migrating to the latest JUCE version

This commit is contained in:
2022-11-04 23:11:33 +01:00
committed by Nikolai Rodionov
parent 4257a0f8ba
commit faf8f18333
2796 changed files with 888518 additions and 784244 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,242 +1,242 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
#ifndef DOXYGEN
namespace detail
{
template <typename Ret, typename... Args>
struct Vtable
{
using Storage = void*;
using Move = void (*) (Storage, Storage);
using Call = Ret (*) (Storage, Args...);
using Clear = void (*) (Storage);
constexpr Vtable (Move moveIn, Call callIn, Clear clearIn) noexcept
: move (moveIn), call (callIn), clear (clearIn) {}
Move move = nullptr;
Call call = nullptr;
Clear clear = nullptr;
};
template <typename Fn>
void move (void* from, void* to)
{
new (to) Fn (std::move (*reinterpret_cast<Fn*> (from)));
}
template <typename Fn, typename Ret, typename... Args>
typename std::enable_if<std::is_same<Ret, void>::value, Ret>::type call (void* s, Args... args)
{
(*reinterpret_cast<Fn*> (s)) (args...);
}
template <typename Fn, typename Ret, typename... Args>
typename std::enable_if<! std::is_same<Ret, void>::value, Ret>::type call (void* s, Args... args)
{
return (*reinterpret_cast<Fn*> (s)) (std::forward<Args> (args)...);
}
template <typename Fn>
void clear (void* s)
{
auto& fn = *reinterpret_cast<Fn*> (s);
fn.~Fn();
// I know this looks insane, for some reason MSVC 14 sometimes thinks fn is unreferenced
ignoreUnused (fn);
}
template <typename Fn, typename Ret, typename... Args>
constexpr Vtable<Ret, Args...> makeVtable()
{
return { move <Fn>, call <Fn, Ret, Args...>, clear<Fn> };
}
} // namespace detail
template <size_t len, typename T>
class FixedSizeFunction;
#endif
/**
A type similar to `std::function` that holds a callable object.
Unlike `std::function`, the callable object will always be stored in
a buffer of size `len` that is internal to the FixedSizeFunction instance.
This in turn means that creating a FixedSizeFunction instance will never allocate,
making FixedSizeFunctions suitable for use in realtime contexts.
@tags{DSP}
*/
template <size_t len, typename Ret, typename... Args>
class FixedSizeFunction<len, Ret (Args...)>
{
private:
using Storage = typename std::aligned_storage<len>::type;
template <typename Item>
using Decay = typename std::decay<Item>::type;
template <typename Item, typename Fn = Decay<Item>>
using IntIfValidConversion = typename std::enable_if<sizeof (Fn) <= len
&& alignof (Fn) <= alignof (Storage)
&& ! std::is_same<FixedSizeFunction, Fn>::value,
int>::type;
public:
/** Create an empty function. */
FixedSizeFunction() noexcept = default;
/** Create an empty function. */
FixedSizeFunction (std::nullptr_t) noexcept
: FixedSizeFunction() {}
FixedSizeFunction (const FixedSizeFunction&) = delete;
/** Forwards the passed Callable into the internal storage buffer. */
template <typename Callable,
typename Fn = Decay<Callable>,
IntIfValidConversion<Callable> = 0>
FixedSizeFunction (Callable&& callable)
{
static_assert (sizeof (Fn) <= len,
"The requested function cannot fit in this FixedSizeFunction");
static_assert (alignof (Fn) <= alignof (Storage),
"FixedSizeFunction cannot accommodate the requested alignment requirements");
static constexpr auto vtableForCallable = detail::makeVtable<Fn, Ret, Args...>();
vtable = &vtableForCallable;
auto* ptr = new (&storage) Fn (std::forward<Callable> (callable));
jassertquiet ((void*) ptr == (void*) &storage);
}
/** Move constructor. */
FixedSizeFunction (FixedSizeFunction&& other) noexcept
: vtable (other.vtable)
{
move (std::move (other));
}
/** Converting constructor from smaller FixedSizeFunctions. */
template <size_t otherLen, typename std::enable_if<(otherLen < len), int>::type = 0>
FixedSizeFunction (FixedSizeFunction<otherLen, Ret (Args...)>&& other) noexcept
: vtable (other.vtable)
{
move (std::move (other));
}
/** Nulls this instance. */
FixedSizeFunction& operator= (std::nullptr_t) noexcept
{
return *this = FixedSizeFunction();
}
FixedSizeFunction& operator= (const FixedSizeFunction&) = delete;
/** Assigns a new callable to this instance. */
template <typename Callable, IntIfValidConversion<Callable> = 0>
FixedSizeFunction& operator= (Callable&& callable)
{
return *this = FixedSizeFunction (std::forward<Callable> (callable));
}
/** Move assignment from smaller FixedSizeFunctions. */
template <size_t otherLen, typename std::enable_if<(otherLen < len), int>::type = 0>
FixedSizeFunction& operator= (FixedSizeFunction<otherLen, Ret (Args...)>&& other) noexcept
{
return *this = FixedSizeFunction (std::move (other));
}
/** Move assignment operator. */
FixedSizeFunction& operator= (FixedSizeFunction&& other) noexcept
{
clear();
vtable = other.vtable;
move (std::move (other));
return *this;
}
/** Destructor. */
~FixedSizeFunction() noexcept { clear(); }
/** If this instance is currently storing a callable object, calls that object,
otherwise throws `std::bad_function_call`.
*/
Ret operator() (Args... args) const
{
if (vtable != nullptr)
return vtable->call (&storage, std::forward<Args> (args)...);
throw std::bad_function_call();
}
/** Returns true if this instance currently holds a callable. */
explicit operator bool() const noexcept { return vtable != nullptr; }
private:
template <size_t, typename>
friend class FixedSizeFunction;
void clear() noexcept
{
if (vtable != nullptr)
vtable->clear (&storage);
}
template <size_t otherLen, typename T>
void move (FixedSizeFunction<otherLen, T>&& other) noexcept
{
if (vtable != nullptr)
vtable->move (&other.storage, &storage);
}
const detail::Vtable<Ret, Args...>* vtable = nullptr;
mutable Storage storage;
};
template <size_t len, typename T>
bool operator!= (const FixedSizeFunction<len, T>& fn, std::nullptr_t) { return bool (fn); }
template <size_t len, typename T>
bool operator!= (std::nullptr_t, const FixedSizeFunction<len, T>& fn) { return bool (fn); }
template <size_t len, typename T>
bool operator== (const FixedSizeFunction<len, T>& fn, std::nullptr_t) { return ! (fn != nullptr); }
template <size_t len, typename T>
bool operator== (std::nullptr_t, const FixedSizeFunction<len, T>& fn) { return ! (fn != nullptr); }
}
}
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
#ifndef DOXYGEN
namespace detail
{
template <typename Ret, typename... Args>
struct Vtable
{
using Storage = void*;
using Move = void (*) (Storage, Storage);
using Call = Ret (*) (Storage, Args...);
using Clear = void (*) (Storage);
constexpr Vtable (Move moveIn, Call callIn, Clear clearIn) noexcept
: move (moveIn), call (callIn), clear (clearIn) {}
Move move = nullptr;
Call call = nullptr;
Clear clear = nullptr;
};
template <typename Fn>
void move (void* from, void* to)
{
new (to) Fn (std::move (*reinterpret_cast<Fn*> (from)));
}
template <typename Fn, typename Ret, typename... Args>
typename std::enable_if<std::is_same<Ret, void>::value, Ret>::type call (void* s, Args... args)
{
(*reinterpret_cast<Fn*> (s)) (args...);
}
template <typename Fn, typename Ret, typename... Args>
typename std::enable_if<! std::is_same<Ret, void>::value, Ret>::type call (void* s, Args... args)
{
return (*reinterpret_cast<Fn*> (s)) (std::forward<Args> (args)...);
}
template <typename Fn>
void clear (void* s)
{
auto& fn = *reinterpret_cast<Fn*> (s);
fn.~Fn();
// I know this looks insane, for some reason MSVC 14 sometimes thinks fn is unreferenced
ignoreUnused (fn);
}
template <typename Fn, typename Ret, typename... Args>
constexpr Vtable<Ret, Args...> makeVtable()
{
return { move <Fn>, call <Fn, Ret, Args...>, clear<Fn> };
}
} // namespace detail
template <size_t len, typename T>
class FixedSizeFunction;
#endif
/**
A type similar to `std::function` that holds a callable object.
