
 | 
			
		||||
	// Ensure the polygon is convex and the interior
 | 
			
		||||
	// is to the left of each edge.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		int32 i1 = i;
 | 
			
		||||
		int32 i2 = i + 1 < m_vertexCount ? i + 1 : 0;
 | 
			
		||||
		b2Vec2 edge = m_vertices[i2] - m_vertices[i1];
 | 
			
		||||
 | 
			
		||||
		for (int32 j = 0; j < m_vertexCount; ++j)
 | 
			
		||||
		{
 | 
			
		||||
			// Don't check vertices on the current edge.
 | 
			
		||||
			if (j == i1 || j == i2)
 | 
			
		||||
			{
 | 
			
		||||
				continue;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			b2Vec2 r = m_vertices[j] - m_vertices[i1];
 | 
			
		||||
 | 
			
		||||
			// If this crashes, your polygon is non-convex, has colinear edges,
 | 
			
		||||
			// or the winding order is wrong.
 | 
			
		||||
			float32 s = b2Cross(edge, r);
 | 
			
		||||
			b2Assert(s > 0.0f && "ERROR: Please ensure your polygon is convex and has a CCW winding order");
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
	// Compute the polygon centroid.
 | 
			
		||||
	m_centroid = ComputeCentroid(m_vertices, m_vertexCount);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 pLocal = b2MulT(xf.q, p - xf.p);
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]);
 | 
			
		||||
		if (dot > 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
								const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	// Put the ray into the polygon's frame of reference.
 | 
			
		||||
	b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p);
 | 
			
		||||
	b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p);
 | 
			
		||||
	b2Vec2 d = p2 - p1;
 | 
			
		||||
 | 
			
		||||
	float32 lower = 0.0f, upper = input.maxFraction;
 | 
			
		||||
 | 
			
		||||
	int32 index = -1;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		// p = p1 + a * d
 | 
			
		||||
		// dot(normal, p - v) = 0
 | 
			
		||||
		// dot(normal, p1 - v) + a * dot(normal, d) = 0
 | 
			
		||||
		float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1);
 | 
			
		||||
		float32 denominator = b2Dot(m_normals[i], d);
 | 
			
		||||
 | 
			
		||||
		if (denominator == 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			if (numerator < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				return false;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			// Note: we want this predicate without division:
 | 
			
		||||
			// lower < numerator / denominator, where denominator < 0
 | 
			
		||||
			// Since denominator < 0, we have to flip the inequality:
 | 
			
		||||
			// lower < numerator / denominator <==> denominator * lower > numerator.
 | 
			
		||||
			if (denominator < 0.0f && numerator < lower * denominator)
 | 
			
		||||
			{
 | 
			
		||||
				// Increase lower.
 | 
			
		||||
				// The segment enters this half-space.
 | 
			
		||||
				lower = numerator / denominator;
 | 
			
		||||
				index = i;
 | 
			
		||||
			}
 | 
			
		||||
			else if (denominator > 0.0f && numerator < upper * denominator)
 | 
			
		||||
			{
 | 
			
		||||
				// Decrease upper.
 | 
			
		||||
				// The segment exits this half-space.
 | 
			
		||||
				upper = numerator / denominator;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// The use of epsilon here causes the assert on lower to trip
 | 
			
		||||
		// in some cases. Apparently the use of epsilon was to make edge
 | 
			
		||||
		// shapes work, but now those are handled separately.
 | 
			
		||||
		//if (upper < lower - b2_epsilon)
 | 
			
		||||
		if (upper < lower)
 | 
			
		||||
		{
 | 
			
		||||
			return false;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Assert(0.0f <= lower && lower <= input.maxFraction);
 | 
			
		||||
 | 
			
		||||
	if (index >= 0)
 | 
			
		||||
	{
 | 
			
		||||
		output->fraction = lower;
 | 
			
		||||
		output->normal = b2Mul(xf.q, m_normals[index]);
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const
 | 
			
		||||
{
 | 
			
		||||
	B2_NOT_USED(childIndex);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 lower = b2Mul(xf, m_vertices[0]);
 | 
			
		||||
	b2Vec2 upper = lower;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 1; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		b2Vec2 v = b2Mul(xf, m_vertices[i]);
 | 
			
		||||
		lower = b2Min(lower, v);
 | 
			
		||||
		upper = b2Max(upper, v);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 r(m_radius, m_radius);
 | 
			
		||||
	aabb->lowerBound = lower - r;
 | 
			
		||||
	aabb->upperBound = upper + r;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const
 | 
			
		||||
{
 | 
			
		||||
	// Polygon mass, centroid, and inertia.
 | 
			
		||||
	// Let rho be the polygon density in mass per unit area.
 | 
			
		||||
	// Then:
 | 
			
		||||
	// mass = rho * int(dA)
 | 
			
		||||
	// centroid.x = (1/mass) * rho * int(x * dA)
 | 
			
		||||
	// centroid.y = (1/mass) * rho * int(y * dA)
 | 
			
		||||
	// I = rho * int((x*x + y*y) * dA)
 | 
			
		||||
	//
 | 
			
		||||
	// We can compute these integrals by summing all the integrals
 | 
			
		||||
	// for each triangle of the polygon. To evaluate the integral
 | 
			
		||||
	// for a single triangle, we make a change of variables to
 | 
			
		||||
	// the (u,v) coordinates of the triangle:
 | 
			
		||||
	// x = x0 + e1x * u + e2x * v
 | 
			
		||||
	// y = y0 + e1y * u + e2y * v
 | 
			
		||||
	// where 0 <= u && 0 <= v && u + v <= 1.
 | 
			
		||||
	//
 | 
			
		||||
	// We integrate u from [0,1-v] and then v from [0,1].
 | 
			
		||||
	// We also need to use the Jacobian of the transformation:
 | 
			
		||||
	// D = cross(e1, e2)
 | 
			
		||||
	//
 | 
			
		||||
	// Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
 | 
			
		||||
	//
 | 
			
		||||
	// The rest of the derivation is handled by computer algebra.
 | 
			
		||||
 | 
			
		||||
	b2Assert(m_vertexCount >= 3);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 center; center.Set(0.0f, 0.0f);
 | 
			
		||||
	float32 area = 0.0f;
 | 
			
		||||
	float32 I = 0.0f;
 | 
			
		||||
 | 
			
		||||
	// s is the reference point for forming triangles.
 | 
			
		||||
	// It's location doesn't change the result (except for rounding error).
 | 
			
		||||
	b2Vec2 s(0.0f, 0.0f);
 | 
			
		||||
 | 
			
		||||
	// This code would put the reference point inside the polygon.
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		s += m_vertices[i];
 | 
			
		||||
	}
 | 
			
		||||
	s *= 1.0f / m_vertexCount;
 | 
			
		||||
 | 
			
		||||
	const float32 k_inv3 = 1.0f / 3.0f;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < m_vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		// Triangle vertices.
 | 
			
		||||
		b2Vec2 e1 = m_vertices[i] - s;
 | 
			
		||||
		b2Vec2 e2 = i + 1 < m_vertexCount ? m_vertices[i+1] - s : m_vertices[0] - s;
 | 
			
		||||
 | 
			
		||||
		float32 D = b2Cross(e1, e2);
 | 
			
		||||
 | 
			
		||||
		float32 triangleArea = 0.5f * D;
 | 
			
		||||
		area += triangleArea;
 | 
			
		||||
 | 
			
		||||
		// Area weighted centroid
 | 
			
		||||
		center += triangleArea * k_inv3 * (e1 + e2);
 | 
			
		||||
 | 
			
		||||
		float32 ex1 = e1.x, ey1 = e1.y;
 | 
			
		||||
		float32 ex2 = e2.x, ey2 = e2.y;
 | 
			
		||||
 | 
			
		||||
		float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2;
 | 
			
		||||
		float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2;
 | 
			
		||||
 | 
			
		||||
		I += (0.25f * k_inv3 * D) * (intx2 + inty2);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Total mass
 | 
			
		||||
	massData->mass = density * area;
 | 
			
		||||
 | 
			
		||||
	// Center of mass
 | 
			
		||||
	b2Assert(area > b2_epsilon);
 | 
			
		||||
	center *= 1.0f / area;
 | 
			
		||||
	massData->center = center + s;
 | 
			
		||||
 | 
			
		||||
	// Inertia tensor relative to the local origin (point s).
 | 
			
		||||
	massData->I = density * I;
 | 
			
		||||
 | 
			
		||||
	// Shift to center of mass then to original body origin.
 | 
			
		||||
	massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center));
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,95 +1,95 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_POLYGON_SHAPE_H
 | 
			
		||||
#define B2_POLYGON_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "../Shapes/b2Shape.h"
 | 
			
		||||
 | 
			
		||||
/// A convex polygon. It is assumed that the interior of the polygon is to
 | 
			
		||||
/// the left of each edge.
 | 
			
		||||
/// Polygons have a maximum number of vertices equal to b2_maxPolygonVertices.
 | 
			
		||||
/// In most cases you should not need many vertices for a convex polygon.
 | 
			
		||||
class b2PolygonShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2PolygonShape();
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Copy vertices. This assumes the vertices define a convex polygon.
 | 
			
		||||
	/// It is assumed that the exterior is the the right of each edge.
 | 
			
		||||
	/// The count must be in the range [3, b2_maxPolygonVertices].
 | 
			
		||||
	void Set(const b2Vec2* vertices, juce::int32 vertexCount);
 | 
			
		||||
 | 
			
		||||
	/// Build vertices to represent an axis-aligned box.
 | 
			
		||||
	/// @param hx the half-width.
 | 
			
		||||
	/// @param hy the half-height.
 | 
			
		||||
	void SetAsBox(float32 hx, float32 hy);
 | 
			
		||||
 | 
			
		||||
	/// Build vertices to represent an oriented box.
 | 
			
		||||
	/// @param hx the half-width.
 | 
			
		||||
	/// @param hy the half-height.
 | 
			
		||||
	/// @param center the center of the box in local coordinates.
 | 
			
		||||
	/// @param angle the rotation of the box in local coordinates.
 | 
			
		||||
	void SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle);
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::TestPoint
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
					const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the vertex count.
 | 
			
		||||
	juce::int32 GetVertexCount() const { return m_vertexCount; }
 | 
			
		||||
 | 
			
		||||
	/// Get a vertex by index.
 | 
			
		||||
	const b2Vec2& GetVertex(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 m_centroid;
 | 
			
		||||
	b2Vec2 m_vertices[b2_maxPolygonVertices];
 | 
			
		||||
	b2Vec2 m_normals[b2_maxPolygonVertices];
 | 
			
		||||
	juce::int32 m_vertexCount;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2PolygonShape::b2PolygonShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_polygon;
 | 
			
		||||
	m_radius = b2_polygonRadius;
 | 
			
		||||
	m_vertexCount = 0;
 | 
			
		||||
	m_centroid.SetZero();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2PolygonShape::GetVertex(juce::int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= index && index < m_vertexCount);
 | 
			
		||||
	return m_vertices[index];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_POLYGON_SHAPE_H
 | 
			
		||||
#define B2_POLYGON_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "../Shapes/b2Shape.h"
 | 
			
		||||
 | 
			
		||||
/// A convex polygon. It is assumed that the interior of the polygon is to
 | 
			
		||||
/// the left of each edge.
 | 
			
		||||
/// Polygons have a maximum number of vertices equal to b2_maxPolygonVertices.
 | 
			
		||||
/// In most cases you should not need many vertices for a convex polygon.
 | 
			
		||||
class b2PolygonShape : public b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	b2PolygonShape();
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	b2Shape* Clone(b2BlockAllocator* allocator) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::GetChildCount
 | 
			
		||||
	juce::int32 GetChildCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Copy vertices. This assumes the vertices define a convex polygon.
 | 
			
		||||
	/// It is assumed that the exterior is the the right of each edge.
 | 
			
		||||
	/// The count must be in the range [3, b2_maxPolygonVertices].
 | 
			
		||||
	void Set(const b2Vec2* vertices, juce::int32 vertexCount);
 | 
			
		||||
 | 
			
		||||
	/// Build vertices to represent an axis-aligned box.
 | 
			
		||||
	/// @param hx the half-width.
 | 
			
		||||
	/// @param hy the half-height.
 | 
			
		||||
	void SetAsBox(float32 hx, float32 hy);
 | 
			
		||||
 | 
			
		||||
	/// Build vertices to represent an oriented box.
 | 
			
		||||
	/// @param hx the half-width.
 | 
			
		||||
	/// @param hy the half-height.
 | 
			
		||||
	/// @param center the center of the box in local coordinates.
 | 
			
		||||
	/// @param angle the rotation of the box in local coordinates.
 | 
			
		||||
	void SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle);
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::TestPoint
 | 
			
		||||
	bool TestPoint(const b2Transform& transform, const b2Vec2& p) const;
 | 
			
		||||
 | 
			
		||||
	/// Implement b2Shape.
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
					const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeAABB
 | 
			
		||||
	void ComputeAABB(b2AABB* aabb, const b2Transform& transform, juce::int32 childIndex) const;
 | 
			
		||||
 | 
			
		||||
	/// @see b2Shape::ComputeMass
 | 
			
		||||
	void ComputeMass(b2MassData* massData, float32 density) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the vertex count.
 | 
			
		||||
	juce::int32 GetVertexCount() const { return m_vertexCount; }
 | 
			
		||||
 | 
			
		||||
	/// Get a vertex by index.
 | 
			
		||||
	const b2Vec2& GetVertex(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 m_centroid;
 | 
			
		||||
	b2Vec2 m_vertices[b2_maxPolygonVertices];
 | 
			
		||||
	b2Vec2 m_normals[b2_maxPolygonVertices];
 | 
			
		||||
	juce::int32 m_vertexCount;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2PolygonShape::b2PolygonShape()
 | 
			
		||||
{
 | 
			
		||||
	m_type = e_polygon;
 | 
			
		||||
	m_radius = b2_polygonRadius;
 | 
			
		||||
	m_vertexCount = 0;
 | 
			
		||||
	m_centroid.SetZero();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2PolygonShape::GetVertex(juce::int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= index && index < m_vertexCount);
 | 
			
		||||
	return m_vertices[index];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,101 +1,101 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_SHAPE_H
 | 
			
		||||
#define B2_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "../../Common/b2BlockAllocator.h"
 | 
			
		||||
#include "../../Common/b2Math.h"
 | 
			
		||||
#include "../b2Collision.h"
 | 
			
		||||
 | 
			
		||||
/// This holds the mass data computed for a shape.
 | 
			
		||||
struct b2MassData
 | 
			
		||||
{
 | 
			
		||||
	/// The mass of the shape, usually in kilograms.
 | 
			
		||||
	float32 mass;
 | 
			
		||||
 | 
			
		||||
	/// The position of the shape's centroid relative to the shape's origin.
 | 
			
		||||
	b2Vec2 center;
 | 
			
		||||
 | 
			
		||||
	/// The rotational inertia of the shape about the local origin.
 | 
			
		||||
	float32 I;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A shape is used for collision detection. You can create a shape however you like.
 | 
			
		||||
/// Shapes used for simulation in b2World are created automatically when a b2Fixture
 | 
			
		||||
/// is created. Shapes may encapsulate a one or more child shapes.
 | 
			
		||||
class b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_circle = 0,
 | 
			
		||||
		e_edge = 1,
 | 
			
		||||
		e_polygon = 2,
 | 
			
		||||
		e_chain = 3,
 | 
			
		||||
		e_typeCount = 4
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	virtual ~b2Shape() {}
 | 
			
		||||
 | 
			
		||||
	/// Clone the concrete shape using the provided allocator.
 | 
			
		||||
	virtual b2Shape* Clone(b2BlockAllocator* allocator) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Get the type of this shape. You can use this to down cast to the concrete shape.
 | 
			
		||||
	/// @return the shape type.
 | 
			
		||||
	Type GetType() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the number of child primitives.
 | 
			
		||||
	virtual juce::int32 GetChildCount() const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Test a point for containment in this shape. This only works for convex shapes.
 | 
			
		||||
	/// @param xf the shape world transform.
 | 
			
		||||
	/// @param p a point in world coordinates.
 | 
			
		||||
	virtual bool TestPoint(const b2Transform& xf, const b2Vec2& p) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Cast a ray against a child shape.
 | 
			
		||||
	/// @param output the ray-cast results.
 | 
			
		||||
	/// @param input the ray-cast input parameters.
 | 
			
		||||
	/// @param transform the transform to be applied to the shape.
 | 
			
		||||
	/// @param childIndex the child shape index
 | 
			
		||||
	virtual bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
						const b2Transform& transform, juce::int32 childIndex) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Given a transform, compute the associated axis aligned bounding box for a child shape.
 | 
			
		||||
	/// @param aabb returns the axis aligned box.
 | 
			
		||||
	/// @param xf the world transform of the shape.
 | 
			
		||||
	/// @param childIndex the child shape
 | 
			
		||||
	virtual void ComputeAABB(b2AABB* aabb, const b2Transform& xf, juce::int32 childIndex) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Compute the mass properties of this shape using its dimensions and density.
 | 
			
		||||
	/// The inertia tensor is computed about the local origin.
 | 
			
		||||
	/// @param massData returns the mass data for this shape.
 | 
			
		||||
	/// @param density the density in kilograms per meter squared.
 | 
			
		||||
	virtual void ComputeMass(b2MassData* massData, float32 density) const = 0;
 | 
			
		||||
 | 
			
		||||
	Type m_type;
 | 
			
		||||
	float32 m_radius;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2Shape::Type b2Shape::GetType() const
 | 
			
		||||
{
 | 
			
		||||
	return m_type;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_SHAPE_H
 | 
			
		||||
#define B2_SHAPE_H
 | 
			
		||||
 | 
			
		||||
#include "../../Common/b2BlockAllocator.h"
 | 
			
		||||
#include "../../Common/b2Math.h"
 | 
			
		||||
#include "../b2Collision.h"
 | 
			
		||||
 | 
			
		||||
/// This holds the mass data computed for a shape.
 | 
			
		||||
struct b2MassData
 | 
			
		||||
{
 | 
			
		||||
	/// The mass of the shape, usually in kilograms.
 | 
			
		||||
	float32 mass;
 | 
			
		||||
 | 
			
		||||
	/// The position of the shape's centroid relative to the shape's origin.
 | 
			
		||||
	b2Vec2 center;
 | 
			
		||||
 | 
			
		||||
	/// The rotational inertia of the shape about the local origin.
 | 
			
		||||
	float32 I;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A shape is used for collision detection. You can create a shape however you like.
 | 
			
		||||
/// Shapes used for simulation in b2World are created automatically when a b2Fixture
 | 
			
		||||
/// is created. Shapes may encapsulate a one or more child shapes.
 | 
			
		||||
class b2Shape
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_circle = 0,
 | 
			
		||||
		e_edge = 1,
 | 
			
		||||
		e_polygon = 2,
 | 
			
		||||
		e_chain = 3,
 | 
			
		||||
		e_typeCount = 4
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	virtual ~b2Shape() {}
 | 
			
		||||
 | 
			
		||||
	/// Clone the concrete shape using the provided allocator.
 | 
			
		||||
	virtual b2Shape* Clone(b2BlockAllocator* allocator) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Get the type of this shape. You can use this to down cast to the concrete shape.
 | 
			
		||||
	/// @return the shape type.
 | 
			
		||||
	Type GetType() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the number of child primitives.
 | 
			
		||||
	virtual juce::int32 GetChildCount() const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Test a point for containment in this shape. This only works for convex shapes.
 | 
			
		||||
	/// @param xf the shape world transform.
 | 
			
		||||
	/// @param p a point in world coordinates.
 | 
			
		||||
	virtual bool TestPoint(const b2Transform& xf, const b2Vec2& p) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Cast a ray against a child shape.
 | 
			
		||||
	/// @param output the ray-cast results.
 | 
			
		||||
	/// @param input the ray-cast input parameters.
 | 
			
		||||
	/// @param transform the transform to be applied to the shape.
 | 
			
		||||
	/// @param childIndex the child shape index
 | 
			
		||||
	virtual bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
 | 
			
		||||
						const b2Transform& transform, juce::int32 childIndex) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Given a transform, compute the associated axis aligned bounding box for a child shape.
 | 
			
		||||
	/// @param aabb returns the axis aligned box.
 | 
			
		||||
	/// @param xf the world transform of the shape.
 | 
			
		||||
	/// @param childIndex the child shape
 | 
			
		||||
	virtual void ComputeAABB(b2AABB* aabb, const b2Transform& xf, juce::int32 childIndex) const = 0;
 | 
			
		||||
 | 
			
		||||
	/// Compute the mass properties of this shape using its dimensions and density.
 | 
			
		||||
	/// The inertia tensor is computed about the local origin.
 | 
			
		||||
	/// @param massData returns the mass data for this shape.
 | 
			
		||||
	/// @param density the density in kilograms per meter squared.
 | 
			
		||||
	virtual void ComputeMass(b2MassData* massData, float32 density) const = 0;
 | 
			
		||||
 | 
			
		||||
	Type m_type;
 | 
			
		||||
	float32 m_radius;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline b2Shape::Type b2Shape::GetType() const
 | 
			
		||||
{
 | 
			
		||||
	return m_type;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,122 +1,122 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2BroadPhase.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
b2BroadPhase::b2BroadPhase()
 | 
			
		||||
{
 | 
			
		||||
	m_proxyCount = 0;
 | 
			
		||||
 | 
			
		||||
	m_pairCapacity = 16;
 | 
			
		||||
	m_pairCount = 0;
 | 
			
		||||
	m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair));
 | 
			
		||||
 | 
			
		||||
	m_moveCapacity = 16;
 | 
			
		||||
	m_moveCount = 0;
 | 
			
		||||
	m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
b2BroadPhase::~b2BroadPhase()
 | 
			
		||||
{
 | 
			
		||||
	b2Free(m_moveBuffer);
 | 
			
		||||
	b2Free(m_pairBuffer);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2BroadPhase::CreateProxy(const b2AABB& aabb, void* userData)
 | 
			
		||||
{
 | 
			
		||||
	int32 proxyId = m_tree.CreateProxy(aabb, userData);
 | 
			
		||||
	++m_proxyCount;
 | 
			
		||||
	BufferMove(proxyId);
 | 
			
		||||
	return proxyId;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::DestroyProxy(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	UnBufferMove(proxyId);
 | 
			
		||||
	--m_proxyCount;
 | 
			
		||||
	m_tree.DestroyProxy(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement)
 | 
			
		||||
{
 | 
			
		||||
	bool buffer = m_tree.MoveProxy(proxyId, aabb, displacement);
 | 
			
		||||
	if (buffer)
 | 
			
		||||
	{
 | 
			
		||||
		BufferMove(proxyId);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::TouchProxy(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	BufferMove(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::BufferMove(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	if (m_moveCount == m_moveCapacity)
 | 
			
		||||
	{
 | 
			
		||||
		int32* oldBuffer = m_moveBuffer;
 | 
			
		||||
		m_moveCapacity *= 2;
 | 
			
		||||
		m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32));
 | 
			
		||||
		memcpy(m_moveBuffer, oldBuffer, m_moveCount * sizeof(int32));
 | 
			
		||||
		b2Free(oldBuffer);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	m_moveBuffer[m_moveCount] = proxyId;
 | 
			
		||||
	++m_moveCount;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::UnBufferMove(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	for (int32 i = 0; i < m_moveCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		if (m_moveBuffer[i] == proxyId)
 | 
			
		||||
		{
 | 
			
		||||
			m_moveBuffer[i] = e_nullProxy;
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// This is called from b2DynamicTree::Query when we are gathering pairs.
 | 
			