Unlike `std::function`, the callable object will always be stored in
a buffer of size `len` that is internal to the FixedSizeFunction instance.
This in turn means that creating a FixedSizeFunction instance will never allocate,
making FixedSizeFunctions suitable for use in realtime contexts.
@tags{DSP}
*/
template <size_t len, typename Ret, typename... Args>
class FixedSizeFunction<len, Ret (Args...)>
{
private:
using Storage = typename std::aligned_storage<len>::type;
template <typename Item>
using Decay = typename std::decay<Item>::type;
template <typename Item, typename Fn = Decay<Item>>
using IntIfValidConversion = typename std::enable_if<sizeof (Fn) <= len
&& alignof (Fn) <= alignof (Storage)
&& ! std::is_same<FixedSizeFunction, Fn>::value,
int>::type;
public:
/** Create an empty function. */
FixedSizeFunction() noexcept = default;
/** Create an empty function. */
FixedSizeFunction (std::nullptr_t) noexcept
: FixedSizeFunction() {}
FixedSizeFunction (const FixedSizeFunction&) = delete;
/** Forwards the passed Callable into the internal storage buffer. */
template <typename Callable,
typename Fn = Decay<Callable>,
IntIfValidConversion<Callable> = 0>
FixedSizeFunction (Callable&& callable)
{
static_assert (sizeof (Fn) <= len,
"The requested function cannot fit in this FixedSizeFunction");
static_assert (alignof (Fn) <= alignof (Storage),
"FixedSizeFunction cannot accommodate the requested alignment requirements");
static constexpr auto vtableForCallable = detail::makeVtable<Fn, Ret, Args...>();
vtable = &vtableForCallable;
auto* ptr = new (&storage) Fn (std::forward<Callable> (callable));
jassertquiet ((void*) ptr == (void*) &storage);
}
/** Move constructor. */
FixedSizeFunction (FixedSizeFunction&& other) noexcept
: vtable (other.vtable)
{
move (std::move (other));
}
/** Converting constructor from smaller FixedSizeFunctions. */
template <size_t otherLen, typename std::enable_if<(otherLen < len), int>::type = 0>
FixedSizeFunction (FixedSizeFunction<otherLen, Ret (Args...)>&& other) noexcept
: vtable (other.vtable)
{
move (std::move (other));
}
/** Nulls this instance. */
FixedSizeFunction& operator= (std::nullptr_t) noexcept
{
return *this = FixedSizeFunction();
}
FixedSizeFunction& operator= (const FixedSizeFunction&) = delete;
/** Assigns a new callable to this instance. */
template <typename Callable, IntIfValidConversion<Callable> = 0>
FixedSizeFunction& operator= (Callable&& callable)
{
return *this = FixedSizeFunction (std::forward<Callable> (callable));
}
/** Move assignment from smaller FixedSizeFunctions. */
template <size_t otherLen, typename std::enable_if<(otherLen < len), int>::type = 0>
FixedSizeFunction& operator= (FixedSizeFunction<otherLen, Ret (Args...)>&& other) noexcept
{
return *this = FixedSizeFunction (std::move (other));
}
/** Move assignment operator. */
FixedSizeFunction& operator= (FixedSizeFunction&& other) noexcept
{
clear();
vtable = other.vtable;
move (std::move (other));
return *this;
}
/** Destructor. */
~FixedSizeFunction() noexcept { clear(); }
/** If this instance is currently storing a callable object, calls that object,
otherwise throws `std::bad_function_call`.
*/
Ret operator() (Args... args) const
{
if (vtable != nullptr)
return vtable->call (&storage, std::forward<Args> (args)...);
throw std::bad_function_call();
}
/** Returns true if this instance currently holds a callable. */
explicit operator bool() const noexcept { return vtable != nullptr; }
private:
template <size_t, typename>
friend class FixedSizeFunction;
void clear() noexcept
{
if (vtable != nullptr)
vtable->clear (&storage);
}
template <size_t otherLen, typename T>
void move (FixedSizeFunction<otherLen, T>&& other) noexcept
{
if (vtable != nullptr)
vtable->move (&other.storage, &storage);
}
const detail::Vtable<Ret, Args...>* vtable = nullptr;
mutable Storage storage;
};
template <size_t len, typename T>
bool operator!= (const FixedSizeFunction<len, T>& fn, std::nullptr_t) { return bool (fn); }
template <size_t len, typename T>
bool operator!= (std::nullptr_t, const FixedSizeFunction<len, T>& fn) { return bool (fn); }
template <size_t len, typename T>
bool operator== (const FixedSizeFunction<len, T>& fn, std::nullptr_t) { return ! (fn != nullptr); }
template <size_t len, typename T>
bool operator== (std::nullptr_t, const FixedSizeFunction<len, T>& fn) { return ! (fn != nullptr); }
}
}

View File

@ -1,352 +1,355 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
#if JUCE_ENABLE_ALLOCATION_HOOKS
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE const UnitTestAllocationChecker checker (*this)
#else
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE
#endif
namespace juce
{
namespace dsp
{
namespace
{
class ConstructCounts
{
auto tie() const noexcept { return std::tie (constructions, copies, moves, calls, destructions); }
public:
int constructions = 0;
int copies = 0;
int moves = 0;
int calls = 0;
int destructions = 0;
ConstructCounts withConstructions (int i) const noexcept { auto c = *this; c.constructions = i; return c; }
ConstructCounts withCopies (int i) const noexcept { auto c = *this; c.copies = i; return c; }
ConstructCounts withMoves (int i) const noexcept { auto c = *this; c.moves = i; return c; }
ConstructCounts withCalls (int i) const noexcept { auto c = *this; c.calls = i; return c; }
ConstructCounts withDestructions (int i) const noexcept { auto c = *this; c.destructions = i; return c; }
bool operator== (const ConstructCounts& other) const noexcept { return tie() == other.tie(); }
bool operator!= (const ConstructCounts& other) const noexcept { return tie() != other.tie(); }
};
String& operator<< (String& str, const ConstructCounts& c)
{
return str << "{ constructions: " << c.constructions
<< ", copies: " << c.copies
<< ", moves: " << c.moves
<< ", calls: " << c.calls
<< ", destructions: " << c.destructions
<< " }";
}
class FixedSizeFunctionTest : public UnitTest
{
static void toggleBool (bool& b) { b = ! b; }
struct ConstructCounter
{
explicit ConstructCounter (ConstructCounts& countsIn)
: counts (countsIn) {}
ConstructCounter (const ConstructCounter& c)
: counts (c.counts)
{
counts.copies += 1;
}
ConstructCounter (ConstructCounter&& c) noexcept
: counts (c.counts)
{
counts.moves += 1;
}
~ConstructCounter() noexcept { counts.destructions += 1; }
void operator()() const noexcept { counts.calls += 1; }
ConstructCounts& counts;
};
public:
FixedSizeFunctionTest()
: UnitTest ("Fixed Size Function", UnitTestCategories::dsp)
{}
void runTest() override
{
beginTest ("Can be constructed and called from a lambda");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
const auto result = 5;
bool wasCalled = false;
const auto lambda = [&] { wasCalled = true; return result; };
const FixedSizeFunction<sizeof (lambda), int()> fn (lambda);
const auto out = fn();
expect (wasCalled);
expectEquals (result, out);
}
beginTest ("void fn can be constructed from function with return value");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
bool wasCalled = false;
const auto lambda = [&] { wasCalled = true; return 5; };
const FixedSizeFunction<sizeof (lambda), void()> fn (lambda);
fn();
expect (wasCalled);
}
beginTest ("Can be constructed and called from a function pointer");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
bool state = false;
const FixedSizeFunction<sizeof (void*), void (bool&)> fn (toggleBool);
fn (state);
expect (state);
fn (state);
expect (! state);
fn (state);
expect (state);
}
beginTest ("Default constructed functions throw if called");
{
const auto a = FixedSizeFunction<8, void()>();
expectThrowsType (a(), std::bad_function_call)
const auto b = FixedSizeFunction<8, void()> (nullptr);
expectThrowsType (b(), std::bad_function_call)
}
beginTest ("Functions can be moved");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
ConstructCounts counts;
auto a = FixedSizeFunction<sizeof (ConstructCounter), void()> (ConstructCounter { counts });
expectEquals (counts, ConstructCounts().withMoves (1).withDestructions (1)); // The temporary gets destroyed
a();
expectEquals (counts, ConstructCounts().withMoves (1).withDestructions (1).withCalls (1));
const auto b = std::move (a);
expectEquals (counts, ConstructCounts().withMoves (2).withDestructions (1).withCalls (1));
b();
expectEquals (counts, ConstructCounts().withMoves (2).withDestructions (1).withCalls (2));
b();
expectEquals (counts, ConstructCounts().withMoves (2).withDestructions (1).withCalls (3));
}
beginTest ("Functions are destructed properly");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
ConstructCounts counts;
const ConstructCounter toCopy { counts };
{
auto a = FixedSizeFunction<sizeof (ConstructCounter), void()> (toCopy);
expectEquals (counts, ConstructCounts().withCopies (1));
}
expectEquals (counts, ConstructCounts().withCopies (1).withDestructions (1));
}
beginTest ("Avoid destructing functions that fail to construct");
{
struct BadConstructor
{
explicit BadConstructor (ConstructCounts& c)
: counts (c)
{
counts.constructions += 1;
throw std::runtime_error { "this was meant to happen" };
}
~BadConstructor() noexcept { counts.destructions += 1; }
void operator()() const noexcept { counts.calls += 1; }
ConstructCounts& counts;
};
ConstructCounts counts;
expectThrowsType ((FixedSizeFunction<sizeof (BadConstructor), void()> (BadConstructor { counts })),
std::runtime_error)
expectEquals (counts, ConstructCounts().withConstructions (1));
}
beginTest ("Equality checks work");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
FixedSizeFunction<8, void()> a;
expect (! bool (a));
expect (a == nullptr);
expect (nullptr == a);
expect (! (a != nullptr));
expect (! (nullptr != a));
FixedSizeFunction<8, void()> b ([] {});
expect (bool (b));
expect (b != nullptr);
expect (nullptr != b);
expect (! (b == nullptr));
expect (! (nullptr == b));
}
beginTest ("Functions can be cleared");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
FixedSizeFunction<8, void()> fn ([] {});
expect (bool (fn));
fn = nullptr;
expect (! bool (fn));
}
beginTest ("Functions can be assigned");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using Fn = FixedSizeFunction<8, void()>;
int numCallsA = 0;
int numCallsB = 0;
Fn x;
Fn y;
expect (! bool (x));
expect (! bool (y));
x = [&] { numCallsA += 1; };
y = [&] { numCallsB += 1; };
expect (bool (x));
expect (bool (y));
x();
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 0);
y();
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 1);
x = std::move (y);
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 1);
x();
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 2);
}
beginTest ("Functions may mutate internal state");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using Fn = FixedSizeFunction<64, void()>;
Fn x;
expect (! bool (x));
int numCalls = 0;
x = [&numCalls, counter = 0]() mutable { counter += 1; numCalls = counter; };
expect (bool (x));
expectEquals (numCalls, 0);
x();
expectEquals (numCalls, 1);
x();
expectEquals (numCalls, 2);
}
beginTest ("Functions can sink move-only parameters");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using Fn = FixedSizeFunction<64, int (std::unique_ptr<int>)>;
auto value = 5;
auto ptr = std::make_unique<int> (value);
Fn fn = [] (std::unique_ptr<int> p) { return *p; };
expect (value == fn (std::move (ptr)));
}
beginTest ("Functions be converted from smaller functions");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using SmallFn = FixedSizeFunction<20, void()>;
using LargeFn = FixedSizeFunction<21, void()>;
bool smallCalled = false;
bool largeCalled = false;
SmallFn small = [&smallCalled, a = std::array<char, 8>{}] { smallCalled = true; juce::ignoreUnused (a); };
LargeFn large = [&largeCalled, a = std::array<char, 8>{}] { largeCalled = true; juce::ignoreUnused (a); };
large = std::move (small);
large();
expect (smallCalled);
expect (! largeCalled);
}
}
};
FixedSizeFunctionTest fixedSizedFunctionTest;
}
}
}
#undef JUCE_FAIL_ON_ALLOCATION_IN_SCOPE
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
#if JUCE_ENABLE_ALLOCATION_HOOKS
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE const UnitTestAllocationChecker checker (*this)
#else
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE
#endif
namespace juce
{
namespace dsp
{
namespace
{
class ConstructCounts
{
auto tie() const noexcept { return std::tie (constructions, copies, moves, calls, destructions); }
public:
int constructions = 0;
int copies = 0;
int moves = 0;
int calls = 0;
int destructions = 0;
ConstructCounts withConstructions (int i) const noexcept { auto c = *this; c.constructions = i; return c; }
ConstructCounts withCopies (int i) const noexcept { auto c = *this; c.copies = i; return c; }
ConstructCounts withMoves (int i) const noexcept { auto c = *this; c.moves = i; return c; }
ConstructCounts withCalls (int i) const noexcept { auto c = *this; c.calls = i; return c; }
ConstructCounts withDestructions (int i) const noexcept { auto c = *this; c.destructions = i; return c; }
bool operator== (const ConstructCounts& other) const noexcept { return tie() == other.tie(); }
bool operator!= (const ConstructCounts& other) const noexcept { return tie() != other.tie(); }
};
String& operator<< (String& str, const ConstructCounts& c)
{
return str << "{ constructions: " << c.constructions
<< ", copies: " << c.copies