		||||
bool b2BroadPhase::QueryCallback(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	// A proxy cannot form a pair with itself.
 | 
			
		||||
	if (proxyId == m_queryProxyId)
 | 
			
		||||
	{
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Grow the pair buffer as needed.
 | 
			
		||||
	if (m_pairCount == m_pairCapacity)
 | 
			
		||||
	{
 | 
			
		||||
		b2Pair* oldBuffer = m_pairBuffer;
 | 
			
		||||
		m_pairCapacity *= 2;
 | 
			
		||||
		m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair));
 | 
			
		||||
		memcpy(m_pairBuffer, oldBuffer, m_pairCount * sizeof(b2Pair));
 | 
			
		||||
		b2Free(oldBuffer);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	m_pairBuffer[m_pairCount].proxyIdA = b2Min(proxyId, m_queryProxyId);
 | 
			
		||||
	m_pairBuffer[m_pairCount].proxyIdB = b2Max(proxyId, m_queryProxyId);
 | 
			
		||||
	++m_pairCount;
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2BroadPhase.h"
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
b2BroadPhase::b2BroadPhase()
 | 
			
		||||
{
 | 
			
		||||
	m_proxyCount = 0;
 | 
			
		||||
 | 
			
		||||
	m_pairCapacity = 16;
 | 
			
		||||
	m_pairCount = 0;
 | 
			
		||||
	m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair));
 | 
			
		||||
 | 
			
		||||
	m_moveCapacity = 16;
 | 
			
		||||
	m_moveCount = 0;
 | 
			
		||||
	m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
b2BroadPhase::~b2BroadPhase()
 | 
			
		||||
{
 | 
			
		||||
	b2Free(m_moveBuffer);
 | 
			
		||||
	b2Free(m_pairBuffer);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int32 b2BroadPhase::CreateProxy(const b2AABB& aabb, void* userData)
 | 
			
		||||
{
 | 
			
		||||
	int32 proxyId = m_tree.CreateProxy(aabb, userData);
 | 
			
		||||
	++m_proxyCount;
 | 
			
		||||
	BufferMove(proxyId);
 | 
			
		||||
	return proxyId;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::DestroyProxy(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	UnBufferMove(proxyId);
 | 
			
		||||
	--m_proxyCount;
 | 
			
		||||
	m_tree.DestroyProxy(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement)
 | 
			
		||||
{
 | 
			
		||||
	bool buffer = m_tree.MoveProxy(proxyId, aabb, displacement);
 | 
			
		||||
	if (buffer)
 | 
			
		||||
	{
 | 
			
		||||
		BufferMove(proxyId);
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::TouchProxy(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	BufferMove(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::BufferMove(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	if (m_moveCount == m_moveCapacity)
 | 
			
		||||
	{
 | 
			
		||||
		int32* oldBuffer = m_moveBuffer;
 | 
			
		||||
		m_moveCapacity *= 2;
 | 
			
		||||
		m_moveBuffer = (int32*)b2Alloc(m_moveCapacity * sizeof(int32));
 | 
			
		||||
		memcpy(m_moveBuffer, oldBuffer, m_moveCount * sizeof(int32));
 | 
			
		||||
		b2Free(oldBuffer);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	m_moveBuffer[m_moveCount] = proxyId;
 | 
			
		||||
	++m_moveCount;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2BroadPhase::UnBufferMove(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	for (int32 i = 0; i < m_moveCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		if (m_moveBuffer[i] == proxyId)
 | 
			
		||||
		{
 | 
			
		||||
			m_moveBuffer[i] = e_nullProxy;
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// This is called from b2DynamicTree::Query when we are gathering pairs.
 | 
			
		||||
bool b2BroadPhase::QueryCallback(int32 proxyId)
 | 
			
		||||
{
 | 
			
		||||
	// A proxy cannot form a pair with itself.
 | 
			
		||||
	if (proxyId == m_queryProxyId)
 | 
			
		||||
	{
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Grow the pair buffer as needed.
 | 
			
		||||
	if (m_pairCount == m_pairCapacity)
 | 
			
		||||
	{
 | 
			
		||||
		b2Pair* oldBuffer = m_pairBuffer;
 | 
			
		||||
		m_pairCapacity *= 2;
 | 
			
		||||
		m_pairBuffer = (b2Pair*)b2Alloc(m_pairCapacity * sizeof(b2Pair));
 | 
			
		||||
		memcpy(m_pairBuffer, oldBuffer, m_pairCount * sizeof(b2Pair));
 | 
			
		||||
		b2Free(oldBuffer);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	m_pairBuffer[m_pairCount].proxyIdA = b2Min(proxyId, m_queryProxyId);
 | 
			
		||||
	m_pairBuffer[m_pairCount].proxyIdB = b2Max(proxyId, m_queryProxyId);
 | 
			
		||||
	++m_pairCount;
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,248 +1,248 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_BROAD_PHASE_H
 | 
			
		||||
#define B2_BROAD_PHASE_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Settings.h"
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "b2DynamicTree.h"
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
struct b2Pair
 | 
			
		||||
{
 | 
			
		||||
	juce::int32 proxyIdA;
 | 
			
		||||
	juce::int32 proxyIdB;
 | 
			
		||||
	juce::int32 next;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// The broad-phase is used for computing pairs and performing volume queries and ray casts.
 | 
			
		||||
/// This broad-phase does not persist pairs. Instead, this reports potentially new pairs.
 | 
			
		||||
/// It is up to the client to consume the new pairs and to track subsequent overlap.
 | 
			
		||||
class b2BroadPhase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
	enum
 | 
			
		||||
	{
 | 
			
		||||
		e_nullProxy = -1
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	b2BroadPhase();
 | 
			
		||||
	~b2BroadPhase();
 | 
			
		||||
 | 
			
		||||
	/// Create a proxy with an initial AABB. Pairs are not reported until
 | 
			
		||||
	/// UpdatePairs is called.
 | 
			
		||||
	juce::int32 CreateProxy(const b2AABB& aabb, void* userData);
 | 
			
		||||
 | 
			
		||||
	/// Destroy a proxy. It is up to the client to remove any pairs.
 | 
			
		||||
	void DestroyProxy(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	/// Call MoveProxy as many times as you like, then when you are done
 | 
			
		||||
	/// call UpdatePairs to finalized the proxy pairs (for your time step).
 | 
			
		||||
	void MoveProxy(juce::int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement);
 | 
			
		||||
 | 
			
		||||
	/// Call to trigger a re-processing of it's pairs on the next call to UpdatePairs.
 | 
			
		||||
	void TouchProxy(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	/// Get the fat AABB for a proxy.
 | 
			
		||||
	const b2AABB& GetFatAABB(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Get user data from a proxy. Returns NULL if the id is invalid.
 | 
			
		||||
	void* GetUserData(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Test overlap of fat AABBs.
 | 
			
		||||
	bool TestOverlap(juce::int32 proxyIdA, juce::int32 proxyIdB) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the number of proxies.
 | 
			
		||||
	juce::int32 GetProxyCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Update the pairs. This results in pair callbacks. This can only add pairs.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void UpdatePairs(T* callback);
 | 
			
		||||
 | 
			
		||||
	/// Query an AABB for overlapping proxies. The callback class
 | 
			
		||||
	/// is called for each proxy that overlaps the supplied AABB.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void Query(T* callback, const b2AABB& aabb) const;
 | 
			
		||||
 | 
			
		||||
	/// Ray-cast against the proxies in the tree. This relies on the callback
 | 
			
		||||
	/// to perform a exact ray-cast in the case were the proxy contains a shape.
 | 
			
		||||
	/// The callback also performs the any collision filtering. This has performance
 | 
			
		||||
	/// roughly equal to k * log(n), where k is the number of collisions and n is the
 | 
			
		||||
	/// number of proxies in the tree.
 | 
			
		||||
	/// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
 | 
			
		||||
	/// @param callback a callback class that is called for each proxy that is hit by the ray.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void RayCast(T* callback, const b2RayCastInput& input) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the height of the embedded tree.
 | 
			
		||||
	juce::int32 GetTreeHeight() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the balance of the embedded tree.
 | 
			
		||||
	juce::int32 GetTreeBalance() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the quality metric of the embedded tree.
 | 
			
		||||
	float32 GetTreeQuality() const;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
	friend class b2DynamicTree;
 | 
			
		||||
 | 
			
		||||
	void BufferMove(juce::int32 proxyId);
 | 
			
		||||
	void UnBufferMove(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	bool QueryCallback(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	b2DynamicTree m_tree;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_proxyCount;
 | 
			
		||||
 | 
			
		||||
	juce::int32* m_moveBuffer;
 | 
			
		||||
	juce::int32 m_moveCapacity;
 | 
			
		||||
	juce::int32 m_moveCount;
 | 
			
		||||
 | 
			
		||||
	b2Pair* m_pairBuffer;
 | 
			
		||||
	juce::int32 m_pairCapacity;
 | 
			
		||||
	juce::int32 m_pairCount;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_queryProxyId;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// This is used to sort pairs.
 | 
			
		||||
inline bool b2PairLessThan(const b2Pair& pair1, const b2Pair& pair2)
 | 
			
		||||
{
 | 
			
		||||
	if (pair1.proxyIdA < pair2.proxyIdA)
 | 
			
		||||
	{
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (pair1.proxyIdA == pair2.proxyIdA)
 | 
			
		||||
	{
 | 
			
		||||
		return pair1.proxyIdB < pair2.proxyIdB;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void* b2BroadPhase::GetUserData(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetUserData(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline bool b2BroadPhase::TestOverlap(juce::int32 proxyIdA, juce::int32 proxyIdB) const
 | 
			
		||||
{
 | 
			
		||||
	const b2AABB& aabbA = m_tree.GetFatAABB(proxyIdA);
 | 
			
		||||
	const b2AABB& aabbB = m_tree.GetFatAABB(proxyIdB);
 | 
			
		||||
	return b2TestOverlap(aabbA, aabbB);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2AABB& b2BroadPhase::GetFatAABB(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetFatAABB(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2BroadPhase::GetProxyCount() const
 | 
			
		||||
{
 | 
			
		||||
	return m_proxyCount;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2BroadPhase::GetTreeHeight() const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetHeight();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2BroadPhase::GetTreeBalance() const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetMaxBalance();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline float32 b2BroadPhase::GetTreeQuality() const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetAreaRatio();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
void b2BroadPhase::UpdatePairs(T* callback)
 | 
			
		||||
{
 | 
			
		||||
	// Reset pair buffer
 | 
			
		||||
	m_pairCount = 0;
 | 
			
		||||
 | 
			
		||||
	// Perform tree queries for all moving proxies.
 | 
			
		||||
	for (juce::int32 i = 0; i < m_moveCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		m_queryProxyId = m_moveBuffer[i];
 | 
			
		||||
		if (m_queryProxyId == e_nullProxy)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// We have to query the tree with the fat AABB so that
 | 
			
		||||
		// we don't fail to create a pair that may touch later.
 | 
			
		||||
		const b2AABB& fatAABB = m_tree.GetFatAABB(m_queryProxyId);
 | 
			
		||||
 | 
			
		||||
		// Query tree, create pairs and add them pair buffer.
 | 
			
		||||
		m_tree.Query(this, fatAABB);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Reset move buffer
 | 
			
		||||
	m_moveCount = 0;
 | 
			
		||||
 | 
			
		||||
	// Sort the pair buffer to expose duplicates.
 | 
			
		||||
	std::sort(m_pairBuffer, m_pairBuffer + m_pairCount, b2PairLessThan);
 | 
			
		||||
 | 
			
		||||
	// Send the pairs back to the client.
 | 
			
		||||
	juce::int32 i = 0;
 | 
			
		||||
	while (i < m_pairCount)
 | 
			
		||||
	{
 | 
			
		||||
		b2Pair* primaryPair = m_pairBuffer + i;
 | 
			
		||||
		void* userDataA = m_tree.GetUserData(primaryPair->proxyIdA);
 | 
			
		||||
		void* userDataB = m_tree.GetUserData(primaryPair->proxyIdB);
 | 
			
		||||
 | 
			
		||||
		callback->AddPair(userDataA, userDataB);
 | 
			
		||||
		++i;
 | 
			
		||||
 | 
			
		||||
		// Skip any duplicate pairs.
 | 
			
		||||
		while (i < m_pairCount)
 | 
			
		||||
		{
 | 
			
		||||
			b2Pair* pair = m_pairBuffer + i;
 | 
			
		||||
			if (pair->proxyIdA != primaryPair->proxyIdA || pair->proxyIdB != primaryPair->proxyIdB)
 | 
			
		||||
			{
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
			++i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Try to keep the tree balanced.
 | 
			
		||||
	//m_tree.Rebalance(4);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2BroadPhase::Query(T* callback, const b2AABB& aabb) const
 | 
			
		||||
{
 | 
			
		||||
	m_tree.Query(callback, aabb);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2BroadPhase::RayCast(T* callback, const b2RayCastInput& input) const
 | 
			
		||||
{
 | 
			
		||||
	m_tree.RayCast(callback, input);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_BROAD_PHASE_H
 | 
			
		||||
#define B2_BROAD_PHASE_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Settings.h"
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "b2DynamicTree.h"
 | 
			
		||||
#include <algorithm>
 | 
			
		||||
 | 
			
		||||
struct b2Pair
 | 
			
		||||
{
 | 
			
		||||
	juce::int32 proxyIdA;
 | 
			
		||||
	juce::int32 proxyIdB;
 | 
			
		||||
	juce::int32 next;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// The broad-phase is used for computing pairs and performing volume queries and ray casts.
 | 
			
		||||
/// This broad-phase does not persist pairs. Instead, this reports potentially new pairs.
 | 
			
		||||
/// It is up to the client to consume the new pairs and to track subsequent overlap.
 | 
			
		||||
class b2BroadPhase
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
	enum
 | 
			
		||||
	{
 | 
			
		||||
		e_nullProxy = -1
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	b2BroadPhase();
 | 
			
		||||
	~b2BroadPhase();
 | 
			
		||||
 | 
			
		||||
	/// Create a proxy with an initial AABB. Pairs are not reported until
 | 
			
		||||
	/// UpdatePairs is called.
 | 
			
		||||
	juce::int32 CreateProxy(const b2AABB& aabb, void* userData);
 | 
			
		||||
 | 
			
		||||
	/// Destroy a proxy. It is up to the client to remove any pairs.
 | 
			
		||||
	void DestroyProxy(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	/// Call MoveProxy as many times as you like, then when you are done
 | 
			
		||||
	/// call UpdatePairs to finalized the proxy pairs (for your time step).
 | 
			
		||||
	void MoveProxy(juce::int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement);
 | 
			
		||||
 | 
			
		||||
	/// Call to trigger a re-processing of it's pairs on the next call to UpdatePairs.
 | 
			
		||||
	void TouchProxy(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	/// Get the fat AABB for a proxy.
 | 
			
		||||
	const b2AABB& GetFatAABB(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Get user data from a proxy. Returns NULL if the id is invalid.
 | 
			
		||||
	void* GetUserData(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Test overlap of fat AABBs.
 | 
			
		||||
	bool TestOverlap(juce::int32 proxyIdA, juce::int32 proxyIdB) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the number of proxies.
 | 
			
		||||
	juce::int32 GetProxyCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Update the pairs. This results in pair callbacks. This can only add pairs.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void UpdatePairs(T* callback);
 | 
			
		||||
 | 
			
		||||
	/// Query an AABB for overlapping proxies. The callback class
 | 
			
		||||
	/// is called for each proxy that overlaps the supplied AABB.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void Query(T* callback, const b2AABB& aabb) const;
 | 
			
		||||
 | 
			
		||||
	/// Ray-cast against the proxies in the tree. This relies on the callback
 | 
			
		||||
	/// to perform a exact ray-cast in the case were the proxy contains a shape.
 | 
			
		||||
	/// The callback also performs the any collision filtering. This has performance
 | 
			
		||||
	/// roughly equal to k * log(n), where k is the number of collisions and n is the
 | 
			
		||||
	/// number of proxies in the tree.
 | 
			
		||||
	/// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
 | 
			
		||||
	/// @param callback a callback class that is called for each proxy that is hit by the ray.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void RayCast(T* callback, const b2RayCastInput& input) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the height of the embedded tree.
 | 
			
		||||
	juce::int32 GetTreeHeight() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the balance of the embedded tree.
 | 
			
		||||
	juce::int32 GetTreeBalance() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the quality metric of the embedded tree.
 | 
			
		||||
	float32 GetTreeQuality() const;
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
	friend class b2DynamicTree;
 | 
			
		||||
 | 
			
		||||
	void BufferMove(juce::int32 proxyId);
 | 
			
		||||
	void UnBufferMove(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	bool QueryCallback(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	b2DynamicTree m_tree;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_proxyCount;
 | 
			
		||||
 | 
			
		||||
	juce::int32* m_moveBuffer;
 | 
			
		||||
	juce::int32 m_moveCapacity;
 | 
			
		||||
	juce::int32 m_moveCount;
 | 
			
		||||
 | 
			
		||||
	b2Pair* m_pairBuffer;
 | 
			
		||||
	juce::int32 m_pairCapacity;
 | 
			
		||||
	juce::int32 m_pairCount;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_queryProxyId;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// This is used to sort pairs.
 | 
			
		||||
inline bool b2PairLessThan(const b2Pair& pair1, const b2Pair& pair2)
 | 
			
		||||
{
 | 
			
		||||
	if (pair1.proxyIdA < pair2.proxyIdA)
 | 
			
		||||
	{
 | 
			
		||||
		return true;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	if (pair1.proxyIdA == pair2.proxyIdA)
 | 
			
		||||
	{
 | 
			
		||||
		return pair1.proxyIdB < pair2.proxyIdB;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return false;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline void* b2BroadPhase::GetUserData(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetUserData(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline bool b2BroadPhase::TestOverlap(juce::int32 proxyIdA, juce::int32 proxyIdB) const
 | 
			
		||||
{
 | 
			
		||||
	const b2AABB& aabbA = m_tree.GetFatAABB(proxyIdA);
 | 
			
		||||
	const b2AABB& aabbB = m_tree.GetFatAABB(proxyIdB);
 | 
			
		||||
	return b2TestOverlap(aabbA, aabbB);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2AABB& b2BroadPhase::GetFatAABB(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetFatAABB(proxyId);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2BroadPhase::GetProxyCount() const
 | 
			
		||||
{
 | 
			
		||||
	return m_proxyCount;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2BroadPhase::GetTreeHeight() const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetHeight();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2BroadPhase::GetTreeBalance() const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetMaxBalance();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline float32 b2BroadPhase::GetTreeQuality() const
 | 
			
		||||
{
 | 
			
		||||
	return m_tree.GetAreaRatio();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
void b2BroadPhase::UpdatePairs(T* callback)
 | 
			
		||||
{
 | 
			
		||||
	// Reset pair buffer
 | 
			
		||||
	m_pairCount = 0;
 | 
			
		||||
 | 
			
		||||
	// Perform tree queries for all moving proxies.
 | 
			
		||||
	for (juce::int32 i = 0; i < m_moveCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		m_queryProxyId = m_moveBuffer[i];
 | 
			
		||||
		if (m_queryProxyId == e_nullProxy)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// We have to query the tree with the fat AABB so that
 | 
			
		||||
		// we don't fail to create a pair that may touch later.
 | 
			
		||||
		const b2AABB& fatAABB = m_tree.GetFatAABB(m_queryProxyId);
 | 
			
		||||
 | 
			
		||||
		// Query tree, create pairs and add them pair buffer.
 | 
			
		||||
		m_tree.Query(this, fatAABB);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Reset move buffer
 | 
			
		||||
	m_moveCount = 0;
 | 
			
		||||
 | 
			
		||||
	// Sort the pair buffer to expose duplicates.
 | 
			
		||||
	std::sort(m_pairBuffer, m_pairBuffer + m_pairCount, b2PairLessThan);
 | 
			
		||||
 | 
			
		||||
	// Send the pairs back to the client.
 | 
			
		||||
	juce::int32 i = 0;
 | 
			
		||||
	while (i < m_pairCount)
 | 
			
		||||
	{
 | 
			
		||||
		b2Pair* primaryPair = m_pairBuffer + i;
 | 
			
		||||
		void* userDataA = m_tree.GetUserData(primaryPair->proxyIdA);
 | 
			
		||||
		void* userDataB = m_tree.GetUserData(primaryPair->proxyIdB);
 | 
			
		||||
 | 
			
		||||
		callback->AddPair(userDataA, userDataB);
 | 
			
		||||
		++i;
 | 
			
		||||
 | 
			
		||||
		// Skip any duplicate pairs.
 | 
			
		||||
		while (i < m_pairCount)
 | 
			
		||||
		{
 | 
			
		||||
			b2Pair* pair = m_pairBuffer + i;
 | 
			
		||||
			if (pair->proxyIdA != primaryPair->proxyIdA || pair->proxyIdB != primaryPair->proxyIdB)
 | 
			
		||||
			{
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
			++i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Try to keep the tree balanced.
 | 
			
		||||
	//m_tree.Rebalance(4);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2BroadPhase::Query(T* callback, const b2AABB& aabb) const
 | 
			
		||||
{
 | 
			
		||||
	m_tree.Query(callback, aabb);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2BroadPhase::RayCast(T* callback, const b2RayCastInput& input) const
 | 
			
		||||
{
 | 
			
		||||
	m_tree.RayCast(callback, input);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,152 +1,152 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "Shapes/b2CircleShape.h"
 | 
			
		||||
#include "Shapes/b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
void b2CollideCircles(
 | 
			
		||||
	b2Manifold* manifold,
 | 
			
		||||
	const b2CircleShape* circleA, const b2Transform& xfA,
 | 
			
		||||
	const b2CircleShape* circleB, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	manifold->pointCount = 0;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 pA = b2Mul(xfA, circleA->m_p);
 | 
			
		||||
	b2Vec2 pB = b2Mul(xfB, circleB->m_p);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 d = pB - pA;
 | 
			
		||||
	float32 distSqr = b2Dot(d, d);
 | 
			
		||||
	float32 rA = circleA->m_radius, rB = circleB->m_radius;
 | 
			
		||||
	float32 radius = rA + rB;
 | 
			
		||||
	if (distSqr > radius * radius)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	manifold->type = b2Manifold::e_circles;
 | 
			
		||||
	manifold->localPoint = circleA->m_p;
 | 
			
		||||
	manifold->localNormal.SetZero();
 | 
			
		||||
	manifold->pointCount = 1;
 | 
			
		||||
 | 
			
		||||
	manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
	manifold->points[0].id.key = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2CollidePolygonAndCircle(
 | 
			
		||||
	b2Manifold* manifold,
 | 
			
		||||
	const b2PolygonShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
	const b2CircleShape* circleB, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	manifold->pointCount = 0;
 | 
			
		||||
 | 
			
		||||
	// Compute circle position in the frame of the polygon.
 | 
			
		||||
	b2Vec2 c = b2Mul(xfB, circleB->m_p);
 | 
			
		||||
	b2Vec2 cLocal = b2MulT(xfA, c);
 | 
			
		||||
 | 
			
		||||
	// Find the min separating edge.
 | 
			
		||||
	int32 normalIndex = 0;
 | 
			
		||||
	float32 separation = -b2_maxFloat;
 | 
			
		||||
	float32 radius = polygonA->m_radius + circleB->m_radius;
 | 
			
		||||
	int32 vertexCount = polygonA->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices = polygonA->m_vertices;
 | 
			
		||||
	const b2Vec2* normals = polygonA->m_normals;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 s = b2Dot(normals[i], cLocal - vertices[i]);
 | 
			