<< ", moves: " << c.moves
<< ", calls: " << c.calls
<< ", destructions: " << c.destructions
<< " }";
}
class FixedSizeFunctionTest : public UnitTest
{
static void toggleBool (bool& b) { b = ! b; }
struct ConstructCounter
{
explicit ConstructCounter (ConstructCounts& countsIn)
: counts (countsIn) {}
ConstructCounter (const ConstructCounter& c)
: counts (c.counts)
{
counts.copies += 1;
}
ConstructCounter (ConstructCounter&& c) noexcept
: counts (c.counts)
{
counts.moves += 1;
}
~ConstructCounter() noexcept { counts.destructions += 1; }
void operator()() const noexcept { counts.calls += 1; }
ConstructCounts& counts;
};
public:
FixedSizeFunctionTest()
: UnitTest ("Fixed Size Function", UnitTestCategories::dsp)
{}
void runTest() override
{
beginTest ("Can be constructed and called from a lambda");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
const auto result = 5;
bool wasCalled = false;
const auto lambda = [&] { wasCalled = true; return result; };
const FixedSizeFunction<sizeof (lambda), int()> fn (lambda);
const auto out = fn();
expect (wasCalled);
expectEquals (result, out);
}
beginTest ("void fn can be constructed from function with return value");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
bool wasCalled = false;
const auto lambda = [&] { wasCalled = true; return 5; };
const FixedSizeFunction<sizeof (lambda), void()> fn (lambda);
fn();
expect (wasCalled);
}
beginTest ("Can be constructed and called from a function pointer");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
bool state = false;
const FixedSizeFunction<sizeof (void*), void (bool&)> fn (toggleBool);
fn (state);
expect (state);
fn (state);
expect (! state);
fn (state);
expect (state);
}
beginTest ("Default constructed functions throw if called");
{
const auto a = FixedSizeFunction<8, void()>();
expectThrowsType (a(), std::bad_function_call)
const auto b = FixedSizeFunction<8, void()> (nullptr);
expectThrowsType (b(), std::bad_function_call)
}
beginTest ("Functions can be moved");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
ConstructCounts counts;
auto a = FixedSizeFunction<sizeof (ConstructCounter), void()> (ConstructCounter { counts });
expectEquals (counts, ConstructCounts().withMoves (1).withDestructions (1)); // The temporary gets destroyed
a();
expectEquals (counts, ConstructCounts().withMoves (1).withDestructions (1).withCalls (1));
const auto b = std::move (a);
expectEquals (counts, ConstructCounts().withMoves (2).withDestructions (1).withCalls (1));
b();
expectEquals (counts, ConstructCounts().withMoves (2).withDestructions (1).withCalls (2));
b();
expectEquals (counts, ConstructCounts().withMoves (2).withDestructions (1).withCalls (3));
}
beginTest ("Functions are destructed properly");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
ConstructCounts counts;
const ConstructCounter toCopy { counts };
{
auto a = FixedSizeFunction<sizeof (ConstructCounter), void()> (toCopy);
expectEquals (counts, ConstructCounts().withCopies (1));
}
expectEquals (counts, ConstructCounts().withCopies (1).withDestructions (1));
}
beginTest ("Avoid destructing functions that fail to construct");
{
struct BadConstructor
{
explicit BadConstructor (ConstructCounts& c)
: counts (c)
{
counts.constructions += 1;
throw std::runtime_error { "this was meant to happen" };
}
BadConstructor (const BadConstructor&) = default;
BadConstructor& operator= (const BadConstructor&) = delete;
~BadConstructor() noexcept { counts.destructions += 1; }
void operator()() const noexcept { counts.calls += 1; }
ConstructCounts& counts;
};
ConstructCounts counts;
expectThrowsType ((FixedSizeFunction<sizeof (BadConstructor), void()> (BadConstructor { counts })),
std::runtime_error)
expectEquals (counts, ConstructCounts().withConstructions (1));
}
beginTest ("Equality checks work");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
FixedSizeFunction<8, void()> a;
expect (! bool (a));
expect (a == nullptr);
expect (nullptr == a);
expect (! (a != nullptr));
expect (! (nullptr != a));
FixedSizeFunction<8, void()> b ([] {});
expect (bool (b));
expect (b != nullptr);
expect (nullptr != b);
expect (! (b == nullptr));
expect (! (nullptr == b));
}
beginTest ("Functions can be cleared");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
FixedSizeFunction<8, void()> fn ([] {});
expect (bool (fn));
fn = nullptr;
expect (! bool (fn));
}
beginTest ("Functions can be assigned");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using Fn = FixedSizeFunction<8, void()>;
int numCallsA = 0;
int numCallsB = 0;
Fn x;
Fn y;
expect (! bool (x));
expect (! bool (y));
x = [&] { numCallsA += 1; };
y = [&] { numCallsB += 1; };
expect (bool (x));
expect (bool (y));
x();
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 0);
y();
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 1);
x = std::move (y);
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 1);
x();
expectEquals (numCallsA, 1);
expectEquals (numCallsB, 2);
}
beginTest ("Functions may mutate internal state");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using Fn = FixedSizeFunction<64, void()>;
Fn x;
expect (! bool (x));
int numCalls = 0;
x = [&numCalls, counter = 0]() mutable { counter += 1; numCalls = counter; };
expect (bool (x));
expectEquals (numCalls, 0);
x();
expectEquals (numCalls, 1);
x();
expectEquals (numCalls, 2);
}
beginTest ("Functions can sink move-only parameters");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using Fn = FixedSizeFunction<64, int (std::unique_ptr<int>)>;
auto value = 5;
auto ptr = std::make_unique<int> (value);
Fn fn = [] (std::unique_ptr<int> p) { return *p; };
expect (value == fn (std::move (ptr)));
}
beginTest ("Functions be converted from smaller functions");
{
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
using SmallFn = FixedSizeFunction<20, void()>;
using LargeFn = FixedSizeFunction<21, void()>;
bool smallCalled = false;
bool largeCalled = false;
SmallFn small = [&smallCalled, a = std::array<char, 8>{}] { smallCalled = true; juce::ignoreUnused (a); };
LargeFn large = [&largeCalled, a = std::array<char, 8>{}] { largeCalled = true; juce::ignoreUnused (a); };
large = std::move (small);
large();
expect (smallCalled);
expect (! largeCalled);
}
}
};
FixedSizeFunctionTest fixedSizedFunctionTest;
}
}
}
#undef JUCE_FAIL_ON_ALLOCATION_IN_SCOPE

View File

@ -1,403 +1,400 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
#ifndef DOXYGEN
// This class is needed internally.
template <typename Scalar>
struct CmplxSIMDOps;
#endif
//==============================================================================
/**
A wrapper around the platform's native SIMD register type.