		||||
 | 
			
		||||
		if (s > radius)
 | 
			
		||||
		{
 | 
			
		||||
			// Early out.
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (s > separation)
 | 
			
		||||
		{
 | 
			
		||||
			separation = s;
 | 
			
		||||
			normalIndex = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Vertices that subtend the incident face.
 | 
			
		||||
	int32 vertIndex1 = normalIndex;
 | 
			
		||||
	int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
 | 
			
		||||
	b2Vec2 v1 = vertices[vertIndex1];
 | 
			
		||||
	b2Vec2 v2 = vertices[vertIndex2];
 | 
			
		||||
 | 
			
		||||
	// If the center is inside the polygon ...
 | 
			
		||||
	if (separation < b2_epsilon)
 | 
			
		||||
	{
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = normals[normalIndex];
 | 
			
		||||
		manifold->localPoint = 0.5f * (v1 + v2);
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Compute barycentric coordinates
 | 
			
		||||
	float32 u1 = b2Dot(cLocal - v1, v2 - v1);
 | 
			
		||||
	float32 u2 = b2Dot(cLocal - v2, v1 - v2);
 | 
			
		||||
	if (u1 <= 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		if (b2DistanceSquared(cLocal, v1) > radius * radius)
 | 
			
		||||
		{
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = cLocal - v1;
 | 
			
		||||
		manifold->localNormal.Normalize();
 | 
			
		||||
		manifold->localPoint = v1;
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
	}
 | 
			
		||||
	else if (u2 <= 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		if (b2DistanceSquared(cLocal, v2) > radius * radius)
 | 
			
		||||
		{
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = cLocal - v2;
 | 
			
		||||
		manifold->localNormal.Normalize();
 | 
			
		||||
		manifold->localPoint = v2;
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		b2Vec2 faceCenter = 0.5f * (v1 + v2);
 | 
			
		||||
 | 
			
		||||
		if (b2Dot (cLocal - faceCenter, normals[vertIndex1]) > radius)
 | 
			
		||||
			return;
 | 
			
		||||
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = normals[vertIndex1];
 | 
			
		||||
		manifold->localPoint = faceCenter;
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "Shapes/b2CircleShape.h"
 | 
			
		||||
#include "Shapes/b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
void b2CollideCircles(
 | 
			
		||||
	b2Manifold* manifold,
 | 
			
		||||
	const b2CircleShape* circleA, const b2Transform& xfA,
 | 
			
		||||
	const b2CircleShape* circleB, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	manifold->pointCount = 0;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 pA = b2Mul(xfA, circleA->m_p);
 | 
			
		||||
	b2Vec2 pB = b2Mul(xfB, circleB->m_p);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 d = pB - pA;
 | 
			
		||||
	float32 distSqr = b2Dot(d, d);
 | 
			
		||||
	float32 rA = circleA->m_radius, rB = circleB->m_radius;
 | 
			
		||||
	float32 radius = rA + rB;
 | 
			
		||||
	if (distSqr > radius * radius)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	manifold->type = b2Manifold::e_circles;
 | 
			
		||||
	manifold->localPoint = circleA->m_p;
 | 
			
		||||
	manifold->localNormal.SetZero();
 | 
			
		||||
	manifold->pointCount = 1;
 | 
			
		||||
 | 
			
		||||
	manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
	manifold->points[0].id.key = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2CollidePolygonAndCircle(
 | 
			
		||||
	b2Manifold* manifold,
 | 
			
		||||
	const b2PolygonShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
	const b2CircleShape* circleB, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	manifold->pointCount = 0;
 | 
			
		||||
 | 
			
		||||
	// Compute circle position in the frame of the polygon.
 | 
			
		||||
	b2Vec2 c = b2Mul(xfB, circleB->m_p);
 | 
			
		||||
	b2Vec2 cLocal = b2MulT(xfA, c);
 | 
			
		||||
 | 
			
		||||
	// Find the min separating edge.
 | 
			
		||||
	int32 normalIndex = 0;
 | 
			
		||||
	float32 separation = -b2_maxFloat;
 | 
			
		||||
	float32 radius = polygonA->m_radius + circleB->m_radius;
 | 
			
		||||
	int32 vertexCount = polygonA->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices = polygonA->m_vertices;
 | 
			
		||||
	const b2Vec2* normals = polygonA->m_normals;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < vertexCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 s = b2Dot(normals[i], cLocal - vertices[i]);
 | 
			
		||||
 | 
			
		||||
		if (s > radius)
 | 
			
		||||
		{
 | 
			
		||||
			// Early out.
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (s > separation)
 | 
			
		||||
		{
 | 
			
		||||
			separation = s;
 | 
			
		||||
			normalIndex = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Vertices that subtend the incident face.
 | 
			
		||||
	int32 vertIndex1 = normalIndex;
 | 
			
		||||
	int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
 | 
			
		||||
	b2Vec2 v1 = vertices[vertIndex1];
 | 
			
		||||
	b2Vec2 v2 = vertices[vertIndex2];
 | 
			
		||||
 | 
			
		||||
	// If the center is inside the polygon ...
 | 
			
		||||
	if (separation < b2_epsilon)
 | 
			
		||||
	{
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = normals[normalIndex];
 | 
			
		||||
		manifold->localPoint = 0.5f * (v1 + v2);
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Compute barycentric coordinates
 | 
			
		||||
	float32 u1 = b2Dot(cLocal - v1, v2 - v1);
 | 
			
		||||
	float32 u2 = b2Dot(cLocal - v2, v1 - v2);
 | 
			
		||||
	if (u1 <= 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		if (b2DistanceSquared(cLocal, v1) > radius * radius)
 | 
			
		||||
		{
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = cLocal - v1;
 | 
			
		||||
		manifold->localNormal.Normalize();
 | 
			
		||||
		manifold->localPoint = v1;
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
	}
 | 
			
		||||
	else if (u2 <= 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		if (b2DistanceSquared(cLocal, v2) > radius * radius)
 | 
			
		||||
		{
 | 
			
		||||
			return;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = cLocal - v2;
 | 
			
		||||
		manifold->localNormal.Normalize();
 | 
			
		||||
		manifold->localPoint = v2;
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		b2Vec2 faceCenter = 0.5f * (v1 + v2);
 | 
			
		||||
 | 
			
		||||
		if (b2Dot (cLocal - faceCenter, normals[vertIndex1]) > radius)
 | 
			
		||||
			return;
 | 
			
		||||
 | 
			
		||||
		manifold->pointCount = 1;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		manifold->localNormal = normals[vertIndex1];
 | 
			
		||||
		manifold->localPoint = faceCenter;
 | 
			
		||||
		manifold->points[0].localPoint = circleB->m_p;
 | 
			
		||||
		manifold->points[0].id.key = 0;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,317 +1,317 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "Shapes/b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
// Find the separation between poly1 and poly2 for a give edge normal on poly1.
 | 
			
		||||
static float32 b2EdgeSeparation(const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
 | 
			
		||||
							  const b2PolygonShape* poly2, const b2Transform& xf2)
 | 
			
		||||
{
 | 
			
		||||
	const b2Vec2* vertices1 = poly1->m_vertices;
 | 
			
		||||
	const b2Vec2* normals1 = poly1->m_normals;
 | 
			
		||||
 | 
			
		||||
	int32 count2 = poly2->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices2 = poly2->m_vertices;
 | 
			
		||||
 | 
			
		||||
	b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount);
 | 
			
		||||
 | 
			
		||||
	// Convert normal from poly1's frame into poly2's frame.
 | 
			
		||||
	b2Vec2 normal1World = b2Mul(xf1.q, normals1[edge1]);
 | 
			
		||||
	b2Vec2 normal1 = b2MulT(xf2.q, normal1World);
 | 
			
		||||
 | 
			
		||||
	// Find support vertex on poly2 for -normal.
 | 
			
		||||
	int32 index = 0;
 | 
			
		||||
	float32 minDot = b2_maxFloat;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < count2; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(vertices2[i], normal1);
 | 
			
		||||
		if (dot < minDot)
 | 
			
		||||
		{
 | 
			
		||||
			minDot = dot;
 | 
			
		||||
			index = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = b2Mul(xf1, vertices1[edge1]);
 | 
			
		||||
	b2Vec2 v2 = b2Mul(xf2, vertices2[index]);
 | 
			
		||||
	float32 separation = b2Dot(v2 - v1, normal1World);
 | 
			
		||||
	return separation;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Find the max separation between poly1 and poly2 using edge normals from poly1.
 | 
			
		||||
static float32 b2FindMaxSeparation(int32* edgeIndex,
 | 
			
		||||
								 const b2PolygonShape* poly1, const b2Transform& xf1,
 | 
			
		||||
								 const b2PolygonShape* poly2, const b2Transform& xf2)
 | 
			
		||||
{
 | 
			
		||||
	int32 count1 = poly1->m_vertexCount;
 | 
			
		||||
	const b2Vec2* normals1 = poly1->m_normals;
 | 
			
		||||
 | 
			
		||||
	// Vector pointing from the centroid of poly1 to the centroid of poly2.
 | 
			
		||||
	b2Vec2 d = b2Mul(xf2, poly2->m_centroid) - b2Mul(xf1, poly1->m_centroid);
 | 
			
		||||
	b2Vec2 dLocal1 = b2MulT(xf1.q, d);
 | 
			
		||||
 | 
			
		||||
	// Find edge normal on poly1 that has the largest projection onto d.
 | 
			
		||||
	int32 edge = 0;
 | 
			
		||||
	float32 maxDot = -b2_maxFloat;
 | 
			
		||||
	for (int32 i = 0; i < count1; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(normals1[i], dLocal1);
 | 
			
		||||
		if (dot > maxDot)
 | 
			
		||||
		{
 | 
			
		||||
			maxDot = dot;
 | 
			
		||||
			edge = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Get the separation for the edge normal.
 | 
			
		||||
	float32 s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	// Check the separation for the previous edge normal.
 | 
			
		||||
	int32 prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
 | 
			
		||||
	float32 sPrev = b2EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	// Check the separation for the next edge normal.
 | 
			
		||||
	int32 nextEdge = edge + 1 < count1 ? edge + 1 : 0;
 | 
			
		||||
	float32 sNext = b2EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	// Find the best edge and the search direction.
 | 
			
		||||
	int32 bestEdge;
 | 
			
		||||
	float32 bestSeparation;
 | 
			
		||||
	int32 increment;
 | 
			
		||||
	if (sPrev > s && sPrev > sNext)
 | 
			
		||||
	{
 | 
			
		||||
		increment = -1;
 | 
			
		||||
		bestEdge = prevEdge;
 | 
			
		||||
		bestSeparation = sPrev;
 | 
			
		||||
	}
 | 
			
		||||
	else if (sNext > s)
 | 
			
		||||
	{
 | 
			
		||||
		increment = 1;
 | 
			
		||||
		bestEdge = nextEdge;
 | 
			
		||||
		bestSeparation = sNext;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		*edgeIndex = edge;
 | 
			
		||||
		return s;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Perform a local search for the best edge normal.
 | 
			
		||||
	for ( ; ; )
 | 
			
		||||
	{
 | 
			
		||||
		if (increment == -1)
 | 
			
		||||
			edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
 | 
			
		||||
		else
 | 
			
		||||
			edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
 | 
			
		||||
 | 
			
		||||
		s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
		if (s > bestSeparation)
 | 
			
		||||
		{
 | 
			
		||||
			bestEdge = edge;
 | 
			
		||||
			bestSeparation = s;
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	*edgeIndex = bestEdge;
 | 
			
		||||
	return bestSeparation;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void b2FindIncidentEdge(b2ClipVertex c[2],
 | 
			
		||||
							 const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
 | 
			
		||||
							 const b2PolygonShape* poly2, const b2Transform& xf2)
 | 
			
		||||
{
 | 
			
		||||
	const b2Vec2* normals1 = poly1->m_normals;
 | 
			
		||||
 | 
			
		||||
	int32 count2 = poly2->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices2 = poly2->m_vertices;
 | 
			
		||||
	const b2Vec2* normals2 = poly2->m_normals;
 | 
			
		||||
 | 
			
		||||
	b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount);
 | 
			
		||||
 | 
			
		||||
	// Get the normal of the reference edge in poly2's frame.
 | 
			
		||||
	b2Vec2 normal1 = b2MulT(xf2.q, b2Mul(xf1.q, normals1[edge1]));
 | 
			
		||||
 | 
			
		||||
	// Find the incident edge on poly2.
 | 
			
		||||
	int32 index = 0;
 | 
			
		||||
	float32 minDot = b2_maxFloat;
 | 
			
		||||
	for (int32 i = 0; i < count2; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(normal1, normals2[i]);
 | 
			
		||||
		if (dot < minDot)
 | 
			
		||||
		{
 | 
			
		||||
			minDot = dot;
 | 
			
		||||
			index = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Build the clip vertices for the incident edge.
 | 
			
		||||
	int32 i1 = index;
 | 
			
		||||
	int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0;
 | 
			
		||||
 | 
			
		||||
	c[0].v = b2Mul(xf2, vertices2[i1]);
 | 
			
		||||
	c[0].id.cf.indexA = (uint8)edge1;
 | 
			
		||||
	c[0].id.cf.indexB = (uint8)i1;
 | 
			
		||||
	c[0].id.cf.typeA = b2ContactFeature::e_face;
 | 
			
		||||
	c[0].id.cf.typeB = b2ContactFeature::e_vertex;
 | 
			
		||||
 | 
			
		||||
	c[1].v = b2Mul(xf2, vertices2[i2]);
 | 
			
		||||
	c[1].id.cf.indexA = (uint8)edge1;
 | 
			
		||||
	c[1].id.cf.indexB = (uint8)i2;
 | 
			
		||||
	c[1].id.cf.typeA = b2ContactFeature::e_face;
 | 
			
		||||
	c[1].id.cf.typeB = b2ContactFeature::e_vertex;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Find edge normal of max separation on A - return if separating axis is found
 | 
			
		||||
// Find edge normal of max separation on B - return if separation axis is found
 | 
			
		||||
// Choose reference edge as min(minA, minB)
 | 
			
		||||
// Find incident edge
 | 
			
		||||
// Clip
 | 
			
		||||
 | 
			
		||||
// The normal points from 1 to 2
 | 
			
		||||
void b2CollidePolygons(b2Manifold* manifold,
 | 
			
		||||
					  const b2PolygonShape* polyA, const b2Transform& xfA,
 | 
			
		||||
					  const b2PolygonShape* polyB, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	manifold->pointCount = 0;
 | 
			
		||||
	float32 totalRadius = polyA->m_radius + polyB->m_radius;
 | 
			
		||||
 | 
			
		||||
	int32 edgeA = 0;
 | 
			
		||||
	float32 separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
 | 
			
		||||
	if (separationA > totalRadius)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	int32 edgeB = 0;
 | 
			
		||||
	float32 separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
 | 
			
		||||
	if (separationB > totalRadius)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	const b2PolygonShape* poly1;	// reference polygon
 | 
			
		||||
	const b2PolygonShape* poly2;	// incident polygon
 | 
			
		||||
	b2Transform xf1, xf2;
 | 
			
		||||
	int32 edge1;		// reference edge
 | 
			
		||||
	uint8 flip;
 | 
			
		||||
	const float32 k_relativeTol = 0.98f;
 | 
			
		||||
	const float32 k_absoluteTol = 0.001f;
 | 
			
		||||
 | 
			
		||||
	if (separationB > k_relativeTol * separationA + k_absoluteTol)
 | 
			
		||||
	{
 | 
			
		||||
		poly1 = polyB;
 | 
			
		||||
		poly2 = polyA;
 | 
			
		||||
		xf1 = xfB;
 | 
			
		||||
		xf2 = xfA;
 | 
			
		||||
		edge1 = edgeB;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceB;
 | 
			
		||||
		flip = 1;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		poly1 = polyA;
 | 
			
		||||
		poly2 = polyB;
 | 
			
		||||
		xf1 = xfA;
 | 
			
		||||
		xf2 = xfB;
 | 
			
		||||
		edge1 = edgeA;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		flip = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2ClipVertex incidentEdge[2];
 | 
			
		||||
	b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	int32 count1 = poly1->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices1 = poly1->m_vertices;
 | 
			
		||||
 | 
			
		||||
	int32 iv1 = edge1;
 | 
			
		||||
	int32 iv2 = edge1 + 1 < count1 ? edge1 + 1 : 0;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v11 = vertices1[iv1];
 | 
			
		||||
	b2Vec2 v12 = vertices1[iv2];
 | 
			
		||||
 | 
			
		||||
	b2Vec2 localTangent = v12 - v11;
 | 
			
		||||
	localTangent.Normalize();
 | 
			
		||||
 | 
			
		||||
	b2Vec2 localNormal = b2Cross(localTangent, 1.0f);
 | 
			
		||||
	b2Vec2 planePoint = 0.5f * (v11 + v12);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 tangent = b2Mul(xf1.q, localTangent);
 | 
			
		||||
	b2Vec2 normal = b2Cross(tangent, 1.0f);
 | 
			
		||||
 | 
			
		||||
	v11 = b2Mul(xf1, v11);
 | 
			
		||||
	v12 = b2Mul(xf1, v12);
 | 
			
		||||
 | 
			
		||||
	// Face offset.
 | 
			
		||||
	float32 frontOffset = b2Dot(normal, v11);
 | 
			
		||||
 | 
			
		||||
	// Side offsets, extended by polytope skin thickness.
 | 
			
		||||
	float32 sideOffset1 = -b2Dot(tangent, v11) + totalRadius;
 | 
			
		||||
	float32 sideOffset2 = b2Dot(tangent, v12) + totalRadius;
 | 
			
		||||
 | 
			
		||||
	// Clip incident edge against extruded edge1 side edges.
 | 
			
		||||
	b2ClipVertex clipPoints1[2];
 | 
			
		||||
	b2ClipVertex clipPoints2[2];
 | 
			
		||||
	int np;
 | 
			
		||||
 | 
			
		||||
	// Clip to box side 1
 | 
			
		||||
	np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1, iv1);
 | 
			
		||||
 | 
			
		||||
	if (np < 2)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	// Clip to negative box side 1
 | 
			
		||||
	np = b2ClipSegmentToLine(clipPoints2, clipPoints1,  tangent, sideOffset2, iv2);
 | 
			
		||||
 | 
			
		||||
	if (np < 2)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Now clipPoints2 contains the clipped points.
 | 
			
		||||
	manifold->localNormal = localNormal;
 | 
			
		||||
	manifold->localPoint = planePoint;
 | 
			
		||||
 | 
			
		||||
	int32 pointCount = 0;
 | 
			
		||||
	for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 separation = b2Dot(normal, clipPoints2[i].v) - frontOffset;
 | 
			
		||||
 | 
			
		||||
		if (separation <= totalRadius)
 | 
			
		||||
		{
 | 
			
		||||
			b2ManifoldPoint* cp = manifold->points + pointCount;
 | 
			
		||||
			cp->localPoint = b2MulT(xf2, clipPoints2[i].v);
 | 
			
		||||
			cp->id = clipPoints2[i].id;
 | 
			
		||||
			if (flip)
 | 
			
		||||
			{
 | 
			
		||||
				// Swap features
 | 
			
		||||
				b2ContactFeature cf = cp->id.cf;
 | 
			
		||||
				cp->id.cf.indexA = cf.indexB;
 | 
			
		||||
				cp->id.cf.indexB = cf.indexA;
 | 
			
		||||
				cp->id.cf.typeA = cf.typeB;
 | 
			
		||||
				cp->id.cf.typeB = cf.typeA;
 | 
			
		||||
			}
 | 
			
		||||
			++pointCount;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	manifold->pointCount = pointCount;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "Shapes/b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
// Find the separation between poly1 and poly2 for a give edge normal on poly1.
 | 
			
		||||
static float32 b2EdgeSeparation(const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
 | 
			
		||||
							  const b2PolygonShape* poly2, const b2Transform& xf2)
 | 
			
		||||
{
 | 
			
		||||
	const b2Vec2* vertices1 = poly1->m_vertices;
 | 
			
		||||
	const b2Vec2* normals1 = poly1->m_normals;
 | 
			
		||||
 | 
			
		||||
	int32 count2 = poly2->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices2 = poly2->m_vertices;
 | 
			
		||||
 | 
			
		||||
	b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount);
 | 
			
		||||
 | 
			
		||||
	// Convert normal from poly1's frame into poly2's frame.
 | 
			
		||||
	b2Vec2 normal1World = b2Mul(xf1.q, normals1[edge1]);
 | 
			
		||||
	b2Vec2 normal1 = b2MulT(xf2.q, normal1World);
 | 
			
		||||
 | 
			
		||||
	// Find support vertex on poly2 for -normal.
 | 
			
		||||
	int32 index = 0;
 | 
			
		||||
	float32 minDot = b2_maxFloat;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < count2; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(vertices2[i], normal1);
 | 
			
		||||
		if (dot < minDot)
 | 
			
		||||
		{
 | 
			
		||||
			minDot = dot;
 | 
			
		||||
			index = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v1 = b2Mul(xf1, vertices1[edge1]);
 | 
			
		||||
	b2Vec2 v2 = b2Mul(xf2, vertices2[index]);
 | 
			
		||||
	float32 separation = b2Dot(v2 - v1, normal1World);
 | 
			
		||||
	return separation;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Find the max separation between poly1 and poly2 using edge normals from poly1.
 | 
			
		||||
static float32 b2FindMaxSeparation(int32* edgeIndex,
 | 
			
		||||
								 const b2PolygonShape* poly1, const b2Transform& xf1,
 | 
			
		||||
								 const b2PolygonShape* poly2, const b2Transform& xf2)
 | 
			
		||||
{
 | 
			
		||||
	int32 count1 = poly1->m_vertexCount;
 | 
			
		||||
	const b2Vec2* normals1 = poly1->m_normals;
 | 
			
		||||
 | 
			
		||||
	// Vector pointing from the centroid of poly1 to the centroid of poly2.
 | 
			
		||||
	b2Vec2 d = b2Mul(xf2, poly2->m_centroid) - b2Mul(xf1, poly1->m_centroid);
 | 
			
		||||
	b2Vec2 dLocal1 = b2MulT(xf1.q, d);
 | 
			
		||||
 | 
			
		||||
	// Find edge normal on poly1 that has the largest projection onto d.
 | 
			
		||||
	int32 edge = 0;
 | 
			
		||||
	float32 maxDot = -b2_maxFloat;
 | 
			
		||||
	for (int32 i = 0; i < count1; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(normals1[i], dLocal1);
 | 
			
		||||
		if (dot > maxDot)
 | 
			
		||||
		{
 | 
			
		||||
			maxDot = dot;
 | 
			
		||||
			edge = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Get the separation for the edge normal.
 | 
			
		||||
	float32 s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	// Check the separation for the previous edge normal.
 | 
			
		||||
	int32 prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
 | 
			
		||||
	float32 sPrev = b2EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	// Check the separation for the next edge normal.
 | 
			
		||||
	int32 nextEdge = edge + 1 < count1 ? edge + 1 : 0;
 | 
			
		||||
	float32 sNext = b2EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	// Find the best edge and the search direction.
 | 
			
		||||
	int32 bestEdge;
 | 
			
		||||
	float32 bestSeparation;
 | 
			
		||||
	int32 increment;
 | 
			
		||||
	if (sPrev > s && sPrev > sNext)
 | 
			
		||||
	{
 | 
			
		||||
		increment = -1;
 | 
			
		||||
		bestEdge = prevEdge;
 | 
			
		||||
		bestSeparation = sPrev;
 | 
			
		||||
	}
 | 
			
		||||
	else if (sNext > s)
 | 
			
		||||
	{
 | 
			
		||||
		increment = 1;
 | 
			
		||||
		bestEdge = nextEdge;
 | 
			
		||||
		bestSeparation = sNext;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		*edgeIndex = edge;
 | 
			
		||||
		return s;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Perform a local search for the best edge normal.
 | 
			
		||||
	for ( ; ; )
 | 
			
		||||
	{
 | 
			
		||||
		if (increment == -1)
 | 
			
		||||
			edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
 | 
			
		||||
		else
 | 
			
		||||
			edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
 | 
			
		||||
 | 
			
		||||
		s = b2EdgeSeparation(poly1, xf1, edge, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
		if (s > bestSeparation)
 | 
			
		||||
		{
 | 
			
		||||
			bestEdge = edge;
 | 
			
		||||
			bestSeparation = s;
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	*edgeIndex = bestEdge;
 | 
			
		||||
	return bestSeparation;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void b2FindIncidentEdge(b2ClipVertex c[2],
 | 
			
		||||
							 const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
 | 
			
		||||
							 const b2PolygonShape* poly2, const b2Transform& xf2)
 | 
			
		||||
{
 | 
			
		||||
	const b2Vec2* normals1 = poly1->m_normals;
 | 
			
		||||
 | 
			
		||||
	int32 count2 = poly2->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices2 = poly2->m_vertices;
 | 
			
		||||
	const b2Vec2* normals2 = poly2->m_normals;
 | 
			
		||||
 | 
			
		||||
	b2Assert(0 <= edge1 && edge1 < poly1->m_vertexCount);
 | 
			
		||||
 | 
			
		||||
	// Get the normal of the reference edge in poly2's frame.
 | 
			
		||||
	b2Vec2 normal1 = b2MulT(xf2.q, b2Mul(xf1.q, normals1[edge1]));
 | 
			
		||||
 | 
			
		||||
	// Find the incident edge on poly2.
 | 
			
		||||
	int32 index = 0;
 | 
			
		||||
	float32 minDot = b2_maxFloat;
 | 
			
		||||
	for (int32 i = 0; i < count2; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 dot = b2Dot(normal1, normals2[i]);
 | 
			
		||||
		if (dot < minDot)
 | 
			
		||||
		{
 | 
			
		||||
			minDot = dot;
 | 
			
		||||
			index = i;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Build the clip vertices for the incident edge.
 | 
			
		||||
	int32 i1 = index;
 | 
			
		||||
	int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0;
 | 
			
		||||
 | 
			
		||||
	c[0].v = b2Mul(xf2, vertices2[i1]);
 | 
			
		||||
	c[0].id.cf.indexA = (uint8)edge1;
 | 
			
		||||
	c[0].id.cf.indexB = (uint8)i1;
 | 
			
		||||
	c[0].id.cf.typeA = b2ContactFeature::e_face;
 | 
			
		||||
	c[0].id.cf.typeB = b2ContactFeature::e_vertex;
 | 
			
		||||
 | 
			
		||||
	c[1].v = b2Mul(xf2, vertices2[i2]);
 | 
			
		||||
	c[1].id.cf.indexA = (uint8)edge1;
 | 
			
		||||
	c[1].id.cf.indexB = (uint8)i2;
 | 
			
		||||
	c[1].id.cf.typeA = b2ContactFeature::e_face;
 | 
			
		||||
	c[1].id.cf.typeB = b2ContactFeature::e_vertex;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Find edge normal of max separation on A - return if separating axis is found
 | 
			
		||||
// Find edge normal of max separation on B - return if separation axis is found
 | 
			
		||||
// Choose reference edge as min(minA, minB)
 | 
			
		||||
// Find incident edge
 | 
			
		||||
// Clip
 | 
			
		||||
 | 
			
		||||
// The normal points from 1 to 2
 | 
			
		||||
void b2CollidePolygons(b2Manifold* manifold,
 | 
			
		||||
					  const b2PolygonShape* polyA, const b2Transform& xfA,
 | 
			
		||||
					  const b2PolygonShape* polyB, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	manifold->pointCount = 0;
 | 
			
		||||
	float32 totalRadius = polyA->m_radius + polyB->m_radius;
 | 
			
		||||
 | 
			
		||||
	int32 edgeA = 0;
 | 
			
		||||
	float32 separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
 | 
			
		||||
	if (separationA > totalRadius)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	int32 edgeB = 0;
 | 
			
		||||
	float32 separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
 | 
			
		||||
	if (separationB > totalRadius)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	const b2PolygonShape* poly1;	// reference polygon
 | 
			
		||||
	const b2PolygonShape* poly2;	// incident polygon
 | 
			
		||||
	b2Transform xf1, xf2;
 | 
			
		||||
	int32 edge1;		// reference edge
 | 
			
		||||
	uint8 flip;
 | 
			
		||||
	const float32 k_relativeTol = 0.98f;
 | 
			
		||||
	const float32 k_absoluteTol = 0.001f;
 | 
			
		||||
 | 
			
		||||
	if (separationB > k_relativeTol * separationA + k_absoluteTol)
 | 
			
		||||
	{
 | 
			
		||||
		poly1 = polyB;
 | 
			
		||||
		poly2 = polyA;
 | 
			
		||||
		xf1 = xfB;
 | 
			
		||||
		xf2 = xfA;
 | 
			
		||||
		edge1 = edgeB;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceB;
 | 
			
		||||
		flip = 1;
 | 
			
		||||
	}
 | 
			
		||||
	else
 | 
			
		||||
	{
 | 
			
		||||
		poly1 = polyA;
 | 
			
		||||
		poly2 = polyB;
 | 
			
		||||
		xf1 = xfA;
 | 
			
		||||
		xf2 = xfB;
 | 
			
		||||
		edge1 = edgeA;
 | 
			
		||||
		manifold->type = b2Manifold::e_faceA;
 | 
			
		||||
		flip = 0;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2ClipVertex incidentEdge[2];
 | 
			
		||||
	b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
 | 
			
		||||
 | 
			
		||||
	int32 count1 = poly1->m_vertexCount;
 | 
			
		||||
	const b2Vec2* vertices1 = poly1->m_vertices;
 | 
			
		||||
 | 
			
		||||
	int32 iv1 = edge1;
 | 
			
		||||
	int32 iv2 = edge1 + 1 < count1 ? edge1 + 1 : 0;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 v11 = vertices1[iv1];
 | 
			
		||||
	b2Vec2 v12 = vertices1[iv2];
 | 
			
		||||
 | 
			
		||||
	b2Vec2 localTangent = v12 - v11;
 | 
			
		||||
	localTangent.Normalize();
 | 
			
		||||
 | 
			
		||||
	b2Vec2 localNormal = b2Cross(localTangent, 1.0f);
 | 
			
		||||
	b2Vec2 planePoint = 0.5f * (v11 + v12);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 tangent = b2Mul(xf1.q, localTangent);
 | 
			
		||||
	b2Vec2 normal = b2Cross(tangent, 1.0f);
 | 
			
		||||
 | 
			
		||||
	v11 = b2Mul(xf1, v11);
 | 
			
		||||
	v12 = b2Mul(xf1, v12);
 | 
			
		||||
 | 
			
		||||
	// Face offset.
 | 
			
		||||
	float32 frontOffset = b2Dot(normal, v11);
 | 
			
		||||
 | 
			
		||||
	// Side offsets, extended by polytope skin thickness.
 | 
			
		||||
	float32 sideOffset1 = -b2Dot(tangent, v11) + totalRadius;
 | 
			
		||||
	float32 sideOffset2 = b2Dot(tangent, v12) + totalRadius;
 | 
			
		||||
 | 
			
		||||
	// Clip incident edge against extruded edge1 side edges.
 | 
			
		||||
	b2ClipVertex clipPoints1[2];
 | 
			
		||||
	b2ClipVertex clipPoints2[2];
 | 
			
		||||
	int np;
 | 
			
		||||
 | 
			
		||||
	// Clip to box side 1
 | 
			
		||||
	np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1, iv1);
 | 
			
		||||
 | 
			
		||||
	if (np < 2)
 | 
			
		||||
		return;
 | 
			
		||||
 | 
			
		||||
	// Clip to negative box side 1
 | 
			
		||||
	np = b2ClipSegmentToLine(clipPoints2, clipPoints1,  tangent, sideOffset2, iv2);
 | 
			
		||||
 | 
			
		||||
	if (np < 2)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Now clipPoints2 contains the clipped points.
 | 
			
		||||
	manifold->localNormal = localNormal;
 | 
			
		||||
	manifold->localPoint = planePoint;
 | 
			
		||||
 | 
			
		||||
	int32 pointCount = 0;
 | 
			
		||||
	for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 separation = b2Dot(normal, clipPoints2[i].v) - frontOffset;
 | 
			
		||||
 | 
			
		||||
		if (separation <= totalRadius)
 | 
			
		||||
		{
 | 
			
		||||
			b2ManifoldPoint* cp = manifold->points + pointCount;
 | 
			
		||||
			cp->localPoint = b2MulT(xf2, clipPoints2[i].v);
 | 
			
		||||
			cp->id = clipPoints2[i].id;
 | 
			
		||||
			if (flip)
 | 
			
		||||
			{
 | 
			
		||||
				// Swap features
 | 
			
		||||
				b2ContactFeature cf = cp->id.cf;
 | 
			
		||||
				cp->id.cf.indexA = cf.indexB;
 | 
			
		||||
				cp->id.cf.indexB = cf.indexA;
 | 
			
		||||
				cp->id.cf.typeA = cf.typeB;
 | 
			
		||||
				cp->id.cf.typeB = cf.typeA;
 | 
			
		||||
			}
 | 
			
		||||
			++pointCount;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	manifold->pointCount = pointCount;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,249 +1,249 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "b2Distance.h"
 | 
			
		||||
 | 
			
		||||
void b2WorldManifold::Initialize(const b2Manifold* manifold,
 | 
			
		||||
						  const b2Transform& xfA, float32 radiusA,
 | 
			
		||||
						  const b2Transform& xfB, float32 radiusB)
 | 
			
		||||
{
 | 
			
		||||
	if (manifold->pointCount == 0)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	switch (manifold->type)
 | 
			
		||||
	{
 | 
			
		||||
	case b2Manifold::e_circles:
 | 
			
		||||
		{
 | 
			
		||||
			normal.Set(1.0f, 0.0f);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, manifold->localPoint);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, manifold->points[0].localPoint);
 | 
			
		||||
			if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
 | 
			
		||||
			{
 | 
			
		||||
				normal = pointB - pointA;
 | 
			
		||||
				normal.Normalize();
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			b2Vec2 cA = pointA + radiusA * normal;
 | 
			
		||||
			b2Vec2 cB = pointB - radiusB * normal;
 | 
			
		||||
			points[0] = 0.5f * (cA + cB);
 | 
			
		||||
		}
 | 
			
		||||
		break;
 | 
			
		||||
 | 
			
		||||
	case b2Manifold::e_faceA:
 | 
			
		||||
		{
 | 
			
		||||
			normal = b2Mul(xfA.q, manifold->localNormal);
 | 
			
		||||
			b2Vec2 planePoint = b2Mul(xfA, manifold->localPoint);
 | 
			
		||||
 | 
			
		||||
			for (int32 i = 0; i < manifold->pointCount; ++i)
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint);
 | 
			
		||||
				b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, normal)) * normal;
 | 
			
		||||
				b2Vec2 cB = clipPoint - radiusB * normal;
 | 
			
		||||
				points[i] = 0.5f * (cA + cB);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		break;
 | 
			
		||||
 | 
			
		||||
	case b2Manifold::e_faceB:
 | 
			
		||||
		{
 | 
			
		||||
			normal = b2Mul(xfB.q, manifold->localNormal);
 | 
			
		||||
			b2Vec2 planePoint = b2Mul(xfB, manifold->localPoint);
 | 
			
		||||
 | 
			
		||||
			for (int32 i = 0; i < manifold->pointCount; ++i)
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint);
 | 
			
		||||
				b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, normal)) * normal;
 | 
			
		||||
				b2Vec2 cA = clipPoint - radiusA * normal;
 | 
			
		||||
				points[i] = 0.5f * (cA + cB);
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Ensure normal points from A to B.
 | 
			
		||||
			normal = -normal;
 | 
			
		||||
		}
 | 
			
		||||
		break;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
 | 
			
		||||
					  const b2Manifold* manifold1, const b2Manifold* manifold2)
 | 
			
		||||
{
 | 
			
		||||
	for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		state1[i] = b2_nullState;
 | 
			
		||||
		state2[i] = b2_nullState;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Detect persists and removes.
 | 
			
		||||
	for (int32 i = 0; i < manifold1->pointCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		b2ContactID id = manifold1->points[i].id;
 | 
			
		||||
 | 
			
		||||
		state1[i] = b2_removeState;
 | 
			
		||||
 | 
			
		||||
		for (int32 j = 0; j < manifold2->pointCount; ++j)
 | 
			
		||||
		{
 | 
			
		||||
			if (manifold2->points[j].id.key == id.key)
 | 
			
		||||
			{
 | 
			
		||||
				state1[i] = b2_persistState;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Detect persists and adds.
 | 
			
		||||
	for (int32 i = 0; i < manifold2->pointCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		b2ContactID id = manifold2->points[i].id;
 | 
			
		||||
 | 
			
		||||
		state2[i] = b2_addState;
 | 
			
		||||
 | 
			
		||||
		for (int32 j = 0; j < manifold1->pointCount; ++j)
 | 
			
		||||
		{
 | 
			
		||||
			if (manifold1->points[j].id.key == id.key)
 | 
			
		||||
			{
 | 
			
		||||
				state2[i] = b2_persistState;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// From Real-time Collision Detection, p179.
 | 
			
		||||
bool b2AABB::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const
 | 
			
		||||
{
 | 
			
		||||
	float32 tmin = -b2_maxFloat;
 | 
			
		||||
	float32 tmax = b2_maxFloat;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 p = input.p1;
 | 
			
		||||
	b2Vec2 d = input.p2 - input.p1;
 | 
			
		||||
	b2Vec2 absD = b2Abs(d);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 normal;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < 2; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		if (absD(i) < b2_epsilon)
 | 
			
		||||
		{
 | 
			
		||||
			// Parallel.
 | 
			
		||||
			if (p(i) < lowerBound(i) || upperBound(i) < p(i))
 | 
			
		||||
			{
 | 
			
		||||
				return false;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			float32 inv_d = 1.0f / d(i);
 | 
			
		||||
			float32 t1 = (lowerBound(i) - p(i)) * inv_d;
 | 
			
		||||
			float32 t2 = (upperBound(i) - p(i)) * inv_d;
 | 
			
		||||
 | 
			
		||||
			// Sign of the normal vector.
 | 
			
		||||
			float32 s = -1.0f;
 | 
			
		||||
 | 
			
		||||
			if (t1 > t2)
 | 
			
		||||
			{
 | 
			
		||||
				b2Swap(t1, t2);
 | 
			
		||||
				s = 1.0f;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Push the min up
 | 
			
		||||
			if (t1 > tmin)
 | 
			
		||||
			{
 | 
			
		||||
				normal.SetZero();
 | 
			
		||||
				normal(i) = s;
 | 
			
		||||
				tmin = t1;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Pull the max down
 | 
			
		||||
			tmax = b2Min(tmax, t2);
 | 
			
		||||
 | 
			
		||||
			if (tmin > tmax)
 | 
			
		||||
			{
 | 
			
		||||
				return false;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Does the ray start inside the box?
 | 
			
		||||
	// Does the ray intersect beyond the max fraction?
 | 
			
		||||
	if (tmin < 0.0f || input.maxFraction < tmin)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Intersection.
 | 
			
		||||
	output->fraction = tmin;
 | 
			
		||||
	output->normal = normal;
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Sutherland-Hodgman clipping.
 | 
			
		||||
int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
 | 
			
		||||
						const b2Vec2& normal, float32 offset, int32 vertexIndexA)
 | 
			
		||||
{
 | 
			
		||||
	// Start with no output points
 | 
			
		||||
	int32 numOut = 0;
 | 
			
		||||
 | 
			
		||||
	// Calculate the distance of end points to the line
 | 
			
		||||
	float32 distance0 = b2Dot(normal, vIn[0].v) - offset;
 | 
			
		||||
	float32 distance1 = b2Dot(normal, vIn[1].v) - offset;
 | 
			
		||||
 | 
			
		||||
	// If the points are behind the plane
 | 
			
		||||
	if (distance0 <= 0.0f) vOut[numOut++] = vIn[0];
 | 
			
		||||
	if (distance1 <= 0.0f) vOut[numOut++] = vIn[1];
 | 
			
		||||
 | 
			
		||||
	// If the points are on different sides of the plane
 | 
			
		||||
	if (distance0 * distance1 < 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		// Find intersection point of edge and plane
 | 
			
		||||
		float32 interp = distance0 / (distance0 - distance1);
 | 
			
		||||
		vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
 | 
			
		||||
 | 
			
		||||
		// VertexA is hitting edgeB.
 | 
			
		||||
		vOut[numOut].id.cf.indexA = (uint8) vertexIndexA;
 | 
			
		||||
		vOut[numOut].id.cf.indexB = vIn[0].id.cf.indexB;
 | 
			
		||||
		vOut[numOut].id.cf.typeA = b2ContactFeature::e_vertex;
 | 
			
		||||
		vOut[numOut].id.cf.typeB = b2ContactFeature::e_face;
 | 
			
		||||
		++numOut;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return numOut;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2TestOverlap(	const b2Shape* shapeA, int32 indexA,
 | 
			
		||||
					const b2Shape* shapeB, int32 indexB,
 | 
			
		||||
					const b2Transform& xfA, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceInput input;
 | 
			
		||||
	input.proxyA.Set(shapeA, indexA);
 | 
			
		||||
	input.proxyB.Set(shapeB, indexB);
 | 
			
		||||
	input.transformA = xfA;
 | 
			
		||||
	input.transformB = xfB;
 | 
			
		||||
	input.useRadii = true;
 | 
			
		||||
 | 
			
		||||
	b2SimplexCache cache;
 | 
			
		||||
	cache.count = 0;
 | 
			
		||||
 | 
			
		||||
	b2DistanceOutput output;
 | 
			
		||||
 | 
			
		||||
	b2Distance(&output, &cache, &input);
 | 
			
		||||
 | 
			
		||||
	return output.distance < 10.0f * b2_epsilon;
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "b2Distance.h"
 | 
			
		||||
 | 
			
		||||
void b2WorldManifold::Initialize(const b2Manifold* manifold,
 | 
			
		||||
						  const b2Transform& xfA, float32 radiusA,
 | 
			
		||||
						  const b2Transform& xfB, float32 radiusB)
 | 
			
		||||
{
 | 
			
		||||
	if (manifold->pointCount == 0)
 | 
			
		||||
	{
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	switch (manifold->type)
 | 
			
		||||
	{
 | 
			
		||||
	case b2Manifold::e_circles:
 | 
			
		||||
		{
 | 
			
		||||
			normal.Set(1.0f, 0.0f);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, manifold->localPoint);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, manifold->points[0].localPoint);
 | 
			
		||||
			if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
 | 
			
		||||
			{
 | 
			
		||||
				normal = pointB - pointA;
 | 
			
		||||
				normal.Normalize();
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			b2Vec2 cA = pointA + radiusA * normal;
 | 
			
		||||
			b2Vec2 cB = pointB - radiusB * normal;
 | 
			
		||||
			points[0] = 0.5f * (cA + cB);
 | 
			
		||||
		}
 | 
			
		||||
		break;
 | 
			
		||||
 | 
			
		||||
	case b2Manifold::e_faceA:
 | 
			
		||||
		{
 | 
			
		||||
			normal = b2Mul(xfA.q, manifold->localNormal);
 | 
			
		||||
			b2Vec2 planePoint = b2Mul(xfA, manifold->localPoint);
 | 
			
		||||
 | 
			
		||||
			for (int32 i = 0; i < manifold->pointCount; ++i)
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint);
 | 
			
		||||
				b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, normal)) * normal;
 | 
			
		||||
				b2Vec2 cB = clipPoint - radiusB * normal;
 | 
			
		||||
				points[i] = 0.5f * (cA + cB);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		break;
 | 
			
		||||
 | 
			
		||||
	case b2Manifold::e_faceB:
 | 
			
		||||
		{
 | 
			
		||||
			normal = b2Mul(xfB.q, manifold->localNormal);
 | 
			
		||||
			b2Vec2 planePoint = b2Mul(xfB, manifold->localPoint);
 | 
			
		||||
 | 
			
		||||
			for (int32 i = 0; i < manifold->pointCount; ++i)
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint);
 | 
			
		||||
				b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, normal)) * normal;
 | 
			
		||||
				b2Vec2 cA = clipPoint - radiusA * normal;
 | 
			
		||||
				points[i] = 0.5f * (cA + cB);
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Ensure normal points from A to B.
 | 
			
		||||
			normal = -normal;
 | 
			
		||||
		}
 | 
			
		||||
		break;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
 | 
			
		||||
					  const b2Manifold* manifold1, const b2Manifold* manifold2)
 | 
			
		||||
{
 | 
			
		||||
	for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		state1[i] = b2_nullState;
 | 
			
		||||
		state2[i] = b2_nullState;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Detect persists and removes.
 | 
			
		||||
	for (int32 i = 0; i < manifold1->pointCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		b2ContactID id = manifold1->points[i].id;
 | 
			
		||||
 | 
			
		||||
		state1[i] = b2_removeState;
 | 
			
		||||
 | 
			
		||||
		for (int32 j = 0; j < manifold2->pointCount; ++j)
 | 
			
		||||
		{
 | 
			
		||||
			if (manifold2->points[j].id.key == id.key)
 | 
			
		||||
			{
 | 
			
		||||
				state1[i] = b2_persistState;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Detect persists and adds.
 | 
			
		||||
	for (int32 i = 0; i < manifold2->pointCount; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		b2ContactID id = manifold2->points[i].id;
 | 
			
		||||
 | 
			
		||||
		state2[i] = b2_addState;
 | 
			
		||||
 | 
			
		||||
		for (int32 j = 0; j < manifold1->pointCount; ++j)
 | 
			
		||||
		{
 | 
			
		||||
			if (manifold1->points[j].id.key == id.key)
 | 
			
		||||
			{
 | 
			
		||||
				state2[i] = b2_persistState;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// From Real-time Collision Detection, p179.
 | 
			
		||||
bool b2AABB::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const
 | 
			
		||||
{
 | 
			
		||||
	float32 tmin = -b2_maxFloat;
 | 
			
		||||
	float32 tmax = b2_maxFloat;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 p = input.p1;
 | 
			
		||||
	b2Vec2 d = input.p2 - input.p1;
 | 
			
		||||
	b2Vec2 absD = b2Abs(d);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 normal;
 | 
			
		||||
 | 
			
		||||
	for (int32 i = 0; i < 2; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		if (absD(i) < b2_epsilon)
 | 
			
		||||
		{
 | 
			
		||||
			// Parallel.
 | 
			
		||||
			if (p(i) < lowerBound(i) || upperBound(i) < p(i))
 | 
			
		||||
			{
 | 
			
		||||
				return false;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			float32 inv_d = 1.0f / d(i);
 | 
			