This class is only available on SIMD machines. Use JUCE_USE_SIMD to query
if SIMD is available for your system.
SIMDRegister<Type> is a templated class representing the native
vectorized version of FloatingType. SIMDRegister supports all numerical
primitive types and std:complex<float> and std::complex<double> supports
and most operations of the corresponding primitive
type. Additionally, SIMDRegister can be accessed like an array to extract
the individual elements.
If you are using SIMDRegister as a pointer, then you must ensure that the
memory is sufficiently aligned for SIMD vector operations. Failing to do so
will result in crashes or very slow code. Use SIMDRegister::isSIMDAligned
to query if a pointer is sufficiently aligned for SIMD vector operations.
Note that using SIMDRegister without enabling optimizations will result
in code with very poor performance.
@tags{DSP}
*/
template <typename Type>
struct SIMDRegister
{
//==============================================================================
/** The type that represents the individual constituents of the SIMD Register */
using ElementType = Type;
/** STL compatible value_type definition (same as ElementType). */
using value_type = ElementType;
/** The corresponding primitive integer type, for example, this will be int32_t
if type is a float. */
using MaskType = typename SIMDInternal::MaskTypeFor<ElementType>::type;
//==============================================================================
// Here are some types which are needed internally
/** The native primitive type (used internally). */
using PrimitiveType = typename SIMDInternal::PrimitiveType<ElementType>::type;
/** The native operations for this platform and type combination (used internally) */
using NativeOps = SIMDNativeOps<PrimitiveType>;
/** The native type (used internally). */
using vSIMDType = typename NativeOps::vSIMDType;
/** The corresponding integer SIMDRegister type (used internally). */
using vMaskType = SIMDRegister<MaskType>;
/** The internal native type for the corresponding mask type (used internally). */
using vMaskSIMDType = typename vMaskType::vSIMDType;
/** Wrapper for operations which need to be handled differently for complex
and scalar types (used internally). */
using CmplxOps = CmplxSIMDOps<ElementType>;
/** Type which is returned when using the subscript operator. The returned type
should be used just like the type ElementType. */
struct ElementAccess;
//==============================================================================
/** The size in bytes of this register. */
static constexpr size_t SIMDRegisterSize = sizeof (vSIMDType);
/** The number of elements that this vector can hold. */
static constexpr size_t SIMDNumElements = SIMDRegisterSize / sizeof (ElementType);
vSIMDType value;
/** Default constructor. */
inline SIMDRegister() noexcept = default;
/** Constructs an object from the native SIMD type. */
inline SIMDRegister (vSIMDType a) noexcept : value (a) {}
/** Constructs an object from a scalar type by broadcasting it to all elements. */
inline SIMDRegister (Type s) noexcept { *this = s; }
/** Destructor. */
inline ~SIMDRegister() noexcept = default;
//==============================================================================
/** Returns the number of elements in this vector. */
static constexpr size_t size() noexcept { return SIMDNumElements; }
//==============================================================================
/** Creates a new SIMDRegister from the corresponding scalar primitive.
The scalar is extended to all elements of the vector. */
static SIMDRegister JUCE_VECTOR_CALLTYPE expand (ElementType s) noexcept { return {CmplxOps::expand (s)}; }
/** Creates a new SIMDRegister from the internal SIMD type (for example
__mm128 for single-precision floating point on SSE architectures). */
static SIMDRegister JUCE_VECTOR_CALLTYPE fromNative (vSIMDType a) noexcept { return {a}; }
/** Creates a new SIMDRegister from the first SIMDNumElements of a scalar array. */
static SIMDRegister JUCE_VECTOR_CALLTYPE fromRawArray (const ElementType* a) noexcept
{
jassert (isSIMDAligned (a));
return {CmplxOps::load (a)};
}
/** Copies the elements of the SIMDRegister to a scalar array in memory. */
inline void JUCE_VECTOR_CALLTYPE copyToRawArray (ElementType* a) const noexcept
{
jassert (isSIMDAligned (a));
CmplxOps::store (value, a);
}
//==============================================================================
/** Returns the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline ElementType JUCE_VECTOR_CALLTYPE get (size_t idx) const noexcept
{
jassert (idx < SIMDNumElements);
return CmplxOps::get (value, idx);
}
/** Sets the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline void JUCE_VECTOR_CALLTYPE set (size_t idx, ElementType v) noexcept
{
jassert (idx < SIMDNumElements);
value = CmplxOps::set (value, idx, v);
}
//==============================================================================
/** Returns the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline ElementType JUCE_VECTOR_CALLTYPE operator[] (size_t idx) const noexcept
{
return get (idx);
}
/** Returns the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline ElementAccess JUCE_VECTOR_CALLTYPE operator[] (size_t idx) noexcept
{
jassert (idx < SIMDNumElements);
return ElementAccess (*this, idx);
}
//==============================================================================
/** Adds another SIMDRegister to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator+= (SIMDRegister v) noexcept { value = NativeOps::add (value, v.value); return *this; }
/** Subtracts another SIMDRegister to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator-= (SIMDRegister v) noexcept { value = NativeOps::sub (value, v.value); return *this; }
/** Multiplies another SIMDRegister to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator*= (SIMDRegister v) noexcept { value = CmplxOps::mul (value, v.value); return *this; }
//==============================================================================
/** Broadcasts the scalar to all elements of the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator= (ElementType s) noexcept { value = CmplxOps::expand (s); return *this; }
/** Adds a scalar to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator+= (ElementType s) noexcept { value = NativeOps::add (value, CmplxOps::expand (s)); return *this; }
/** Subtracts a scalar to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator-= (ElementType s) noexcept { value = NativeOps::sub (value, CmplxOps::expand (s)); return *this; }
/** Multiplies a scalar to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator*= (ElementType s) noexcept { value = CmplxOps::mul (value, CmplxOps::expand (s)); return *this; }
//==============================================================================
/** Bit-and the receiver with SIMDRegister v and store the result in the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator&= (vMaskType v) noexcept { value = NativeOps::bit_and (value, toVecType (v.value)); return *this; }
/** Bit-or the receiver with SIMDRegister v and store the result in the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator|= (vMaskType v) noexcept { value = NativeOps::bit_or (value, toVecType (v.value)); return *this; }
/** Bit-xor the receiver with SIMDRegister v and store the result in the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator^= (vMaskType v) noexcept { value = NativeOps::bit_xor (value, toVecType (v.value)); return *this; }
//==============================================================================
/** Bit-and each element of the receiver with the scalar s and store the result in the receiver.*/
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator&= (MaskType s) noexcept { value = NativeOps::bit_and (value, toVecType (s)); return *this; }
/** Bit-or each element of the receiver with the scalar s and store the result in the receiver.*/
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator|= (MaskType s) noexcept { value = NativeOps::bit_or (value, toVecType (s)); return *this; }
/** Bit-xor each element of the receiver with the scalar s and store the result in the receiver.*/
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator^= (MaskType s) noexcept { value = NativeOps::bit_xor (value, toVecType (s)); return *this; }
//==============================================================================
/** Returns the sum of the receiver and v.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator+ (SIMDRegister v) const noexcept { return { NativeOps::add (value, v.value) }; }
/** Returns the difference of the receiver and v.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator- (SIMDRegister v) const noexcept { return { NativeOps::sub (value, v.value) }; }
/** Returns the product of the receiver and v.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator* (SIMDRegister v) const noexcept { return { CmplxOps::mul (value, v.value) }; }
//==============================================================================
/** Returns a vector where each element is the sum of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator+ (ElementType s) const noexcept { return { NativeOps::add (value, CmplxOps::expand (s)) }; }
/** Returns a vector where each element is the difference of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator- (ElementType s) const noexcept { return { NativeOps::sub (value, CmplxOps::expand (s)) }; }
/** Returns a vector where each element is the product of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator* (ElementType s) const noexcept { return { CmplxOps::mul (value, CmplxOps::expand (s)) }; }
//==============================================================================
/** Returns the bit-and of the receiver and v. */
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator& (vMaskType v) const noexcept { return { NativeOps::bit_and (value, toVecType (v.value)) }; }
/** Returns the bit-or of the receiver and v. */
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator| (vMaskType v) const noexcept { return { NativeOps::bit_or (value, toVecType (v.value)) }; }
/** Returns the bit-xor of the receiver and v. */
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator^ (vMaskType v) const noexcept { return { NativeOps::bit_xor (value, toVecType (v.value)) }; }
/** Returns a vector where each element is the bit-inverted value of the corresponding element in the receiver.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator~() const noexcept { return { NativeOps::bit_not (value) }; }
//==============================================================================
/** Returns a vector where each element is the bit-and'd value of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator& (MaskType s) const noexcept { return { NativeOps::bit_and (value, toVecType (s)) }; }
/** Returns a vector where each element is the bit-or'd value of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator| (MaskType s) const noexcept { return { NativeOps::bit_or (value, toVecType (s)) }; }
/** Returns a vector where each element is the bit-xor'd value of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator^ (MaskType s) const noexcept { return { NativeOps::bit_xor (value, toVecType (s)) }; }
//==============================================================================
/** Returns true if all element-wise comparisons return true. */
inline bool JUCE_VECTOR_CALLTYPE operator== (SIMDRegister other) const noexcept { return NativeOps::allEqual (value, other.value); }
/** Returns true if any element-wise comparisons return false. */
inline bool JUCE_VECTOR_CALLTYPE operator!= (SIMDRegister other) const noexcept { return ! (*this == other); }
/** Returns true if all elements are equal to the scalar. */
inline bool JUCE_VECTOR_CALLTYPE operator== (Type s) const noexcept { return *this == SIMDRegister::expand (s); }
/** Returns true if any elements are not equal to the scalar. */
inline bool JUCE_VECTOR_CALLTYPE operator!= (Type s) const noexcept { return ! (*this == s); }
//==============================================================================
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE equal (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::equal (a.value, b.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is not equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE notEqual (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::notEqual (a.value, b.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is less than to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE lessThan (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThan (b.value, a.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is than or equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE lessThanOrEqual (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThanOrEqual (b.value, a.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is greater than to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE greaterThan (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThan (a.value, b.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is greater than or equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE greaterThanOrEqual (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThanOrEqual (a.value, b.value)); }
//==============================================================================
/** Returns a new vector where each element is the minimum of the corresponding element of a and b. */
static SIMDRegister JUCE_VECTOR_CALLTYPE min (SIMDRegister a, SIMDRegister b) noexcept { return { NativeOps::min (a.value, b.value) }; }
/** Returns a new vector where each element is the maximum of the corresponding element of a and b. */
static SIMDRegister JUCE_VECTOR_CALLTYPE max (SIMDRegister a, SIMDRegister b) noexcept { return { NativeOps::max (a.value, b.value) }; }
//==============================================================================
/** Multiplies b and c and adds the result to a. */
static SIMDRegister JUCE_VECTOR_CALLTYPE multiplyAdd (SIMDRegister a, const SIMDRegister b, SIMDRegister c) noexcept
{
return { CmplxOps::muladd (a.value, b.value, c.value) };
}
//==============================================================================
/** Returns a scalar which is the sum of all elements of the receiver. */
inline ElementType sum() const noexcept { return CmplxOps::sum (value); }
//==============================================================================
/** Truncates each element to its integer part.
Effectively discards the fractional part of each element. A.k.a. round to zero. */
static SIMDRegister JUCE_VECTOR_CALLTYPE truncate (SIMDRegister a) noexcept { return { NativeOps::truncate (a.value) }; }
//==============================================================================
/** Returns the absolute value of each element. */
static SIMDRegister JUCE_VECTOR_CALLTYPE abs (SIMDRegister a) noexcept
{
return a - (a * (expand (ElementType (2)) & lessThan (a, expand (ElementType (0)))));
}
//==============================================================================
/** Checks if the given pointer is sufficiently aligned for using SIMD operations. */
static bool isSIMDAligned (const ElementType* ptr) noexcept
{
uintptr_t bitmask = SIMDRegisterSize - 1;
return (reinterpret_cast<uintptr_t> (ptr) & bitmask) == 0;
}
/** Returns the next position in memory where isSIMDAligned returns true.
If the current position in memory is already aligned then this method
will simply return the pointer.
*/
static ElementType* getNextSIMDAlignedPtr (ElementType* ptr) noexcept
{
return snapPointerToAlignment (ptr, SIMDRegisterSize);
}
private:
static vMaskType JUCE_VECTOR_CALLTYPE toMaskType (vSIMDType a) noexcept
{
union
{
vSIMDType in;
vMaskSIMDType out;
} u;
u.in = a;
return vMaskType::fromNative (u.out);
}
static vSIMDType JUCE_VECTOR_CALLTYPE toVecType (vMaskSIMDType a) noexcept
{
union
{
vMaskSIMDType in;
vSIMDType out;
} u;
u.in = a;
return u.out;
}
static vSIMDType JUCE_VECTOR_CALLTYPE toVecType (MaskType a) noexcept
{
union
{
vMaskSIMDType in;
vSIMDType out;
} u;
u.in = CmplxSIMDOps<MaskType>::expand (a);
return u.out;
}
};
} // namespace dsp
} // namespace juce
#ifndef DOXYGEN
#include "juce_SIMDRegister_Impl.h"
#endif
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
#ifndef DOXYGEN
// This class is needed internally.
template <typename Scalar>
struct CmplxSIMDOps;
#endif
//==============================================================================
/**
A wrapper around the platform's native SIMD register type.
This class is only available on SIMD machines. Use JUCE_USE_SIMD to query
if SIMD is available for your system.
SIMDRegister<Type> is a templated class representing the native
vectorized version of FloatingType. SIMDRegister supports all numerical
primitive types and std:complex<float> and std::complex<double> supports
and most operations of the corresponding primitive
type. Additionally, SIMDRegister can be accessed like an array to extract
the individual elements.