		||||
			float32 t1 = (lowerBound(i) - p(i)) * inv_d;
 | 
			
		||||
			float32 t2 = (upperBound(i) - p(i)) * inv_d;
 | 
			
		||||
 | 
			
		||||
			// Sign of the normal vector.
 | 
			
		||||
			float32 s = -1.0f;
 | 
			
		||||
 | 
			
		||||
			if (t1 > t2)
 | 
			
		||||
			{
 | 
			
		||||
				b2Swap(t1, t2);
 | 
			
		||||
				s = 1.0f;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Push the min up
 | 
			
		||||
			if (t1 > tmin)
 | 
			
		||||
			{
 | 
			
		||||
				normal.SetZero();
 | 
			
		||||
				normal(i) = s;
 | 
			
		||||
				tmin = t1;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Pull the max down
 | 
			
		||||
			tmax = b2Min(tmax, t2);
 | 
			
		||||
 | 
			
		||||
			if (tmin > tmax)
 | 
			
		||||
			{
 | 
			
		||||
				return false;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Does the ray start inside the box?
 | 
			
		||||
	// Does the ray intersect beyond the max fraction?
 | 
			
		||||
	if (tmin < 0.0f || input.maxFraction < tmin)
 | 
			
		||||
	{
 | 
			
		||||
		return false;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Intersection.
 | 
			
		||||
	output->fraction = tmin;
 | 
			
		||||
	output->normal = normal;
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Sutherland-Hodgman clipping.
 | 
			
		||||
int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
 | 
			
		||||
						const b2Vec2& normal, float32 offset, int32 vertexIndexA)
 | 
			
		||||
{
 | 
			
		||||
	// Start with no output points
 | 
			
		||||
	int32 numOut = 0;
 | 
			
		||||
 | 
			
		||||
	// Calculate the distance of end points to the line
 | 
			
		||||
	float32 distance0 = b2Dot(normal, vIn[0].v) - offset;
 | 
			
		||||
	float32 distance1 = b2Dot(normal, vIn[1].v) - offset;
 | 
			
		||||
 | 
			
		||||
	// If the points are behind the plane
 | 
			
		||||
	if (distance0 <= 0.0f) vOut[numOut++] = vIn[0];
 | 
			
		||||
	if (distance1 <= 0.0f) vOut[numOut++] = vIn[1];
 | 
			
		||||
 | 
			
		||||
	// If the points are on different sides of the plane
 | 
			
		||||
	if (distance0 * distance1 < 0.0f)
 | 
			
		||||
	{
 | 
			
		||||
		// Find intersection point of edge and plane
 | 
			
		||||
		float32 interp = distance0 / (distance0 - distance1);
 | 
			
		||||
		vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
 | 
			
		||||
 | 
			
		||||
		// VertexA is hitting edgeB.
 | 
			
		||||
		vOut[numOut].id.cf.indexA = (uint8) vertexIndexA;
 | 
			
		||||
		vOut[numOut].id.cf.indexB = vIn[0].id.cf.indexB;
 | 
			
		||||
		vOut[numOut].id.cf.typeA = b2ContactFeature::e_vertex;
 | 
			
		||||
		vOut[numOut].id.cf.typeB = b2ContactFeature::e_face;
 | 
			
		||||
		++numOut;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return numOut;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool b2TestOverlap(	const b2Shape* shapeA, int32 indexA,
 | 
			
		||||
					const b2Shape* shapeB, int32 indexB,
 | 
			
		||||
					const b2Transform& xfA, const b2Transform& xfB)
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceInput input;
 | 
			
		||||
	input.proxyA.Set(shapeA, indexA);
 | 
			
		||||
	input.proxyB.Set(shapeB, indexB);
 | 
			
		||||
	input.transformA = xfA;
 | 
			
		||||
	input.transformB = xfB;
 | 
			
		||||
	input.useRadii = true;
 | 
			
		||||
 | 
			
		||||
	b2SimplexCache cache;
 | 
			
		||||
	cache.count = 0;
 | 
			
		||||
 | 
			
		||||
	b2DistanceOutput output;
 | 
			
		||||
 | 
			
		||||
	b2Distance(&output, &cache, &input);
 | 
			
		||||
 | 
			
		||||
	return output.distance < 10.0f * b2_epsilon;
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,275 +1,275 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_COLLISION_H
 | 
			
		||||
#define B2_COLLISION_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Math.h"
 | 
			
		||||
 | 
			
		||||
/// @file
 | 
			
		||||
/// Structures and functions used for computing contact points, distance
 | 
			
		||||
/// queries, and TOI queries.
 | 
			
		||||
 | 
			
		||||
class b2Shape;
 | 
			
		||||
class b2CircleShape;
 | 
			
		||||
class b2EdgeShape;
 | 
			
		||||
class b2PolygonShape;
 | 
			
		||||
 | 
			
		||||
const juce::uint8 b2_nullFeature = UCHAR_MAX;
 | 
			
		||||
 | 
			
		||||
/// The features that intersect to form the contact point
 | 
			
		||||
/// This must be 4 bytes or less.
 | 
			
		||||
struct b2ContactFeature
 | 
			
		||||
{
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_vertex = 0,
 | 
			
		||||
		e_face = 1
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	juce::uint8 indexA;		///< Feature index on shapeA
 | 
			
		||||
	juce::uint8 indexB;		///< Feature index on shapeB
 | 
			
		||||
	juce::uint8 typeA;		///< The feature type on shapeA
 | 
			
		||||
	juce::uint8 typeB;		///< The feature type on shapeB
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Contact ids to facilitate warm starting.
 | 
			
		||||
union b2ContactID
 | 
			
		||||
{
 | 
			
		||||
	b2ContactFeature cf;
 | 
			
		||||
	juce::uint32 key;					///< Used to quickly compare contact ids.
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A manifold point is a contact point belonging to a contact
 | 
			
		||||
/// manifold. It holds details related to the geometry and dynamics
 | 
			
		||||
/// of the contact points.
 | 
			
		||||
/// The local point usage depends on the manifold type:
 | 
			
		||||
/// -e_circles: the local center of circleB
 | 
			
		||||
/// -e_faceA: the local center of cirlceB or the clip point of polygonB
 | 
			
		||||
/// -e_faceB: the clip point of polygonA
 | 
			
		||||
/// This structure is stored across time steps, so we keep it small.
 | 
			
		||||
/// Note: the impulses are used for internal caching and may not
 | 
			
		||||
/// provide reliable contact forces, especially for high speed collisions.
 | 
			
		||||
struct b2ManifoldPoint
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 localPoint;		///< usage depends on manifold type
 | 
			
		||||
	float32 normalImpulse;	///< the non-penetration impulse
 | 
			
		||||
	float32 tangentImpulse;	///< the friction impulse
 | 
			
		||||
	b2ContactID id;			///< uniquely identifies a contact point between two shapes
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A manifold for two touching convex shapes.
 | 
			
		||||
/// Box2D supports multiple types of contact:
 | 
			
		||||
/// - clip point versus plane with radius
 | 
			
		||||
/// - point versus point with radius (circles)
 | 
			
		||||
/// The local point usage depends on the manifold type:
 | 
			
		||||
/// -e_circles: the local center of circleA
 | 
			
		||||
/// -e_faceA: the center of faceA
 | 
			
		||||
/// -e_faceB: the center of faceB
 | 
			
		||||
/// Similarly the local normal usage:
 | 
			
		||||
/// -e_circles: not used
 | 
			
		||||
/// -e_faceA: the normal on polygonA
 | 
			
		||||
/// -e_faceB: the normal on polygonB
 | 
			
		||||
/// We store contacts in this way so that position correction can
 | 
			
		||||
/// account for movement, which is critical for continuous physics.
 | 
			
		||||
/// All contact scenarios must be expressed in one of these types.
 | 
			
		||||
/// This structure is stored across time steps, so we keep it small.
 | 
			
		||||
struct b2Manifold
 | 
			
		||||
{
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_circles,
 | 
			
		||||
		e_faceA,
 | 
			
		||||
		e_faceB
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	b2ManifoldPoint points[b2_maxManifoldPoints];	///< the points of contact
 | 
			
		||||
	b2Vec2 localNormal;								///< not use for Type::e_points
 | 
			
		||||
	b2Vec2 localPoint;								///< usage depends on manifold type
 | 
			
		||||
	Type type;
 | 
			
		||||
	juce::int32 pointCount;								///< the number of manifold points
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// This is used to compute the current state of a contact manifold.
 | 
			
		||||
struct b2WorldManifold
 | 
			
		||||
{
 | 
			
		||||
	/// Evaluate the manifold with supplied transforms. This assumes
 | 
			
		||||
	/// modest motion from the original state. This does not change the
 | 
			
		||||
	/// point count, impulses, etc. The radii must come from the shapes
 | 
			
		||||
	/// that generated the manifold.
 | 
			
		||||
	void Initialize(const b2Manifold* manifold,
 | 
			
		||||
					const b2Transform& xfA, float32 radiusA,
 | 
			
		||||
					const b2Transform& xfB, float32 radiusB);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 normal;							///< world vector pointing from A to B
 | 
			
		||||
	b2Vec2 points[b2_maxManifoldPoints];	///< world contact point (point of intersection)
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// This is used for determining the state of contact points.
 | 
			
		||||
enum b2PointState
 | 
			
		||||
{
 | 
			
		||||
	b2_nullState,		///< point does not exist
 | 
			
		||||
	b2_addState,		///< point was added in the update
 | 
			
		||||
	b2_persistState,	///< point persisted across the update
 | 
			
		||||
	b2_removeState		///< point was removed in the update
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the point states given two manifolds. The states pertain to the transition from manifold1
 | 
			
		||||
/// to manifold2. So state1 is either persist or remove while state2 is either add or persist.
 | 
			
		||||
void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
 | 
			
		||||
					  const b2Manifold* manifold1, const b2Manifold* manifold2);
 | 
			
		||||
 | 
			
		||||
/// Used for computing contact manifolds.
 | 
			
		||||
struct b2ClipVertex
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 v;
 | 
			
		||||
	b2ContactID id;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
 | 
			
		||||
struct b2RayCastInput
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 p1, p2;
 | 
			
		||||
	float32 maxFraction;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2
 | 
			
		||||
/// come from b2RayCastInput.
 | 
			
		||||
struct b2RayCastOutput
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 normal;
 | 
			
		||||
	float32 fraction;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// An axis aligned bounding box.
 | 
			
		||||
struct b2AABB
 | 
			
		||||
{
 | 
			
		||||
	/// Verify that the bounds are sorted.
 | 
			
		||||
	bool IsValid() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the center of the AABB.
 | 
			
		||||
	b2Vec2 GetCenter() const
 | 
			
		||||
	{
 | 
			
		||||
		return 0.5f * (lowerBound + upperBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Get the extents of the AABB (half-widths).
 | 
			
		||||
	b2Vec2 GetExtents() const
 | 
			
		||||
	{
 | 
			
		||||
		return 0.5f * (upperBound - lowerBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Get the perimeter length
 | 
			
		||||
	float32 GetPerimeter() const
 | 
			
		||||
	{
 | 
			
		||||
		float32 wx = upperBound.x - lowerBound.x;
 | 
			
		||||
		float32 wy = upperBound.y - lowerBound.y;
 | 
			
		||||
		return 2.0f * (wx + wy);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Combine an AABB into this one.
 | 
			
		||||
	void Combine(const b2AABB& aabb)
 | 
			
		||||
	{
 | 
			
		||||
		lowerBound = b2Min(lowerBound, aabb.lowerBound);
 | 
			
		||||
		upperBound = b2Max(upperBound, aabb.upperBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Combine two AABBs into this one.
 | 
			
		||||
	void Combine(const b2AABB& aabb1, const b2AABB& aabb2)
 | 
			
		||||
	{
 | 
			
		||||
		lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound);
 | 
			
		||||
		upperBound = b2Max(aabb1.upperBound, aabb2.upperBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Does this aabb contain the provided AABB.
 | 
			
		||||
	bool Contains(const b2AABB& aabb) const
 | 
			
		||||
	{
 | 
			
		||||
		bool result = true;
 | 
			
		||||
		result = result && lowerBound.x <= aabb.lowerBound.x;
 | 
			
		||||
		result = result && lowerBound.y <= aabb.lowerBound.y;
 | 
			
		||||
		result = result && aabb.upperBound.x <= upperBound.x;
 | 
			
		||||
		result = result && aabb.upperBound.y <= upperBound.y;
 | 
			
		||||
		return result;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 lowerBound;	///< the lower vertex
 | 
			
		||||
	b2Vec2 upperBound;	///< the upper vertex
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between two circles.
 | 
			
		||||
void b2CollideCircles(b2Manifold* manifold,
 | 
			
		||||
					  const b2CircleShape* circleA, const b2Transform& xfA,
 | 
			
		||||
					  const b2CircleShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between a polygon and a circle.
 | 
			
		||||
void b2CollidePolygonAndCircle(b2Manifold* manifold,
 | 
			
		||||
							   const b2PolygonShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
							   const b2CircleShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between two polygons.
 | 
			
		||||
void b2CollidePolygons(b2Manifold* manifold,
 | 
			
		||||
					   const b2PolygonShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
					   const b2PolygonShape* polygonB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between an edge and a circle.
 | 
			
		||||
void b2CollideEdgeAndCircle(b2Manifold* manifold,
 | 
			
		||||
							   const b2EdgeShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
							   const b2CircleShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between an edge and a circle.
 | 
			
		||||
void b2CollideEdgeAndPolygon(b2Manifold* manifold,
 | 
			
		||||
							   const b2EdgeShape* edgeA, const b2Transform& xfA,
 | 
			
		||||
							   const b2PolygonShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Clipping for contact manifolds.
 | 
			
		||||
juce::int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
 | 
			
		||||
							    const b2Vec2& normal, float32 offset, juce::int32 vertexIndexA);
 | 
			
		||||
 | 
			
		||||
/// Determine if two generic shapes overlap.
 | 
			
		||||
bool b2TestOverlap(	const b2Shape* shapeA, juce::int32 indexA,
 | 
			
		||||
					const b2Shape* shapeB, juce::int32 indexB,
 | 
			
		||||
					const b2Transform& xfA, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
// ---------------- Inline Functions ------------------------------------------
 | 
			
		||||
 | 
			
		||||
inline bool b2AABB::IsValid() const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 d = upperBound - lowerBound;
 | 
			
		||||
	bool valid = d.x >= 0.0f && d.y >= 0.0f;
 | 
			
		||||
	valid = valid && lowerBound.IsValid() && upperBound.IsValid();
 | 
			
		||||
	return valid;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b)
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 d1, d2;
 | 
			
		||||
	d1 = b.lowerBound - a.upperBound;
 | 
			
		||||
	d2 = a.lowerBound - b.upperBound;
 | 
			
		||||
 | 
			
		||||
	if (d1.x > 0.0f || d1.y > 0.0f)
 | 
			
		||||
		return false;
 | 
			
		||||
 | 
			
		||||
	if (d2.x > 0.0f || d2.y > 0.0f)
 | 
			
		||||
		return false;
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_COLLISION_H
 | 
			
		||||
#define B2_COLLISION_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Math.h"
 | 
			
		||||
 | 
			
		||||
/// @file
 | 
			
		||||
/// Structures and functions used for computing contact points, distance
 | 
			
		||||
/// queries, and TOI queries.
 | 
			
		||||
 | 
			
		||||
class b2Shape;
 | 
			
		||||
class b2CircleShape;
 | 
			
		||||
class b2EdgeShape;
 | 
			
		||||
class b2PolygonShape;
 | 
			
		||||
 | 
			
		||||
const juce::uint8 b2_nullFeature = UCHAR_MAX;
 | 
			
		||||
 | 
			
		||||
/// The features that intersect to form the contact point
 | 
			
		||||
/// This must be 4 bytes or less.
 | 
			
		||||
struct b2ContactFeature
 | 
			
		||||
{
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_vertex = 0,
 | 
			
		||||
		e_face = 1
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	juce::uint8 indexA;		///< Feature index on shapeA
 | 
			
		||||
	juce::uint8 indexB;		///< Feature index on shapeB
 | 
			
		||||
	juce::uint8 typeA;		///< The feature type on shapeA
 | 
			
		||||
	juce::uint8 typeB;		///< The feature type on shapeB
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Contact ids to facilitate warm starting.
 | 
			
		||||
union b2ContactID
 | 
			
		||||
{
 | 
			
		||||
	b2ContactFeature cf;
 | 
			
		||||
	juce::uint32 key;					///< Used to quickly compare contact ids.
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A manifold point is a contact point belonging to a contact
 | 
			
		||||
/// manifold. It holds details related to the geometry and dynamics
 | 
			
		||||
/// of the contact points.
 | 
			
		||||
/// The local point usage depends on the manifold type:
 | 
			
		||||
/// -e_circles: the local center of circleB
 | 
			
		||||
/// -e_faceA: the local center of cirlceB or the clip point of polygonB
 | 
			
		||||
/// -e_faceB: the clip point of polygonA
 | 
			
		||||
/// This structure is stored across time steps, so we keep it small.
 | 
			
		||||
/// Note: the impulses are used for internal caching and may not
 | 
			
		||||
/// provide reliable contact forces, especially for high speed collisions.
 | 
			
		||||
struct b2ManifoldPoint
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 localPoint;		///< usage depends on manifold type
 | 
			
		||||
	float32 normalImpulse;	///< the non-penetration impulse
 | 
			
		||||
	float32 tangentImpulse;	///< the friction impulse
 | 
			
		||||
	b2ContactID id;			///< uniquely identifies a contact point between two shapes
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A manifold for two touching convex shapes.
 | 
			
		||||
/// Box2D supports multiple types of contact:
 | 
			
		||||
/// - clip point versus plane with radius
 | 
			
		||||
/// - point versus point with radius (circles)
 | 
			
		||||
/// The local point usage depends on the manifold type:
 | 
			
		||||
/// -e_circles: the local center of circleA
 | 
			
		||||
/// -e_faceA: the center of faceA
 | 
			
		||||
/// -e_faceB: the center of faceB
 | 
			
		||||
/// Similarly the local normal usage:
 | 
			
		||||
/// -e_circles: not used
 | 
			
		||||
/// -e_faceA: the normal on polygonA
 | 
			
		||||
/// -e_faceB: the normal on polygonB
 | 
			
		||||
/// We store contacts in this way so that position correction can
 | 
			
		||||
/// account for movement, which is critical for continuous physics.
 | 
			
		||||
/// All contact scenarios must be expressed in one of these types.
 | 
			
		||||
/// This structure is stored across time steps, so we keep it small.
 | 
			
		||||
struct b2Manifold
 | 
			
		||||
{
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_circles,
 | 
			
		||||
		e_faceA,
 | 
			
		||||
		e_faceB
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	b2ManifoldPoint points[b2_maxManifoldPoints];	///< the points of contact
 | 
			
		||||
	b2Vec2 localNormal;								///< not use for Type::e_points
 | 
			
		||||
	b2Vec2 localPoint;								///< usage depends on manifold type
 | 
			
		||||
	Type type;
 | 
			
		||||
	juce::int32 pointCount;								///< the number of manifold points
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// This is used to compute the current state of a contact manifold.
 | 
			
		||||
struct b2WorldManifold
 | 
			
		||||
{
 | 
			
		||||
	/// Evaluate the manifold with supplied transforms. This assumes
 | 
			
		||||
	/// modest motion from the original state. This does not change the
 | 
			
		||||
	/// point count, impulses, etc. The radii must come from the shapes
 | 
			
		||||
	/// that generated the manifold.
 | 
			
		||||
	void Initialize(const b2Manifold* manifold,
 | 
			
		||||
					const b2Transform& xfA, float32 radiusA,
 | 
			
		||||
					const b2Transform& xfB, float32 radiusB);
 | 
			
		||||
 | 
			
		||||
	b2Vec2 normal;							///< world vector pointing from A to B
 | 
			
		||||
	b2Vec2 points[b2_maxManifoldPoints];	///< world contact point (point of intersection)
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// This is used for determining the state of contact points.
 | 
			
		||||
enum b2PointState
 | 
			
		||||
{
 | 
			
		||||
	b2_nullState,		///< point does not exist
 | 
			
		||||
	b2_addState,		///< point was added in the update
 | 
			
		||||
	b2_persistState,	///< point persisted across the update
 | 
			
		||||
	b2_removeState		///< point was removed in the update
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the point states given two manifolds. The states pertain to the transition from manifold1
 | 
			
		||||
/// to manifold2. So state1 is either persist or remove while state2 is either add or persist.
 | 
			
		||||
void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
 | 
			
		||||
					  const b2Manifold* manifold1, const b2Manifold* manifold2);
 | 
			
		||||
 | 
			
		||||
/// Used for computing contact manifolds.
 | 
			
		||||
struct b2ClipVertex
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 v;
 | 
			
		||||
	b2ContactID id;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
 | 
			
		||||
struct b2RayCastInput
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 p1, p2;
 | 
			
		||||
	float32 maxFraction;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2
 | 
			
		||||
/// come from b2RayCastInput.
 | 
			
		||||
struct b2RayCastOutput
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 normal;
 | 
			
		||||
	float32 fraction;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// An axis aligned bounding box.
 | 
			
		||||
struct b2AABB
 | 
			
		||||
{
 | 
			
		||||
	/// Verify that the bounds are sorted.
 | 
			
		||||
	bool IsValid() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the center of the AABB.
 | 
			
		||||
	b2Vec2 GetCenter() const
 | 
			
		||||
	{
 | 
			
		||||
		return 0.5f * (lowerBound + upperBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Get the extents of the AABB (half-widths).
 | 
			
		||||
	b2Vec2 GetExtents() const
 | 
			
		||||
	{
 | 
			
		||||
		return 0.5f * (upperBound - lowerBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Get the perimeter length
 | 
			
		||||
	float32 GetPerimeter() const
 | 
			
		||||
	{
 | 
			
		||||
		float32 wx = upperBound.x - lowerBound.x;
 | 
			
		||||
		float32 wy = upperBound.y - lowerBound.y;
 | 
			
		||||
		return 2.0f * (wx + wy);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Combine an AABB into this one.
 | 
			
		||||
	void Combine(const b2AABB& aabb)
 | 
			
		||||
	{
 | 
			
		||||
		lowerBound = b2Min(lowerBound, aabb.lowerBound);
 | 
			
		||||
		upperBound = b2Max(upperBound, aabb.upperBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Combine two AABBs into this one.
 | 
			
		||||
	void Combine(const b2AABB& aabb1, const b2AABB& aabb2)
 | 
			
		||||
	{
 | 
			
		||||
		lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound);
 | 
			
		||||
		upperBound = b2Max(aabb1.upperBound, aabb2.upperBound);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Does this aabb contain the provided AABB.
 | 
			
		||||
	bool Contains(const b2AABB& aabb) const
 | 
			
		||||
	{
 | 
			
		||||
		bool result = true;
 | 
			
		||||
		result = result && lowerBound.x <= aabb.lowerBound.x;
 | 
			
		||||
		result = result && lowerBound.y <= aabb.lowerBound.y;
 | 
			
		||||
		result = result && aabb.upperBound.x <= upperBound.x;
 | 
			
		||||
		result = result && aabb.upperBound.y <= upperBound.y;
 | 
			
		||||
		return result;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 lowerBound;	///< the lower vertex
 | 
			
		||||
	b2Vec2 upperBound;	///< the upper vertex
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between two circles.
 | 
			
		||||
void b2CollideCircles(b2Manifold* manifold,
 | 
			
		||||
					  const b2CircleShape* circleA, const b2Transform& xfA,
 | 
			
		||||
					  const b2CircleShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between a polygon and a circle.
 | 
			
		||||
void b2CollidePolygonAndCircle(b2Manifold* manifold,
 | 
			
		||||
							   const b2PolygonShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
							   const b2CircleShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between two polygons.
 | 
			
		||||
void b2CollidePolygons(b2Manifold* manifold,
 | 
			
		||||
					   const b2PolygonShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
					   const b2PolygonShape* polygonB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between an edge and a circle.
 | 
			
		||||
void b2CollideEdgeAndCircle(b2Manifold* manifold,
 | 
			
		||||
							   const b2EdgeShape* polygonA, const b2Transform& xfA,
 | 
			
		||||
							   const b2CircleShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Compute the collision manifold between an edge and a circle.
 | 
			
		||||
void b2CollideEdgeAndPolygon(b2Manifold* manifold,
 | 
			
		||||
							   const b2EdgeShape* edgeA, const b2Transform& xfA,
 | 
			
		||||
							   const b2PolygonShape* circleB, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
/// Clipping for contact manifolds.
 | 
			
		||||
juce::int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
 | 
			
		||||
							    const b2Vec2& normal, float32 offset, juce::int32 vertexIndexA);
 | 
			
		||||
 | 
			
		||||
/// Determine if two generic shapes overlap.
 | 
			
		||||
bool b2TestOverlap(	const b2Shape* shapeA, juce::int32 indexA,
 | 
			
		||||
					const b2Shape* shapeB, juce::int32 indexB,
 | 
			
		||||
					const b2Transform& xfA, const b2Transform& xfB);
 | 
			
		||||
 | 
			
		||||
// ---------------- Inline Functions ------------------------------------------
 | 
			
		||||
 | 
			
		||||
inline bool b2AABB::IsValid() const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 d = upperBound - lowerBound;
 | 
			
		||||
	bool valid = d.x >= 0.0f && d.y >= 0.0f;
 | 
			
		||||
	valid = valid && lowerBound.IsValid() && upperBound.IsValid();
 | 
			
		||||
	return valid;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b)
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 d1, d2;
 | 
			
		||||
	d1 = b.lowerBound - a.upperBound;
 | 
			
		||||
	d2 = a.lowerBound - b.upperBound;
 | 
			
		||||
 | 
			
		||||
	if (d1.x > 0.0f || d1.y > 0.0f)
 | 
			
		||||
		return false;
 | 
			
		||||
 | 
			
		||||
	if (d2.x > 0.0f || d2.y > 0.0f)
 | 
			
		||||
		return false;
 | 
			
		||||
 | 
			
		||||
	return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,141 +1,141 @@
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_DISTANCE_H
 | 
			
		||||
#define B2_DISTANCE_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Math.h"
 | 
			
		||||
 | 
			
		||||
class b2Shape;
 | 
			
		||||
 | 
			
		||||
/// A distance proxy is used by the GJK algorithm.
 | 
			
		||||
/// It encapsulates any shape.
 | 
			
		||||
struct b2DistanceProxy
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceProxy() : m_vertices(NULL), m_count(0), m_radius(0.0f) {}
 | 
			
		||||
 | 
			
		||||
	/// Initialize the proxy using the given shape. The shape
 | 
			
		||||
	/// must remain in scope while the proxy is in use.
 | 
			
		||||
	void Set(const b2Shape* shape, juce::int32 index);
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex index in the given direction.
 | 
			
		||||
	juce::int32 GetSupport(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex in the given direction.
 | 
			
		||||
	const b2Vec2& GetSupportVertex(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the vertex count.
 | 
			
		||||
	juce::int32 GetVertexCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Get a vertex by index. Used by b2Distance.
 | 
			
		||||
	const b2Vec2& GetVertex(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 m_buffer[2];
 | 
			
		||||
	const b2Vec2* m_vertices;
 | 
			
		||||
	juce::int32 m_count;
 | 
			
		||||
	float32 m_radius;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Used to warm start b2Distance.
 | 
			
		||||
/// Set count to zero on first call.
 | 
			
		||||
struct b2SimplexCache
 | 
			
		||||
{
 | 
			
		||||
	float32 metric;		///< length or area
 | 
			
		||||
	juce::uint16 count;
 | 
			
		||||
	juce::uint8 indexA[3];	///< vertices on shape A
 | 
			
		||||
	juce::uint8 indexB[3];	///< vertices on shape B
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Input for b2Distance.
 | 
			
		||||
/// You have to option to use the shape radii
 | 
			
		||||
/// in the computation. Even
 | 
			
		||||
struct b2DistanceInput
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceProxy proxyA;
 | 
			
		||||
	b2DistanceProxy proxyB;
 | 
			
		||||
	b2Transform transformA;
 | 
			
		||||
	b2Transform transformB;
 | 
			
		||||
	bool useRadii;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Output for b2Distance.
 | 
			
		||||
struct b2DistanceOutput
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 pointA;		///< closest point on shapeA
 | 
			
		||||
	b2Vec2 pointB;		///< closest point on shapeB
 | 
			
		||||
	float32 distance;
 | 
			
		||||
	juce::int32 iterations;	///< number of GJK iterations used
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the closest points between two shapes. Supports any combination of:
 | 
			
		||||
/// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
 | 
			
		||||
/// On the first call set b2SimplexCache.count to zero.
 | 
			
		||||
void b2Distance(b2DistanceOutput* output,
 | 
			
		||||
				b2SimplexCache* cache,
 | 
			
		||||
				const b2DistanceInput* input);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2DistanceProxy::GetVertexCount() const
 | 
			
		||||
{
 | 
			
		||||
	return m_count;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2DistanceProxy::GetVertex(juce::int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= index && index < m_count);
 | 
			
		||||
	return m_vertices[index];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const
 | 
			
		||||
{
 | 
			
		||||
	juce::int32 bestIndex = 0;
 | 
			
		||||
	float32 bestValue = b2Dot(m_vertices[0], d);
 | 
			
		||||
	for (juce::int32 i = 1; i < m_count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 value = b2Dot(m_vertices[i], d);
 | 
			
		||||
		if (value > bestValue)
 | 
			
		||||
		{
 | 
			
		||||
			bestIndex = i;
 | 
			
		||||
			bestValue = value;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return bestIndex;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const
 | 
			
		||||
{
 | 
			
		||||
	juce::int32 bestIndex = 0;
 | 
			
		||||
	float32 bestValue = b2Dot(m_vertices[0], d);
 | 
			
		||||
	for (juce::int32 i = 1; i < m_count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 value = b2Dot(m_vertices[i], d);
 | 
			
		||||
		if (value > bestValue)
 | 
			
		||||
		{
 | 
			
		||||
			bestIndex = i;
 | 
			
		||||
			bestValue = value;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return m_vertices[bestIndex];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_DISTANCE_H
 | 
			
		||||
#define B2_DISTANCE_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Math.h"
 | 
			
		||||
 | 
			
		||||
class b2Shape;
 | 
			
		||||
 | 
			
		||||
/// A distance proxy is used by the GJK algorithm.
 | 
			
		||||
/// It encapsulates any shape.
 | 
			
		||||
struct b2DistanceProxy
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceProxy() : m_vertices(NULL), m_count(0), m_radius(0.0f) {}
 | 
			
		||||
 | 
			
		||||
	/// Initialize the proxy using the given shape. The shape
 | 
			
		||||
	/// must remain in scope while the proxy is in use.
 | 
			
		||||
	void Set(const b2Shape* shape, juce::int32 index);
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex index in the given direction.
 | 
			
		||||
	juce::int32 GetSupport(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the supporting vertex in the given direction.
 | 
			
		||||
	const b2Vec2& GetSupportVertex(const b2Vec2& d) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the vertex count.
 | 
			
		||||
	juce::int32 GetVertexCount() const;
 | 
			
		||||
 | 
			
		||||
	/// Get a vertex by index. Used by b2Distance.
 | 
			
		||||
	const b2Vec2& GetVertex(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	b2Vec2 m_buffer[2];
 | 
			
		||||
	const b2Vec2* m_vertices;
 | 
			
		||||
	juce::int32 m_count;
 | 
			
		||||
	float32 m_radius;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Used to warm start b2Distance.
 | 
			
		||||
/// Set count to zero on first call.
 | 
			
		||||
struct b2SimplexCache
 | 
			
		||||
{
 | 
			
		||||
	float32 metric;		///< length or area
 | 
			
		||||
	juce::uint16 count;
 | 
			
		||||
	juce::uint8 indexA[3];	///< vertices on shape A
 | 
			
		||||
	juce::uint8 indexB[3];	///< vertices on shape B
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Input for b2Distance.
 | 
			
		||||
/// You have to option to use the shape radii
 | 
			
		||||
/// in the computation. Even
 | 
			
		||||
struct b2DistanceInput
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceProxy proxyA;
 | 
			
		||||
	b2DistanceProxy proxyB;
 | 
			
		||||
	b2Transform transformA;
 | 
			
		||||
	b2Transform transformB;
 | 
			
		||||
	bool useRadii;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Output for b2Distance.
 | 
			
		||||
struct b2DistanceOutput
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 pointA;		///< closest point on shapeA
 | 
			
		||||
	b2Vec2 pointB;		///< closest point on shapeB
 | 
			
		||||
	float32 distance;
 | 
			
		||||
	juce::int32 iterations;	///< number of GJK iterations used
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the closest points between two shapes. Supports any combination of:
 | 
			
		||||
/// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
 | 
			
		||||
/// On the first call set b2SimplexCache.count to zero.
 | 
			
		||||
void b2Distance(b2DistanceOutput* output,
 | 
			
		||||
				b2SimplexCache* cache,
 | 
			
		||||
				const b2DistanceInput* input);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
//////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2DistanceProxy::GetVertexCount() const
 | 
			
		||||
{
 | 
			
		||||
	return m_count;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2DistanceProxy::GetVertex(juce::int32 index) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= index && index < m_count);
 | 
			
		||||
	return m_vertices[index];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline juce::int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const
 | 
			
		||||
{
 | 
			
		||||
	juce::int32 bestIndex = 0;
 | 
			
		||||
	float32 bestValue = b2Dot(m_vertices[0], d);
 | 
			
		||||
	for (juce::int32 i = 1; i < m_count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 value = b2Dot(m_vertices[i], d);
 | 
			
		||||
		if (value > bestValue)
 | 
			
		||||
		{
 | 
			
		||||
			bestIndex = i;
 | 
			
		||||
			bestValue = value;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return bestIndex;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const
 | 
			
		||||
{
 | 
			
		||||
	juce::int32 bestIndex = 0;
 | 
			
		||||
	float32 bestValue = b2Dot(m_vertices[0], d);
 | 
			
		||||
	for (juce::int32 i = 1; i < m_count; ++i)
 | 
			
		||||
	{
 | 
			
		||||
		float32 value = b2Dot(m_vertices[i], d);
 | 
			
		||||
		if (value > bestValue)
 | 
			
		||||
		{
 | 
			
		||||
			bestIndex = i;
 | 
			
		||||
			bestValue = value;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return m_vertices[bestIndex];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							@@ -1,284 +1,284 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_DYNAMIC_TREE_H
 | 
			
		||||
#define B2_DYNAMIC_TREE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "../Common/b2GrowableStack.h"
 | 
			
		||||
 | 
			
		||||
#define b2_nullNode (-1)
 | 
			
		||||
 | 
			
		||||
/// A node in the dynamic tree. The client does not interact with this directly.
 | 
			
		||||
struct b2TreeNode
 | 
			
		||||
{
 | 
			
		||||
	bool IsLeaf() const
 | 
			
		||||
	{
 | 
			
		||||
		return child1 == b2_nullNode;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Enlarged AABB
 | 
			
		||||
	b2AABB aabb;
 | 
			
		||||
 | 
			
		||||
	void* userData;
 | 
			
		||||
 | 
			
		||||
	union
 | 
			
		||||
	{
 | 
			
		||||
		juce::int32 parent;
 | 
			
		||||
		juce::int32 next;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	juce::int32 child1;
 | 
			
		||||
	juce::int32 child2;
 | 
			
		||||
 | 
			
		||||
	// leaf = 0, free node = -1
 | 
			
		||||
	juce::int32 height;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt.
 | 
			
		||||
/// A dynamic tree arranges data in a binary tree to accelerate
 | 
			
		||||
/// queries such as volume queries and ray casts. Leafs are proxies
 | 
			
		||||
/// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor
 | 
			
		||||
/// so that the proxy AABB is bigger than the client object. This allows the client
 | 
			
		||||
/// object to move by small amounts without triggering a tree update.
 | 
			
		||||
///
 | 
			
		||||
/// Nodes are pooled and relocatable, so we use node indices rather than pointers.
 | 
			
		||||
class b2DynamicTree
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	/// Constructing the tree initializes the node pool.
 | 
			
		||||
	b2DynamicTree();
 | 
			
		||||
 | 
			
		||||
	/// Destroy the tree, freeing the node pool.
 | 
			
		||||
	~b2DynamicTree();
 | 
			
		||||
 | 
			
		||||
	/// Create a proxy. Provide a tight fitting AABB and a userData pointer.
 | 
			
		||||
	juce::int32 CreateProxy(const b2AABB& aabb, void* userData);
 | 
			
		||||
 | 
			
		||||
	/// Destroy a proxy. This asserts if the id is invalid.
 | 
			
		||||
	void DestroyProxy(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	/// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB,
 | 
			
		||||
	/// then the proxy is removed from the tree and re-inserted. Otherwise
 | 
			
		||||
	/// the function returns immediately.
 | 
			
		||||
	/// @return true if the proxy was re-inserted.
 | 
			
		||||
	bool MoveProxy(juce::int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement);
 | 
			
		||||
 | 
			
		||||
	/// Get proxy user data.
 | 
			
		||||
	/// @return the proxy user data or 0 if the id is invalid.
 | 
			
		||||
	void* GetUserData(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the fat AABB for a proxy.
 | 
			
		||||
	const b2AABB& GetFatAABB(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Query an AABB for overlapping proxies. The callback class
 | 
			
		||||
	/// is called for each proxy that overlaps the supplied AABB.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void Query(T* callback, const b2AABB& aabb) const;
 | 
			
		||||
 | 
			
		||||
	/// Ray-cast against the proxies in the tree. This relies on the callback
 | 
			
		||||
	/// to perform a exact ray-cast in the case were the proxy contains a shape.
 | 
			
		||||
	/// The callback also performs the any collision filtering. This has performance
 | 
			
		||||
	/// roughly equal to k * log(n), where k is the number of collisions and n is the
 | 
			
		||||
	/// number of proxies in the tree.
 | 
			
		||||
	/// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
 | 
			
		||||
	/// @param callback a callback class that is called for each proxy that is hit by the ray.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void RayCast(T* callback, const b2RayCastInput& input) const;
 | 
			
		||||
 | 
			
		||||
	/// Validate this tree. For testing.
 | 
			
		||||
	void Validate() const;
 | 
			
		||||
 | 
			
		||||
	/// Compute the height of the binary tree in O(N) time. Should not be
 | 
			
		||||
	/// called often.
 | 
			
		||||
	juce::int32 GetHeight() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the maximum balance of an node in the tree. The balance is the difference
 | 
			
		||||
	/// in height of the two children of a node.
 | 
			
		||||
	juce::int32 GetMaxBalance() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the ratio of the sum of the node areas to the root area.
 | 
			
		||||
	float32 GetAreaRatio() const;
 | 
			
		||||
 | 
			
		||||
	/// Build an optimal tree. Very expensive. For testing.
 | 
			
		||||
	void RebuildBottomUp();
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
	juce::int32 AllocateNode();
 | 
			
		||||
	void FreeNode(juce::int32 node);
 | 
			
		||||
 | 
			
		||||
	void InsertLeaf(juce::int32 node);
 | 
			
		||||
	void RemoveLeaf(juce::int32 node);
 | 
			
		||||
 | 
			
		||||
	juce::int32 Balance(juce::int32 index);
 | 
			
		||||
 | 
			
		||||
	juce::int32 ComputeHeight() const;
 | 
			
		||||
	juce::int32 ComputeHeight(juce::int32 nodeId) const;
 | 
			
		||||
 | 
			
		||||
	void ValidateStructure(juce::int32 index) const;
 | 
			
		||||
	void ValidateMetrics(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_root;
 | 
			
		||||
 | 
			
		||||
	b2TreeNode* m_nodes;
 | 
			
		||||
	juce::int32 m_nodeCount;
 | 
			
		||||
	juce::int32 m_nodeCapacity;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_freeList;
 | 
			
		||||
 | 
			
		||||
	/// This is used to incrementally traverse the tree for re-balancing.
 | 
			
		||||
	juce::uint32 m_path;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_insertionCount;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline void* b2DynamicTree::GetUserData(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
 | 
			
		||||
	return m_nodes[proxyId].userData;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2AABB& b2DynamicTree::GetFatAABB(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
 | 
			
		||||
	return m_nodes[proxyId].aabb;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const
 | 
			
		||||
{
 | 
			
		||||
	b2GrowableStack<juce::int32, 256> stack;
 | 
			
		||||
	stack.Push(m_root);
 | 
			
		||||
 | 
			
		||||
	while (stack.GetCount() > 0)
 | 
			
		||||
	{
 | 
			
		||||
		juce::int32 nodeId = stack.Pop();
 | 
			
		||||
		if (nodeId == b2_nullNode)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const b2TreeNode* node = m_nodes + nodeId;
 | 
			
		||||
 | 
			
		||||
		if (b2TestOverlap(node->aabb, aabb))
 | 
			
		||||
		{
 | 
			
		||||
			if (node->IsLeaf())
 | 
			
		||||
			{
 | 
			
		||||
				bool proceed = callback->QueryCallback(nodeId);
 | 
			
		||||
				if (proceed == false)
 | 
			
		||||
				{
 | 
			
		||||
					return;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
			else
 | 
			
		||||
			{
 | 
			
		||||
				stack.Push(node->child1);
 | 
			
		||||
				stack.Push(node->child2);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 p1 = input.p1;
 | 
			
		||||
	b2Vec2 p2 = input.p2;
 | 
			
		||||
	b2Vec2 r = p2 - p1;
 | 
			
		||||
	b2Assert(r.LengthSquared() > 0.0f);
 | 
			
		||||
	r.Normalize();
 | 
			
		||||
 | 
			
		||||
	// v is perpendicular to the segment.
 | 
			
		||||
	b2Vec2 v = b2Cross(1.0f, r);
 | 
			
		||||
	b2Vec2 abs_v = b2Abs(v);
 | 
			
		||||
 | 
			
		||||
	// Separating axis for segment (Gino, p80).
 | 
			
		||||
	// |dot(v, p1 - c)| > dot(|v|, h)
 | 
			
		||||
 | 
			
		||||
	float32 maxFraction = input.maxFraction;
 | 
			
		||||
 | 
			
		||||
	// Build a bounding box for the segment.
 | 
			
		||||
	b2AABB segmentAABB;
 | 
			
		||||
	{
 | 
			
		||||
		b2Vec2 t = p1 + maxFraction * (p2 - p1);
 | 
			
		||||
		segmentAABB.lowerBound = b2Min(p1, t);
 | 
			
		||||
		segmentAABB.upperBound = b2Max(p1, t);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2GrowableStack<juce::int32, 256> stack;
 | 
			
		||||
	stack.Push(m_root);
 | 
			
		||||
 | 
			
		||||
	while (stack.GetCount() > 0)
 | 
			
		||||
	{
 | 
			
		||||
		juce::int32 nodeId = stack.Pop();
 | 
			
		||||
		if (nodeId == b2_nullNode)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const b2TreeNode* node = m_nodes + nodeId;
 | 
			
		||||
 | 
			
		||||
		if (b2TestOverlap(node->aabb, segmentAABB) == false)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// Separating axis for segment (Gino, p80).
 | 
			
		||||
		// |dot(v, p1 - c)| > dot(|v|, h)
 | 
			
		||||
		b2Vec2 c = node->aabb.GetCenter();
 | 
			
		||||
		b2Vec2 h = node->aabb.GetExtents();
 | 
			
		||||
		float32 separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h);
 | 
			
		||||
		if (separation > 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (node->IsLeaf())
 | 
			
		||||
		{
 | 
			
		||||
			b2RayCastInput subInput;
 | 
			
		||||
			subInput.p1 = input.p1;
 | 
			
		||||
			subInput.p2 = input.p2;
 | 
			
		||||
			subInput.maxFraction = maxFraction;
 | 
			
		||||
 | 
			
		||||
			float32 value = callback->RayCastCallback(subInput, nodeId);
 | 
			
		||||
 | 
			
		||||
			if (value == 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				// The client has terminated the ray cast.
 | 
			
		||||
				return;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (value > 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				// Update segment bounding box.
 | 
			
		||||
				maxFraction = value;
 | 
			
		||||
				b2Vec2 t = p1 + maxFraction * (p2 - p1);
 | 
			
		||||
				segmentAABB.lowerBound = b2Min(p1, t);
 | 
			
		||||
				segmentAABB.upperBound = b2Max(p1, t);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			stack.Push(node->child1);
 | 
			
		||||
			stack.Push(node->child2);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_DYNAMIC_TREE_H
 | 
			
		||||
#define B2_DYNAMIC_TREE_H
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "../Common/b2GrowableStack.h"
 | 
			
		||||
 | 
			
		||||
#define b2_nullNode (-1)
 | 
			
		||||
 | 
			
		||||
/// A node in the dynamic tree. The client does not interact with this directly.
 | 
			
		||||
struct b2TreeNode
 | 
			
		||||
{
 | 
			
		||||
	bool IsLeaf() const
 | 
			
		||||
	{
 | 
			
		||||
		return child1 == b2_nullNode;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/// Enlarged AABB
 | 
			
		||||
	b2AABB aabb;
 | 
			
		||||
 | 
			
		||||
	void* userData;
 | 
			
		||||
 | 
			
		||||
	union
 | 
			
		||||
	{
 | 
			
		||||
		juce::int32 parent;
 | 
			
		||||
		juce::int32 next;
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	juce::int32 child1;
 | 
			
		||||
	juce::int32 child2;
 | 
			
		||||
 | 
			
		||||
	// leaf = 0, free node = -1
 | 
			
		||||
	juce::int32 height;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// A dynamic AABB tree broad-phase, inspired by Nathanael Presson's btDbvt.
 | 
			
		||||
/// A dynamic tree arranges data in a binary tree to accelerate
 | 
			
		||||
/// queries such as volume queries and ray casts. Leafs are proxies
 | 
			
		||||
/// with an AABB. In the tree we expand the proxy AABB by b2_fatAABBFactor
 | 
			
		||||
/// so that the proxy AABB is bigger than the client object. This allows the client
 | 
			
		||||
/// object to move by small amounts without triggering a tree update.
 | 
			
		||||
///
 | 
			
		||||
/// Nodes are pooled and relocatable, so we use node indices rather than pointers.
 | 
			
		||||
class b2DynamicTree
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
	/// Constructing the tree initializes the node pool.
 | 
			
		||||
	b2DynamicTree();
 | 
			
		||||
 | 
			
		||||
	/// Destroy the tree, freeing the node pool.
 | 
			
		||||
	~b2DynamicTree();
 | 
			
		||||
 | 
			
		||||
	/// Create a proxy. Provide a tight fitting AABB and a userData pointer.
 | 
			
		||||
	juce::int32 CreateProxy(const b2AABB& aabb, void* userData);
 | 
			
		||||
 | 
			
		||||
	/// Destroy a proxy. This asserts if the id is invalid.
 | 
			
		||||
	void DestroyProxy(juce::int32 proxyId);
 | 
			
		||||
 | 
			
		||||
	/// Move a proxy with a swepted AABB. If the proxy has moved outside of its fattened AABB,
 | 
			