If you are using SIMDRegister as a pointer, then you must ensure that the
memory is sufficiently aligned for SIMD vector operations. Failing to do so
will result in crashes or very slow code. Use SIMDRegister::isSIMDAligned
to query if a pointer is sufficiently aligned for SIMD vector operations.
Note that using SIMDRegister without enabling optimizations will result
in code with very poor performance.
@tags{DSP}
*/
template <typename Type>
struct SIMDRegister
{
//==============================================================================
/** The type that represents the individual constituents of the SIMD Register */
using ElementType = Type;
/** STL compatible value_type definition (same as ElementType). */
using value_type = ElementType;
/** The corresponding primitive integer type, for example, this will be int32_t
if type is a float. */
using MaskType = typename SIMDInternal::MaskTypeFor<ElementType>::type;
//==============================================================================
// Here are some types which are needed internally
/** The native primitive type (used internally). */
using PrimitiveType = typename SIMDInternal::PrimitiveType<ElementType>::type;
/** The native operations for this platform and type combination (used internally) */
using NativeOps = SIMDNativeOps<PrimitiveType>;
/** The native type (used internally). */
using vSIMDType = typename NativeOps::vSIMDType;
/** The corresponding integer SIMDRegister type (used internally). */
using vMaskType = SIMDRegister<MaskType>;
/** The internal native type for the corresponding mask type (used internally). */
using vMaskSIMDType = typename vMaskType::vSIMDType;
/** Wrapper for operations which need to be handled differently for complex
and scalar types (used internally). */
using CmplxOps = CmplxSIMDOps<ElementType>;
/** Type which is returned when using the subscript operator. The returned type
should be used just like the type ElementType. */
struct ElementAccess;
//==============================================================================
/** The size in bytes of this register. */
static constexpr size_t SIMDRegisterSize = sizeof (vSIMDType);
/** The number of elements that this vector can hold. */
static constexpr size_t SIMDNumElements = SIMDRegisterSize / sizeof (ElementType);
vSIMDType value;
/** Default constructor. */
inline SIMDRegister() noexcept = default;
/** Constructs an object from the native SIMD type. */
inline SIMDRegister (vSIMDType a) noexcept : value (a) {}
/** Constructs an object from a scalar type by broadcasting it to all elements. */
inline SIMDRegister (Type s) noexcept { *this = s; }
//==============================================================================
/** Returns the number of elements in this vector. */
static constexpr size_t size() noexcept { return SIMDNumElements; }
//==============================================================================
/** Creates a new SIMDRegister from the corresponding scalar primitive.
The scalar is extended to all elements of the vector. */
static SIMDRegister JUCE_VECTOR_CALLTYPE expand (ElementType s) noexcept { return {CmplxOps::expand (s)}; }
/** Creates a new SIMDRegister from the internal SIMD type (for example
__mm128 for single-precision floating point on SSE architectures). */
static SIMDRegister JUCE_VECTOR_CALLTYPE fromNative (vSIMDType a) noexcept { return {a}; }
/** Creates a new SIMDRegister from the first SIMDNumElements of a scalar array. */
static SIMDRegister JUCE_VECTOR_CALLTYPE fromRawArray (const ElementType* a) noexcept
{
jassert (isSIMDAligned (a));
return {CmplxOps::load (a)};
}
/** Copies the elements of the SIMDRegister to a scalar array in memory. */
inline void JUCE_VECTOR_CALLTYPE copyToRawArray (ElementType* a) const noexcept
{
jassert (isSIMDAligned (a));
CmplxOps::store (value, a);
}
//==============================================================================
/** Returns the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline ElementType JUCE_VECTOR_CALLTYPE get (size_t idx) const noexcept
{
jassert (idx < SIMDNumElements);
return CmplxOps::get (value, idx);
}
/** Sets the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline void JUCE_VECTOR_CALLTYPE set (size_t idx, ElementType v) noexcept
{
jassert (idx < SIMDNumElements);
value = CmplxOps::set (value, idx, v);
}
//==============================================================================
/** Returns the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline ElementType JUCE_VECTOR_CALLTYPE operator[] (size_t idx) const noexcept
{
return get (idx);
}
/** Returns the idx-th element of the receiver. Note that this does not check if idx
is larger than the native register size. */
inline ElementAccess JUCE_VECTOR_CALLTYPE operator[] (size_t idx) noexcept
{
jassert (idx < SIMDNumElements);
return ElementAccess (*this, idx);
}
//==============================================================================
/** Adds another SIMDRegister to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator+= (SIMDRegister v) noexcept { value = NativeOps::add (value, v.value); return *this; }
/** Subtracts another SIMDRegister to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator-= (SIMDRegister v) noexcept { value = NativeOps::sub (value, v.value); return *this; }
/** Multiplies another SIMDRegister to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator*= (SIMDRegister v) noexcept { value = CmplxOps::mul (value, v.value); return *this; }
//==============================================================================
/** Broadcasts the scalar to all elements of the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator= (ElementType s) noexcept { value = CmplxOps::expand (s); return *this; }
/** Adds a scalar to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator+= (ElementType s) noexcept { value = NativeOps::add (value, CmplxOps::expand (s)); return *this; }
/** Subtracts a scalar to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator-= (ElementType s) noexcept { value = NativeOps::sub (value, CmplxOps::expand (s)); return *this; }
/** Multiplies a scalar to the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator*= (ElementType s) noexcept { value = CmplxOps::mul (value, CmplxOps::expand (s)); return *this; }
//==============================================================================
/** Bit-and the receiver with SIMDRegister v and store the result in the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator&= (vMaskType v) noexcept { value = NativeOps::bit_and (value, toVecType (v.value)); return *this; }
/** Bit-or the receiver with SIMDRegister v and store the result in the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator|= (vMaskType v) noexcept { value = NativeOps::bit_or (value, toVecType (v.value)); return *this; }
/** Bit-xor the receiver with SIMDRegister v and store the result in the receiver. */
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator^= (vMaskType v) noexcept { value = NativeOps::bit_xor (value, toVecType (v.value)); return *this; }
//==============================================================================
/** Bit-and each element of the receiver with the scalar s and store the result in the receiver.*/
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator&= (MaskType s) noexcept { value = NativeOps::bit_and (value, toVecType (s)); return *this; }
/** Bit-or each element of the receiver with the scalar s and store the result in the receiver.*/
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator|= (MaskType s) noexcept { value = NativeOps::bit_or (value, toVecType (s)); return *this; }
/** Bit-xor each element of the receiver with the scalar s and store the result in the receiver.*/
inline SIMDRegister& JUCE_VECTOR_CALLTYPE operator^= (MaskType s) noexcept { value = NativeOps::bit_xor (value, toVecType (s)); return *this; }
//==============================================================================
/** Returns the sum of the receiver and v.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator+ (SIMDRegister v) const noexcept { return { NativeOps::add (value, v.value) }; }
/** Returns the difference of the receiver and v.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator- (SIMDRegister v) const noexcept { return { NativeOps::sub (value, v.value) }; }
/** Returns the product of the receiver and v.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator* (SIMDRegister v) const noexcept { return { CmplxOps::mul (value, v.value) }; }
//==============================================================================