		||||
	/// then the proxy is removed from the tree and re-inserted. Otherwise
 | 
			
		||||
	/// the function returns immediately.
 | 
			
		||||
	/// @return true if the proxy was re-inserted.
 | 
			
		||||
	bool MoveProxy(juce::int32 proxyId, const b2AABB& aabb1, const b2Vec2& displacement);
 | 
			
		||||
 | 
			
		||||
	/// Get proxy user data.
 | 
			
		||||
	/// @return the proxy user data or 0 if the id is invalid.
 | 
			
		||||
	void* GetUserData(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Get the fat AABB for a proxy.
 | 
			
		||||
	const b2AABB& GetFatAABB(juce::int32 proxyId) const;
 | 
			
		||||
 | 
			
		||||
	/// Query an AABB for overlapping proxies. The callback class
 | 
			
		||||
	/// is called for each proxy that overlaps the supplied AABB.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void Query(T* callback, const b2AABB& aabb) const;
 | 
			
		||||
 | 
			
		||||
	/// Ray-cast against the proxies in the tree. This relies on the callback
 | 
			
		||||
	/// to perform a exact ray-cast in the case were the proxy contains a shape.
 | 
			
		||||
	/// The callback also performs the any collision filtering. This has performance
 | 
			
		||||
	/// roughly equal to k * log(n), where k is the number of collisions and n is the
 | 
			
		||||
	/// number of proxies in the tree.
 | 
			
		||||
	/// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
 | 
			
		||||
	/// @param callback a callback class that is called for each proxy that is hit by the ray.
 | 
			
		||||
	template <typename T>
 | 
			
		||||
	void RayCast(T* callback, const b2RayCastInput& input) const;
 | 
			
		||||
 | 
			
		||||
	/// Validate this tree. For testing.
 | 
			
		||||
	void Validate() const;
 | 
			
		||||
 | 
			
		||||
	/// Compute the height of the binary tree in O(N) time. Should not be
 | 
			
		||||
	/// called often.
 | 
			
		||||
	juce::int32 GetHeight() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the maximum balance of an node in the tree. The balance is the difference
 | 
			
		||||
	/// in height of the two children of a node.
 | 
			
		||||
	juce::int32 GetMaxBalance() const;
 | 
			
		||||
 | 
			
		||||
	/// Get the ratio of the sum of the node areas to the root area.
 | 
			
		||||
	float32 GetAreaRatio() const;
 | 
			
		||||
 | 
			
		||||
	/// Build an optimal tree. Very expensive. For testing.
 | 
			
		||||
	void RebuildBottomUp();
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
 | 
			
		||||
	juce::int32 AllocateNode();
 | 
			
		||||
	void FreeNode(juce::int32 node);
 | 
			
		||||
 | 
			
		||||
	void InsertLeaf(juce::int32 node);
 | 
			
		||||
	void RemoveLeaf(juce::int32 node);
 | 
			
		||||
 | 
			
		||||
	juce::int32 Balance(juce::int32 index);
 | 
			
		||||
 | 
			
		||||
	juce::int32 ComputeHeight() const;
 | 
			
		||||
	juce::int32 ComputeHeight(juce::int32 nodeId) const;
 | 
			
		||||
 | 
			
		||||
	void ValidateStructure(juce::int32 index) const;
 | 
			
		||||
	void ValidateMetrics(juce::int32 index) const;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_root;
 | 
			
		||||
 | 
			
		||||
	b2TreeNode* m_nodes;
 | 
			
		||||
	juce::int32 m_nodeCount;
 | 
			
		||||
	juce::int32 m_nodeCapacity;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_freeList;
 | 
			
		||||
 | 
			
		||||
	/// This is used to incrementally traverse the tree for re-balancing.
 | 
			
		||||
	juce::uint32 m_path;
 | 
			
		||||
 | 
			
		||||
	juce::int32 m_insertionCount;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
inline void* b2DynamicTree::GetUserData(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
 | 
			
		||||
	return m_nodes[proxyId].userData;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
inline const b2AABB& b2DynamicTree::GetFatAABB(juce::int32 proxyId) const
 | 
			
		||||
{
 | 
			
		||||
	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity);
 | 
			
		||||
	return m_nodes[proxyId].aabb;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2DynamicTree::Query(T* callback, const b2AABB& aabb) const
 | 
			
		||||
{
 | 
			
		||||
	b2GrowableStack<juce::int32, 256> stack;
 | 
			
		||||
	stack.Push(m_root);
 | 
			
		||||
 | 
			
		||||
	while (stack.GetCount() > 0)
 | 
			
		||||
	{
 | 
			
		||||
		juce::int32 nodeId = stack.Pop();
 | 
			
		||||
		if (nodeId == b2_nullNode)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const b2TreeNode* node = m_nodes + nodeId;
 | 
			
		||||
 | 
			
		||||
		if (b2TestOverlap(node->aabb, aabb))
 | 
			
		||||
		{
 | 
			
		||||
			if (node->IsLeaf())
 | 
			
		||||
			{
 | 
			
		||||
				bool proceed = callback->QueryCallback(nodeId);
 | 
			
		||||
				if (proceed == false)
 | 
			
		||||
				{
 | 
			
		||||
					return;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
			else
 | 
			
		||||
			{
 | 
			
		||||
				stack.Push(node->child1);
 | 
			
		||||
				stack.Push(node->child2);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename T>
 | 
			
		||||
inline void b2DynamicTree::RayCast(T* callback, const b2RayCastInput& input) const
 | 
			
		||||
{
 | 
			
		||||
	b2Vec2 p1 = input.p1;
 | 
			
		||||
	b2Vec2 p2 = input.p2;
 | 
			
		||||
	b2Vec2 r = p2 - p1;
 | 
			
		||||
	b2Assert(r.LengthSquared() > 0.0f);
 | 
			
		||||
	r.Normalize();
 | 
			
		||||
 | 
			
		||||
	// v is perpendicular to the segment.
 | 
			
		||||
	b2Vec2 v = b2Cross(1.0f, r);
 | 
			
		||||
	b2Vec2 abs_v = b2Abs(v);
 | 
			
		||||
 | 
			
		||||
	// Separating axis for segment (Gino, p80).
 | 
			
		||||
	// |dot(v, p1 - c)| > dot(|v|, h)
 | 
			
		||||
 | 
			
		||||
	float32 maxFraction = input.maxFraction;
 | 
			
		||||
 | 
			
		||||
	// Build a bounding box for the segment.
 | 
			
		||||
	b2AABB segmentAABB;
 | 
			
		||||
	{
 | 
			
		||||
		b2Vec2 t = p1 + maxFraction * (p2 - p1);
 | 
			
		||||
		segmentAABB.lowerBound = b2Min(p1, t);
 | 
			
		||||
		segmentAABB.upperBound = b2Max(p1, t);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2GrowableStack<juce::int32, 256> stack;
 | 
			
		||||
	stack.Push(m_root);
 | 
			
		||||
 | 
			
		||||
	while (stack.GetCount() > 0)
 | 
			
		||||
	{
 | 
			
		||||
		juce::int32 nodeId = stack.Pop();
 | 
			
		||||
		if (nodeId == b2_nullNode)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		const b2TreeNode* node = m_nodes + nodeId;
 | 
			
		||||
 | 
			
		||||
		if (b2TestOverlap(node->aabb, segmentAABB) == false)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// Separating axis for segment (Gino, p80).
 | 
			
		||||
		// |dot(v, p1 - c)| > dot(|v|, h)
 | 
			
		||||
		b2Vec2 c = node->aabb.GetCenter();
 | 
			
		||||
		b2Vec2 h = node->aabb.GetExtents();
 | 
			
		||||
		float32 separation = b2Abs(b2Dot(v, p1 - c)) - b2Dot(abs_v, h);
 | 
			
		||||
		if (separation > 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (node->IsLeaf())
 | 
			
		||||
		{
 | 
			
		||||
			b2RayCastInput subInput;
 | 
			
		||||
			subInput.p1 = input.p1;
 | 
			
		||||
			subInput.p2 = input.p2;
 | 
			
		||||
			subInput.maxFraction = maxFraction;
 | 
			
		||||
 | 
			
		||||
			float32 value = callback->RayCastCallback(subInput, nodeId);
 | 
			
		||||
 | 
			
		||||
			if (value == 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				// The client has terminated the ray cast.
 | 
			
		||||
				return;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			if (value > 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				// Update segment bounding box.
 | 
			
		||||
				maxFraction = value;
 | 
			
		||||
				b2Vec2 t = p1 + maxFraction * (p2 - p1);
 | 
			
		||||
				segmentAABB.lowerBound = b2Min(p1, t);
 | 
			
		||||
				segmentAABB.upperBound = b2Max(p1, t);
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			stack.Push(node->child1);
 | 
			
		||||
			stack.Push(node->child2);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -1,476 +1,476 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "b2Distance.h"
 | 
			
		||||
#include "b2TimeOfImpact.h"
 | 
			
		||||
#include "Shapes/b2CircleShape.h"
 | 
			
		||||
#include "Shapes/b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
#include <cstdio>
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
int32 b2_toiCalls, b2_toiIters, b2_toiMaxIters;
 | 
			
		||||
int32 b2_toiRootIters, b2_toiMaxRootIters;
 | 
			
		||||
 | 
			
		||||
struct b2SeparationFunction
 | 
			
		||||
{
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_points,
 | 
			
		||||
		e_faceA,
 | 
			
		||||
		e_faceB
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// TODO_ERIN might not need to return the separation
 | 
			
		||||
 | 
			
		||||
	float32 Initialize(const b2SimplexCache* cache,
 | 
			
		||||
		const b2DistanceProxy* proxyA, const b2Sweep& sweepA,
 | 
			
		||||
		const b2DistanceProxy* proxyB, const b2Sweep& sweepB,
 | 
			
		||||
		float32 t1)
 | 
			
		||||
	{
 | 
			
		||||
		m_proxyA = proxyA;
 | 
			
		||||
		m_proxyB = proxyB;
 | 
			
		||||
		int32 count = cache->count;
 | 
			
		||||
		b2Assert(0 < count && count < 3);
 | 
			
		||||
 | 
			
		||||
		m_sweepA = sweepA;
 | 
			
		||||
		m_sweepB = sweepB;
 | 
			
		||||
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		m_sweepA.GetTransform(&xfA, t1);
 | 
			
		||||
		m_sweepB.GetTransform(&xfB, t1);
 | 
			
		||||
 | 
			
		||||
		if (count == 1)
 | 
			
		||||
		{
 | 
			
		||||
			m_type = e_points;
 | 
			
		||||
			b2Vec2 localPointA = m_proxyA->GetVertex(cache->indexA[0]);
 | 
			
		||||
			b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
			m_axis = pointB - pointA;
 | 
			
		||||
			float32 s = m_axis.Normalize();
 | 
			
		||||
			return s;
 | 
			
		||||
		}
 | 
			
		||||
		else if (cache->indexA[0] == cache->indexA[1])
 | 
			
		||||
		{
 | 
			
		||||
			// Two points on B and one on A.
 | 
			
		||||
			m_type = e_faceB;
 | 
			
		||||
			b2Vec2 localPointB1 = proxyB->GetVertex(cache->indexB[0]);
 | 
			
		||||
			b2Vec2 localPointB2 = proxyB->GetVertex(cache->indexB[1]);
 | 
			
		||||
 | 
			
		||||
			m_axis = b2Cross(localPointB2 - localPointB1, 1.0f);
 | 
			
		||||
			m_axis.Normalize();
 | 
			
		||||
			b2Vec2 normal = b2Mul(xfB.q, m_axis);
 | 
			
		||||
 | 
			
		||||
			m_localPoint = 0.5f * (localPointB1 + localPointB2);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, m_localPoint);
 | 
			
		||||
 | 
			
		||||
			b2Vec2 localPointA = proxyA->GetVertex(cache->indexA[0]);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
 | 
			
		||||
			float32 s = b2Dot(pointA - pointB, normal);
 | 
			
		||||
			if (s < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				m_axis = -m_axis;
 | 
			
		||||
				s = -s;
 | 
			
		||||
			}
 | 
			
		||||
			return s;
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			// Two points on A and one or two points on B.
 | 
			
		||||
			m_type = e_faceA;
 | 
			
		||||
			b2Vec2 localPointA1 = m_proxyA->GetVertex(cache->indexA[0]);
 | 
			
		||||
			b2Vec2 localPointA2 = m_proxyA->GetVertex(cache->indexA[1]);
 | 
			
		||||
 | 
			
		||||
			m_axis = b2Cross(localPointA2 - localPointA1, 1.0f);
 | 
			
		||||
			m_axis.Normalize();
 | 
			
		||||
			b2Vec2 normal = b2Mul(xfA.q, m_axis);
 | 
			
		||||
 | 
			
		||||
			m_localPoint = 0.5f * (localPointA1 + localPointA2);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, m_localPoint);
 | 
			
		||||
 | 
			
		||||
			b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
			float32 s = b2Dot(pointB - pointA, normal);
 | 
			
		||||
			if (s < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				m_axis = -m_axis;
 | 
			
		||||
				s = -s;
 | 
			
		||||
			}
 | 
			
		||||
			return s;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 FindMinSeparation(int32* indexA, int32* indexB, float32 t) const
 | 
			
		||||
	{
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		m_sweepA.GetTransform(&xfA, t);
 | 
			
		||||
		m_sweepB.GetTransform(&xfB, t);
 | 
			
		||||
 | 
			
		||||
		switch (m_type)
 | 
			
		||||
		{
 | 
			
		||||
		case e_points:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 axisA = b2MulT(xfA.q,  m_axis);
 | 
			
		||||
				b2Vec2 axisB = b2MulT(xfB.q, -m_axis);
 | 
			
		||||
 | 
			
		||||
				*indexA = m_proxyA->GetSupport(axisA);
 | 
			
		||||
				*indexB = m_proxyB->GetSupport(axisB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(*indexA);
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(*indexB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, m_axis);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceA:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfA.q, m_axis);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 axisB = b2MulT(xfB.q, -normal);
 | 
			
		||||
 | 
			
		||||
				*indexA = -1;
 | 
			
		||||
				*indexB = m_proxyB->GetSupport(axisB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(*indexB);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceB:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfB.q, m_axis);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 axisA = b2MulT(xfA.q, -normal);
 | 
			
		||||
 | 
			
		||||
				*indexB = -1;
 | 
			
		||||
				*indexA = m_proxyA->GetSupport(axisA);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(*indexA);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointA - pointB, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		default:
 | 
			
		||||
			b2Assert(false);
 | 
			
		||||
			*indexA = -1;
 | 
			
		||||
			*indexB = -1;
 | 
			
		||||
			return 0.0f;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 Evaluate(int32 indexA, int32 indexB, float32 t) const
 | 
			
		||||
	{
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		m_sweepA.GetTransform(&xfA, t);
 | 
			
		||||
		m_sweepB.GetTransform(&xfB, t);
 | 
			
		||||
 | 
			
		||||
		switch (m_type)
 | 
			
		||||
		{
 | 
			
		||||
		case e_points:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(indexA);
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(indexB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, m_axis);
 | 
			
		||||
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceA:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfA.q, m_axis);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(indexB);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceB:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfB.q, m_axis);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(indexA);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointA - pointB, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		default:
 | 
			
		||||
			b2Assert(false);
 | 
			
		||||
			return 0.0f;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	const b2DistanceProxy* m_proxyA;
 | 
			
		||||
	const b2DistanceProxy* m_proxyB;
 | 
			
		||||
	b2Sweep m_sweepA, m_sweepB;
 | 
			
		||||
	Type m_type;
 | 
			
		||||
	b2Vec2 m_localPoint;
 | 
			
		||||
	b2Vec2 m_axis;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// CCD via the local separating axis method. This seeks progression
 | 
			
		||||
// by computing the largest time at which separation is maintained.
 | 
			
		||||
void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input)
 | 
			
		||||
{
 | 
			
		||||
	++b2_toiCalls;
 | 
			
		||||
 | 
			
		||||
	output->state = b2TOIOutput::e_unknown;
 | 
			
		||||
	output->t = input->tMax;
 | 
			
		||||
 | 
			
		||||
	const b2DistanceProxy* proxyA = &input->proxyA;
 | 
			
		||||
	const b2DistanceProxy* proxyB = &input->proxyB;
 | 
			
		||||
 | 
			
		||||
	b2Sweep sweepA = input->sweepA;
 | 
			
		||||
	b2Sweep sweepB = input->sweepB;
 | 
			
		||||
 | 
			
		||||
	// Large rotations can make the root finder fail, so we normalize the
 | 
			
		||||
	// sweep angles.
 | 
			
		||||
	sweepA.Normalize();
 | 
			
		||||
	sweepB.Normalize();
 | 
			
		||||
 | 
			
		||||
	float32 tMax = input->tMax;
 | 
			
		||||
 | 
			
		||||
	float32 totalRadius = proxyA->m_radius + proxyB->m_radius;
 | 
			
		||||
	float32 target = b2Max(b2_linearSlop, totalRadius - 3.0f * b2_linearSlop);
 | 
			
		||||
	float32 tolerance = 0.25f * b2_linearSlop;
 | 
			
		||||
	b2Assert(target > tolerance);
 | 
			
		||||
 | 
			
		||||
	float32 t1 = 0.0f;
 | 
			
		||||
	const int32 k_maxIterations = 20;	// TODO_ERIN b2Settings
 | 
			
		||||
	int32 iter = 0;
 | 
			
		||||
 | 
			
		||||
	// Prepare input for distance query.
 | 
			
		||||
	b2SimplexCache cache;
 | 
			
		||||
	cache.count = 0;
 | 
			
		||||
	b2DistanceInput distanceInput;
 | 
			
		||||
	distanceInput.proxyA = input->proxyA;
 | 
			
		||||
	distanceInput.proxyB = input->proxyB;
 | 
			
		||||
	distanceInput.useRadii = false;
 | 
			
		||||
 | 
			
		||||
	// The outer loop progressively attempts to compute new separating axes.
 | 
			
		||||
	// This loop terminates when an axis is repeated (no progress is made).
 | 
			
		||||
	for(;;)
 | 
			
		||||
	{
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		sweepA.GetTransform(&xfA, t1);
 | 
			
		||||
		sweepB.GetTransform(&xfB, t1);
 | 
			
		||||
 | 
			
		||||
		// Get the distance between shapes. We can also use the results
 | 
			
		||||
		// to get a separating axis.
 | 
			
		||||
		distanceInput.transformA = xfA;
 | 
			
		||||
		distanceInput.transformB = xfB;
 | 
			
		||||
		b2DistanceOutput distanceOutput;
 | 
			
		||||
		b2Distance(&distanceOutput, &cache, &distanceInput);
 | 
			
		||||
 | 
			
		||||
		// If the shapes are overlapped, we give up on continuous collision.
 | 
			
		||||
		if (distanceOutput.distance <= 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			// Failure!
 | 
			
		||||
			output->state = b2TOIOutput::e_overlapped;
 | 
			
		||||
			output->t = 0.0f;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (distanceOutput.distance < target + tolerance)
 | 
			
		||||
		{
 | 
			
		||||
			// Victory!
 | 
			
		||||
			output->state = b2TOIOutput::e_touching;
 | 
			
		||||
			output->t = t1;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// Initialize the separating axis.
 | 
			
		||||
		b2SeparationFunction fcn;
 | 
			
		||||
		fcn.Initialize(&cache, proxyA, sweepA, proxyB, sweepB, t1);
 | 
			
		||||
#if 0
 | 
			
		||||
		// Dump the curve seen by the root finder
 | 
			
		||||
		{
 | 
			
		||||
			const int32 N = 100;
 | 
			
		||||
			float32 dx = 1.0f / N;
 | 
			
		||||
			float32 xs[N+1];
 | 
			
		||||
			float32 fs[N+1];
 | 
			
		||||
 | 
			
		||||
			float32 x = 0.0f;
 | 
			
		||||
 | 
			
		||||
			for (int32 i = 0; i <= N; ++i)
 | 
			
		||||
			{
 | 
			
		||||
				sweepA.GetTransform(&xfA, x);
 | 
			
		||||
				sweepB.GetTransform(&xfB, x);
 | 
			
		||||
				float32 f = fcn.Evaluate(xfA, xfB) - target;
 | 
			
		||||
 | 
			
		||||
				printf("%g %g\n", x, f);
 | 
			
		||||
 | 
			
		||||
				xs[i] = x;
 | 
			
		||||
				fs[i] = f;
 | 
			
		||||
 | 
			
		||||
				x += dx;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
		// Compute the TOI on the separating axis. We do this by successively
 | 
			
		||||
		// resolving the deepest point. This loop is bounded by the number of vertices.
 | 
			
		||||
		bool done = false;
 | 
			
		||||
		float32 t2 = tMax;
 | 
			
		||||
		int32 pushBackIter = 0;
 | 
			
		||||
		for (;;)
 | 
			
		||||
		{
 | 
			
		||||
			// Find the deepest point at t2. Store the witness point indices.
 | 
			
		||||
			int32 indexA, indexB;
 | 
			
		||||
			float32 s2 = fcn.FindMinSeparation(&indexA, &indexB, t2);
 | 
			
		||||
 | 
			
		||||
			// Is the final configuration separated?
 | 
			
		||||
			if (s2 > target + tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				// Victory!
 | 
			
		||||
				output->state = b2TOIOutput::e_separated;
 | 
			
		||||
				output->t = tMax;
 | 
			
		||||
				done = true;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Has the separation reached tolerance?
 | 
			
		||||
			if (s2 > target - tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				// Advance the sweeps
 | 
			
		||||
				t1 = t2;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Compute the initial separation of the witness points.
 | 
			
		||||
			float32 s1 = fcn.Evaluate(indexA, indexB, t1);
 | 
			
		||||
 | 
			
		||||
			// Check for initial overlap. This might happen if the root finder
 | 
			
		||||
			// runs out of iterations.
 | 
			
		||||
			if (s1 < target - tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				output->state = b2TOIOutput::e_failed;
 | 
			
		||||
				output->t = t1;
 | 
			
		||||
				done = true;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Check for touching
 | 
			
		||||
			if (s1 <= target + tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				// Victory! t1 should hold the TOI (could be 0.0).
 | 
			
		||||
				output->state = b2TOIOutput::e_touching;
 | 
			
		||||
				output->t = t1;
 | 
			
		||||
				done = true;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Compute 1D root of: f(x) - target = 0
 | 
			
		||||
			int32 rootIterCount = 0;
 | 
			
		||||
			float32 a1 = t1, a2 = t2;
 | 
			
		||||
			for (;;)
 | 
			
		||||
			{
 | 
			
		||||
				// Use a mix of the secant rule and bisection.
 | 
			
		||||
				float32 t;
 | 
			
		||||
				if (rootIterCount & 1)
 | 
			
		||||
				{
 | 
			
		||||
					// Secant rule to improve convergence.
 | 
			
		||||
					t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
 | 
			
		||||
				}
 | 
			
		||||
				else
 | 
			
		||||
				{
 | 
			
		||||
					// Bisection to guarantee progress.
 | 
			
		||||
					t = 0.5f * (a1 + a2);
 | 
			
		||||
				}
 | 
			
		||||
 | 
			
		||||
				float32 s = fcn.Evaluate(indexA, indexB, t);
 | 
			
		||||
 | 
			
		||||
				if (b2Abs(s - target) < tolerance)
 | 
			
		||||
				{
 | 
			
		||||
					// t2 holds a tentative value for t1
 | 
			
		||||
					t2 = t;
 | 
			
		||||
					break;
 | 
			
		||||
				}
 | 
			
		||||
 | 
			
		||||
				// Ensure we continue to bracket the root.
 | 
			
		||||
				if (s > target)
 | 
			
		||||
				{
 | 
			
		||||
					a1 = t;
 | 
			
		||||
					s1 = s;
 | 
			
		||||
				}
 | 
			
		||||
				else
 | 
			
		||||
				{
 | 
			
		||||
					a2 = t;
 | 
			
		||||
					s2 = s;
 | 
			
		||||
				}
 | 
			
		||||
 | 
			
		||||
				++rootIterCount;
 | 
			
		||||
				++b2_toiRootIters;
 | 
			
		||||
 | 
			
		||||
				if (rootIterCount == 50)
 | 
			
		||||
				{
 | 
			
		||||
					break;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			b2_toiMaxRootIters = b2Max(b2_toiMaxRootIters, rootIterCount);
 | 
			
		||||
 | 
			
		||||
			++pushBackIter;
 | 
			
		||||
 | 
			
		||||
			if (pushBackIter == b2_maxPolygonVertices)
 | 
			
		||||
			{
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		++iter;
 | 
			
		||||
		++b2_toiIters;
 | 
			
		||||
 | 
			
		||||
		if (done)
 | 
			
		||||
		{
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (iter == k_maxIterations)
 | 
			
		||||
		{
 | 
			
		||||
			// Root finder got stuck. Semi-victory.
 | 
			
		||||
			output->state = b2TOIOutput::e_failed;
 | 
			
		||||
			output->t = t1;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2_toiMaxIters = b2Max(b2_toiMaxIters, iter);
 | 
			
		||||
}
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#include "b2Collision.h"
 | 
			
		||||
#include "b2Distance.h"
 | 
			
		||||
#include "b2TimeOfImpact.h"
 | 
			
		||||
#include "Shapes/b2CircleShape.h"
 | 
			
		||||
#include "Shapes/b2PolygonShape.h"
 | 
			
		||||
 | 
			
		||||
#include <cstdio>
 | 
			
		||||
using namespace std;
 | 
			
		||||
 | 
			
		||||
int32 b2_toiCalls, b2_toiIters, b2_toiMaxIters;
 | 
			
		||||
int32 b2_toiRootIters, b2_toiMaxRootIters;
 | 
			
		||||
 | 
			
		||||
struct b2SeparationFunction
 | 
			
		||||
{
 | 
			
		||||
	enum Type
 | 
			
		||||
	{
 | 
			
		||||
		e_points,
 | 
			
		||||
		e_faceA,
 | 
			
		||||
		e_faceB
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	// TODO_ERIN might not need to return the separation
 | 
			
		||||
 | 
			
		||||
	float32 Initialize(const b2SimplexCache* cache,
 | 
			
		||||
		const b2DistanceProxy* proxyA, const b2Sweep& sweepA,
 | 
			
		||||
		const b2DistanceProxy* proxyB, const b2Sweep& sweepB,
 | 
			
		||||
		float32 t1)
 | 
			
		||||
	{
 | 
			
		||||
		m_proxyA = proxyA;
 | 
			
		||||
		m_proxyB = proxyB;
 | 
			
		||||
		int32 count = cache->count;
 | 
			
		||||
		b2Assert(0 < count && count < 3);
 | 
			
		||||
 | 
			
		||||
		m_sweepA = sweepA;
 | 
			
		||||
		m_sweepB = sweepB;
 | 
			
		||||
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		m_sweepA.GetTransform(&xfA, t1);
 | 
			
		||||
		m_sweepB.GetTransform(&xfB, t1);
 | 
			
		||||
 | 
			
		||||
		if (count == 1)
 | 
			
		||||
		{
 | 
			
		||||
			m_type = e_points;
 | 
			
		||||
			b2Vec2 localPointA = m_proxyA->GetVertex(cache->indexA[0]);
 | 
			
		||||
			b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
			m_axis = pointB - pointA;
 | 
			
		||||
			float32 s = m_axis.Normalize();
 | 
			
		||||
			return s;
 | 
			
		||||
		}
 | 
			
		||||
		else if (cache->indexA[0] == cache->indexA[1])
 | 
			
		||||
		{
 | 
			
		||||
			// Two points on B and one on A.
 | 
			
		||||
			m_type = e_faceB;
 | 
			
		||||
			b2Vec2 localPointB1 = proxyB->GetVertex(cache->indexB[0]);
 | 
			
		||||
			b2Vec2 localPointB2 = proxyB->GetVertex(cache->indexB[1]);
 | 
			
		||||
 | 
			
		||||
			m_axis = b2Cross(localPointB2 - localPointB1, 1.0f);
 | 
			
		||||
			m_axis.Normalize();
 | 
			
		||||
			b2Vec2 normal = b2Mul(xfB.q, m_axis);
 | 
			
		||||
 | 
			
		||||
			m_localPoint = 0.5f * (localPointB1 + localPointB2);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, m_localPoint);
 | 
			
		||||
 | 
			
		||||
			b2Vec2 localPointA = proxyA->GetVertex(cache->indexA[0]);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
 | 
			
		||||
			float32 s = b2Dot(pointA - pointB, normal);
 | 
			
		||||
			if (s < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				m_axis = -m_axis;
 | 
			
		||||
				s = -s;
 | 
			
		||||
			}
 | 
			
		||||
			return s;
 | 
			
		||||
		}
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			// Two points on A and one or two points on B.
 | 
			
		||||
			m_type = e_faceA;
 | 
			
		||||
			b2Vec2 localPointA1 = m_proxyA->GetVertex(cache->indexA[0]);
 | 
			
		||||
			b2Vec2 localPointA2 = m_proxyA->GetVertex(cache->indexA[1]);
 | 
			
		||||
 | 
			
		||||
			m_axis = b2Cross(localPointA2 - localPointA1, 1.0f);
 | 
			
		||||
			m_axis.Normalize();
 | 
			
		||||
			b2Vec2 normal = b2Mul(xfA.q, m_axis);
 | 
			
		||||
 | 
			
		||||
			m_localPoint = 0.5f * (localPointA1 + localPointA2);
 | 
			
		||||
			b2Vec2 pointA = b2Mul(xfA, m_localPoint);
 | 
			
		||||
 | 
			
		||||
			b2Vec2 localPointB = m_proxyB->GetVertex(cache->indexB[0]);
 | 
			
		||||
			b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
			float32 s = b2Dot(pointB - pointA, normal);
 | 
			
		||||
			if (s < 0.0f)
 | 
			
		||||
			{
 | 
			
		||||
				m_axis = -m_axis;
 | 
			
		||||
				s = -s;
 | 
			
		||||
			}
 | 
			
		||||
			return s;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 FindMinSeparation(int32* indexA, int32* indexB, float32 t) const
 | 
			
		||||
	{
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		m_sweepA.GetTransform(&xfA, t);
 | 
			
		||||
		m_sweepB.GetTransform(&xfB, t);
 | 
			
		||||
 | 
			
		||||
		switch (m_type)
 | 
			
		||||
		{
 | 
			
		||||
		case e_points:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 axisA = b2MulT(xfA.q,  m_axis);
 | 
			
		||||
				b2Vec2 axisB = b2MulT(xfB.q, -m_axis);
 | 
			
		||||
 | 
			
		||||
				*indexA = m_proxyA->GetSupport(axisA);
 | 
			
		||||
				*indexB = m_proxyB->GetSupport(axisB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(*indexA);
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(*indexB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, m_axis);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceA:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfA.q, m_axis);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 axisB = b2MulT(xfB.q, -normal);
 | 
			
		||||
 | 
			
		||||
				*indexA = -1;
 | 
			
		||||
				*indexB = m_proxyB->GetSupport(axisB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(*indexB);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceB:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfB.q, m_axis);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 axisA = b2MulT(xfA.q, -normal);
 | 
			
		||||
 | 
			
		||||
				*indexB = -1;
 | 
			
		||||
				*indexA = m_proxyA->GetSupport(axisA);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(*indexA);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointA - pointB, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		default:
 | 
			
		||||
			b2Assert(false);
 | 
			
		||||
			*indexA = -1;
 | 
			
		||||
			*indexB = -1;
 | 
			
		||||
			return 0.0f;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	float32 Evaluate(int32 indexA, int32 indexB, float32 t) const
 | 
			
		||||
	{
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		m_sweepA.GetTransform(&xfA, t);
 | 
			
		||||
		m_sweepB.GetTransform(&xfB, t);
 | 
			
		||||
 | 
			
		||||
		switch (m_type)
 | 
			
		||||
		{
 | 
			
		||||
		case e_points:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(indexA);
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(indexB);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, m_axis);
 | 
			
		||||
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceA:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfA.q, m_axis);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointB = m_proxyB->GetVertex(indexB);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, localPointB);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointB - pointA, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		case e_faceB:
 | 
			
		||||
			{
 | 
			
		||||
				b2Vec2 normal = b2Mul(xfB.q, m_axis);
 | 
			
		||||
				b2Vec2 pointB = b2Mul(xfB, m_localPoint);
 | 
			
		||||
 | 
			
		||||
				b2Vec2 localPointA = m_proxyA->GetVertex(indexA);
 | 
			
		||||
				b2Vec2 pointA = b2Mul(xfA, localPointA);
 | 
			
		||||
 | 
			
		||||
				float32 separation = b2Dot(pointA - pointB, normal);
 | 
			
		||||
				return separation;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
		default:
 | 
			
		||||
			b2Assert(false);
 | 
			
		||||
			return 0.0f;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	const b2DistanceProxy* m_proxyA;
 | 
			
		||||
	const b2DistanceProxy* m_proxyB;
 | 
			
		||||
	b2Sweep m_sweepA, m_sweepB;
 | 
			
		||||
	Type m_type;
 | 
			
		||||
	b2Vec2 m_localPoint;
 | 
			
		||||
	b2Vec2 m_axis;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// CCD via the local separating axis method. This seeks progression
 | 
			
		||||
// by computing the largest time at which separation is maintained.
 | 
			
		||||
void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input)
 | 
			
		||||
{
 | 
			
		||||
	++b2_toiCalls;
 | 
			
		||||
 | 
			
		||||
	output->state = b2TOIOutput::e_unknown;
 | 
			
		||||
	output->t = input->tMax;
 | 
			
		||||
 | 
			
		||||
	const b2DistanceProxy* proxyA = &input->proxyA;
 | 
			
		||||
	const b2DistanceProxy* proxyB = &input->proxyB;
 | 
			
		||||
 | 
			
		||||
	b2Sweep sweepA = input->sweepA;
 | 
			
		||||
	b2Sweep sweepB = input->sweepB;
 | 
			
		||||
 | 
			
		||||
	// Large rotations can make the root finder fail, so we normalize the
 | 
			
		||||
	// sweep angles.
 | 
			
		||||
	sweepA.Normalize();
 | 
			
		||||
	sweepB.Normalize();
 | 
			
		||||
 | 
			
		||||
	float32 tMax = input->tMax;
 | 
			
		||||
 | 
			
		||||
	float32 totalRadius = proxyA->m_radius + proxyB->m_radius;
 | 
			
		||||
	float32 target = b2Max(b2_linearSlop, totalRadius - 3.0f * b2_linearSlop);
 | 
			
		||||
	float32 tolerance = 0.25f * b2_linearSlop;
 | 
			
		||||
	b2Assert(target > tolerance);
 | 
			
		||||
 | 
			
		||||
	float32 t1 = 0.0f;
 | 
			
		||||
	const int32 k_maxIterations = 20;	// TODO_ERIN b2Settings
 | 
			
		||||
	int32 iter = 0;
 | 
			
		||||
 | 
			
		||||
	// Prepare input for distance query.
 | 
			
		||||
	b2SimplexCache cache;
 | 
			
		||||
	cache.count = 0;
 | 
			
		||||
	b2DistanceInput distanceInput;
 | 
			
		||||
	distanceInput.proxyA = input->proxyA;
 | 
			
		||||
	distanceInput.proxyB = input->proxyB;
 | 
			
		||||
	distanceInput.useRadii = false;
 | 
			
		||||
 | 
			
		||||
	// The outer loop progressively attempts to compute new separating axes.
 | 
			
		||||
	// This loop terminates when an axis is repeated (no progress is made).
 | 
			
		||||
	for(;;)
 | 
			
		||||
	{
 | 
			
		||||
		b2Transform xfA, xfB;
 | 
			
		||||
		sweepA.GetTransform(&xfA, t1);
 | 
			
		||||
		sweepB.GetTransform(&xfB, t1);
 | 
			
		||||
 | 
			
		||||
		// Get the distance between shapes. We can also use the results
 | 
			
		||||
		// to get a separating axis.
 | 
			
		||||
		distanceInput.transformA = xfA;
 | 
			
		||||
		distanceInput.transformB = xfB;
 | 
			
		||||
		b2DistanceOutput distanceOutput;
 | 
			
		||||
		b2Distance(&distanceOutput, &cache, &distanceInput);
 | 
			
		||||
 | 
			
		||||
		// If the shapes are overlapped, we give up on continuous collision.
 | 
			
		||||
		if (distanceOutput.distance <= 0.0f)
 | 
			
		||||
		{
 | 
			
		||||
			// Failure!
 | 
			
		||||
			output->state = b2TOIOutput::e_overlapped;
 | 
			
		||||
			output->t = 0.0f;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (distanceOutput.distance < target + tolerance)
 | 
			
		||||
		{
 | 
			
		||||
			// Victory!
 | 
			
		||||
			output->state = b2TOIOutput::e_touching;
 | 
			
		||||
			output->t = t1;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		// Initialize the separating axis.
 | 
			
		||||
		b2SeparationFunction fcn;
 | 
			
		||||
		fcn.Initialize(&cache, proxyA, sweepA, proxyB, sweepB, t1);
 | 
			
		||||
#if 0
 | 
			
		||||
		// Dump the curve seen by the root finder
 | 
			
		||||
		{
 | 
			
		||||
			const int32 N = 100;
 | 
			
		||||
			float32 dx = 1.0f / N;
 | 
			
		||||
			float32 xs[N+1];
 | 
			
		||||
			float32 fs[N+1];
 | 
			
		||||
 | 
			
		||||
			float32 x = 0.0f;
 | 
			
		||||
 | 
			
		||||
			for (int32 i = 0; i <= N; ++i)
 | 
			
		||||
			{
 | 
			
		||||
				sweepA.GetTransform(&xfA, x);
 | 
			
		||||
				sweepB.GetTransform(&xfB, x);
 | 
			
		||||
				float32 f = fcn.Evaluate(xfA, xfB) - target;
 | 
			
		||||
 | 
			
		||||
				printf("%g %g\n", x, f);
 | 
			
		||||
 | 
			
		||||
				xs[i] = x;
 | 
			
		||||
				fs[i] = f;
 | 
			
		||||
 | 
			
		||||
				x += dx;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
		// Compute the TOI on the separating axis. We do this by successively
 | 
			
		||||
		// resolving the deepest point. This loop is bounded by the number of vertices.
 | 
			
		||||
		bool done = false;
 | 
			
		||||
		float32 t2 = tMax;
 | 
			
		||||
		int32 pushBackIter = 0;
 | 
			
		||||
		for (;;)
 | 
			
		||||
		{
 | 
			
		||||
			// Find the deepest point at t2. Store the witness point indices.
 | 
			
		||||
			int32 indexA, indexB;
 | 
			
		||||
			float32 s2 = fcn.FindMinSeparation(&indexA, &indexB, t2);
 | 
			
		||||
 | 
			
		||||
			// Is the final configuration separated?
 | 
			
		||||
			if (s2 > target + tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				// Victory!
 | 
			
		||||
				output->state = b2TOIOutput::e_separated;
 | 
			
		||||
				output->t = tMax;
 | 
			
		||||
				done = true;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Has the separation reached tolerance?
 | 
			
		||||
			if (s2 > target - tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				// Advance the sweeps
 | 
			
		||||
				t1 = t2;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Compute the initial separation of the witness points.
 | 
			
		||||
			float32 s1 = fcn.Evaluate(indexA, indexB, t1);
 | 
			
		||||
 | 
			
		||||
			// Check for initial overlap. This might happen if the root finder
 | 
			
		||||
			// runs out of iterations.
 | 
			
		||||
			if (s1 < target - tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				output->state = b2TOIOutput::e_failed;
 | 
			
		||||
				output->t = t1;
 | 
			
		||||
				done = true;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Check for touching
 | 
			
		||||
			if (s1 <= target + tolerance)
 | 
			
		||||
			{
 | 
			
		||||
				// Victory! t1 should hold the TOI (could be 0.0).
 | 
			
		||||
				output->state = b2TOIOutput::e_touching;
 | 
			
		||||
				output->t = t1;
 | 
			
		||||
				done = true;
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			// Compute 1D root of: f(x) - target = 0
 | 
			
		||||
			int32 rootIterCount = 0;
 | 
			
		||||
			float32 a1 = t1, a2 = t2;
 | 
			
		||||
			for (;;)
 | 
			
		||||
			{
 | 
			
		||||
				// Use a mix of the secant rule and bisection.
 | 
			
		||||
				float32 t;
 | 
			
		||||
				if (rootIterCount & 1)
 | 
			
		||||
				{
 | 
			
		||||
					// Secant rule to improve convergence.
 | 
			
		||||
					t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
 | 
			
		||||
				}
 | 
			
		||||
				else
 | 
			
		||||
				{
 | 
			
		||||
					// Bisection to guarantee progress.
 | 
			
		||||
					t = 0.5f * (a1 + a2);
 | 
			
		||||
				}
 | 
			
		||||
 | 
			
		||||
				float32 s = fcn.Evaluate(indexA, indexB, t);
 | 
			
		||||
 | 
			
		||||
				if (b2Abs(s - target) < tolerance)
 | 
			
		||||
				{
 | 
			
		||||
					// t2 holds a tentative value for t1
 | 
			
		||||
					t2 = t;
 | 
			
		||||
					break;
 | 
			
		||||
				}
 | 
			
		||||
 | 
			
		||||
				// Ensure we continue to bracket the root.
 | 
			
		||||
				if (s > target)
 | 
			
		||||
				{
 | 
			
		||||
					a1 = t;
 | 
			
		||||
					s1 = s;
 | 
			
		||||
				}
 | 
			
		||||
				else
 | 
			
		||||
				{
 | 
			
		||||
					a2 = t;
 | 
			
		||||
					s2 = s;
 | 
			
		||||
				}
 | 
			
		||||
 | 
			
		||||
				++rootIterCount;
 | 
			
		||||
				++b2_toiRootIters;
 | 
			
		||||
 | 
			
		||||
				if (rootIterCount == 50)
 | 
			
		||||
				{
 | 
			
		||||
					break;
 | 
			
		||||
				}
 | 
			
		||||
			}
 | 
			
		||||
 | 
			
		||||
			b2_toiMaxRootIters = b2Max(b2_toiMaxRootIters, rootIterCount);
 | 
			
		||||
 | 
			
		||||
			++pushBackIter;
 | 
			
		||||
 | 
			
		||||
			if (pushBackIter == b2_maxPolygonVertices)
 | 
			
		||||
			{
 | 
			
		||||
				break;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		++iter;
 | 
			
		||||
		++b2_toiIters;
 | 
			
		||||
 | 
			
		||||
		if (done)
 | 
			
		||||
		{
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (iter == k_maxIterations)
 | 
			
		||||
		{
 | 
			
		||||
			// Root finder got stuck. Semi-victory.
 | 
			
		||||
			output->state = b2TOIOutput::e_failed;
 | 
			
		||||
			output->t = t1;
 | 
			
		||||
			break;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	b2_toiMaxIters = b2Max(b2_toiMaxIters, iter);
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,58 +1,58 @@
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_TIME_OF_IMPACT_H
 | 
			
		||||
#define B2_TIME_OF_IMPACT_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Math.h"
 | 
			
		||||
#include "../Collision/b2Distance.h"
 | 
			
		||||
 | 
			
		||||
/// Input parameters for b2TimeOfImpact
 | 
			
		||||
struct b2TOIInput
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceProxy proxyA;
 | 
			
		||||
	b2DistanceProxy proxyB;
 | 
			
		||||
	b2Sweep sweepA;
 | 
			
		||||
	b2Sweep sweepB;
 | 
			
		||||
	float32 tMax;		// defines sweep interval [0, tMax]
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Output parameters for b2TimeOfImpact.
 | 
			
		||||
struct b2TOIOutput
 | 
			
		||||
{
 | 
			
		||||
	enum State
 | 
			
		||||
	{
 | 
			
		||||
		e_unknown,
 | 
			
		||||
		e_failed,
 | 
			
		||||
		e_overlapped,
 | 
			
		||||
		e_touching,
 | 
			
		||||
		e_separated
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	State state;
 | 
			
		||||
	float32 t;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the upper bound on time before two shapes penetrate. Time is represented as
 | 
			
		||||
/// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
 | 
			
		||||
/// non-tunneling collision. If you change the time interval, you should call this function
 | 
			
		||||
/// again.
 | 
			
		||||
/// Note: use b2Distance to compute the contact point and normal at the time of impact.
 | 
			
		||||
void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
/*
 | 
			
		||||
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | 
			
		||||
*
 | 
			
		||||
* This software is provided 'as-is', without any express or implied
 | 
			
		||||
* warranty.  In no event will the authors be held liable for any damages
 | 
			
		||||
* arising from the use of this software.
 | 
			
		||||
* Permission is granted to anyone to use this software for any purpose,
 | 
			
		||||
* including commercial applications, and to alter it and redistribute it
 | 
			
		||||
* freely, subject to the following restrictions:
 | 
			
		||||
* 1. The origin of this software must not be misrepresented; you must not
 | 
			
		||||
* claim that you wrote the original software. If you use this software
 | 
			
		||||
* in a product, an acknowledgment in the product documentation would be
 | 
			
		||||
* appreciated but is not required.
 | 
			
		||||
* 2. Altered source versions must be plainly marked as such, and must not be
 | 
			
		||||
* misrepresented as being the original software.
 | 
			
		||||
* 3. This notice may not be removed or altered from any source distribution.
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef B2_TIME_OF_IMPACT_H
 | 
			
		||||
#define B2_TIME_OF_IMPACT_H
 | 
			
		||||
 | 
			
		||||
#include "../Common/b2Math.h"
 | 
			
		||||
#include "../Collision/b2Distance.h"
 | 
			
		||||
 | 
			
		||||
/// Input parameters for b2TimeOfImpact
 | 
			
		||||
struct b2TOIInput
 | 
			
		||||
{
 | 
			
		||||
	b2DistanceProxy proxyA;
 | 
			
		||||
	b2DistanceProxy proxyB;
 | 
			
		||||
	b2Sweep sweepA;
 | 
			
		||||
	b2Sweep sweepB;
 | 
			
		||||
	float32 tMax;		// defines sweep interval [0, tMax]
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Output parameters for b2TimeOfImpact.
 | 
			
		||||
struct b2TOIOutput
 | 
			
		||||
{
 | 
			
		||||
	enum State
 | 
			
		||||
	{
 | 
			
		||||
		e_unknown,
 | 
			
		||||
		e_failed,
 | 
			
		||||
		e_overlapped,
 | 
			
		||||
		e_touching,
 | 
			
		||||
		e_separated
 | 
			
		||||
	};
 | 
			
		||||
 | 
			
		||||
	State state;
 | 
			
		||||
	float32 t;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// Compute the upper bound on time before two shapes penetrate. Time is represented as
 | 
			
		||||
/// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
 | 
			
		||||
/// non-tunneling collision. If you change the time interval, you should call this function
 | 
			
		||||
/// again.
 | 
			
		||||
/// Note: use b2Distance to compute the contact point and normal at the time of impact.
 | 
			
		||||
void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user