/** Returns a vector where each element is the sum of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator+ (ElementType s) const noexcept { return { NativeOps::add (value, CmplxOps::expand (s)) }; }
/** Returns a vector where each element is the difference of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator- (ElementType s) const noexcept { return { NativeOps::sub (value, CmplxOps::expand (s)) }; }
/** Returns a vector where each element is the product of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator* (ElementType s) const noexcept { return { CmplxOps::mul (value, CmplxOps::expand (s)) }; }
//==============================================================================
/** Returns the bit-and of the receiver and v. */
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator& (vMaskType v) const noexcept { return { NativeOps::bit_and (value, toVecType (v.value)) }; }
/** Returns the bit-or of the receiver and v. */
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator| (vMaskType v) const noexcept { return { NativeOps::bit_or (value, toVecType (v.value)) }; }
/** Returns the bit-xor of the receiver and v. */
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator^ (vMaskType v) const noexcept { return { NativeOps::bit_xor (value, toVecType (v.value)) }; }
/** Returns a vector where each element is the bit-inverted value of the corresponding element in the receiver.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator~() const noexcept { return { NativeOps::bit_not (value) }; }
//==============================================================================
/** Returns a vector where each element is the bit-and'd value of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator& (MaskType s) const noexcept { return { NativeOps::bit_and (value, toVecType (s)) }; }
/** Returns a vector where each element is the bit-or'd value of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator| (MaskType s) const noexcept { return { NativeOps::bit_or (value, toVecType (s)) }; }
/** Returns a vector where each element is the bit-xor'd value of the corresponding element in the receiver and the scalar s.*/
inline SIMDRegister JUCE_VECTOR_CALLTYPE operator^ (MaskType s) const noexcept { return { NativeOps::bit_xor (value, toVecType (s)) }; }
//==============================================================================
/** Returns true if all element-wise comparisons return true. */
inline bool JUCE_VECTOR_CALLTYPE operator== (SIMDRegister other) const noexcept { return NativeOps::allEqual (value, other.value); }
/** Returns true if any element-wise comparisons return false. */
inline bool JUCE_VECTOR_CALLTYPE operator!= (SIMDRegister other) const noexcept { return ! (*this == other); }
/** Returns true if all elements are equal to the scalar. */
inline bool JUCE_VECTOR_CALLTYPE operator== (Type s) const noexcept { return *this == SIMDRegister::expand (s); }
/** Returns true if any elements are not equal to the scalar. */
inline bool JUCE_VECTOR_CALLTYPE operator!= (Type s) const noexcept { return ! (*this == s); }
//==============================================================================
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE equal (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::equal (a.value, b.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is not equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE notEqual (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::notEqual (a.value, b.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is less than to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE lessThan (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThan (b.value, a.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is than or equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE lessThanOrEqual (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThanOrEqual (b.value, a.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is greater than to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE greaterThan (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThan (a.value, b.value)); }
/** Returns a SIMDRegister of the corresponding integral type where each element has each bit set
if the corresponding element of a is greater than or equal to the corresponding element of b, or zero otherwise.
The result can then be used in bit operations defined above to avoid branches in vector SIMD code. */
static vMaskType JUCE_VECTOR_CALLTYPE greaterThanOrEqual (SIMDRegister a, SIMDRegister b) noexcept { return toMaskType (NativeOps::greaterThanOrEqual (a.value, b.value)); }
//==============================================================================
/** Returns a new vector where each element is the minimum of the corresponding element of a and b. */
static SIMDRegister JUCE_VECTOR_CALLTYPE min (SIMDRegister a, SIMDRegister b) noexcept { return { NativeOps::min (a.value, b.value) }; }
/** Returns a new vector where each element is the maximum of the corresponding element of a and b. */
static SIMDRegister JUCE_VECTOR_CALLTYPE max (SIMDRegister a, SIMDRegister b) noexcept { return { NativeOps::max (a.value, b.value) }; }
//==============================================================================
/** Multiplies b and c and adds the result to a. */
static SIMDRegister JUCE_VECTOR_CALLTYPE multiplyAdd (SIMDRegister a, const SIMDRegister b, SIMDRegister c) noexcept
{
return { CmplxOps::muladd (a.value, b.value, c.value) };
}
//==============================================================================
/** Returns a scalar which is the sum of all elements of the receiver. */
inline ElementType sum() const noexcept { return CmplxOps::sum (value); }
//==============================================================================
/** Truncates each element to its integer part.
Effectively discards the fractional part of each element. A.k.a. round to zero. */
static SIMDRegister JUCE_VECTOR_CALLTYPE truncate (SIMDRegister a) noexcept { return { NativeOps::truncate (a.value) }; }
//==============================================================================
/** Returns the absolute value of each element. */
static SIMDRegister JUCE_VECTOR_CALLTYPE abs (SIMDRegister a) noexcept
{
return a - (a * (expand (ElementType (2)) & lessThan (a, expand (ElementType (0)))));
}
//==============================================================================
/** Checks if the given pointer is sufficiently aligned for using SIMD operations. */
static bool isSIMDAligned (const ElementType* ptr) noexcept
{
uintptr_t bitmask = SIMDRegisterSize - 1;
return (reinterpret_cast<uintptr_t> (ptr) & bitmask) == 0;
}
/** Returns the next position in memory where isSIMDAligned returns true.
If the current position in memory is already aligned then this method
will simply return the pointer.
*/
static ElementType* getNextSIMDAlignedPtr (ElementType* ptr) noexcept
{
return snapPointerToAlignment (ptr, SIMDRegisterSize);
}
private:
static vMaskType JUCE_VECTOR_CALLTYPE toMaskType (vSIMDType a) noexcept
{
union
{
vSIMDType in;
vMaskSIMDType out;
} u;
u.in = a;
return vMaskType::fromNative (u.out);
}
static vSIMDType JUCE_VECTOR_CALLTYPE toVecType (vMaskSIMDType a) noexcept
{
union
{
vMaskSIMDType in;
vSIMDType out;
} u;
u.in = a;
return u.out;
}
static vSIMDType JUCE_VECTOR_CALLTYPE toVecType (MaskType a) noexcept
{
union
{
vMaskSIMDType in;
vSIMDType out;
} u;
u.in = CmplxSIMDOps<MaskType>::expand (a);
return u.out;
}
};
} // namespace dsp
} // namespace juce
#ifndef DOXYGEN
#include "juce_SIMDRegister_Impl.h"
#endif

View File

@ -1,177 +1,178 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
//==============================================================================
template <typename Type>
struct SIMDRegister<Type>::ElementAccess
{
operator Type() const { return simd.get (idx); }
ElementAccess& operator= (Type scalar) noexcept { simd.set (idx, scalar); return *this; }
ElementAccess& operator= (ElementAccess& o) noexcept { return operator= ((Type) o); }
private:
friend struct SIMDRegister;
ElementAccess (SIMDRegister& owner, size_t index) noexcept : simd (owner), idx (index) {}
SIMDRegister& simd;
size_t idx;
};
#ifndef DOXYGEN
//==============================================================================
/* This class is used internally by SIMDRegister to abstract away differences
in operations which are different for complex and pure floating point types. */
// the pure floating-point version
template <typename Scalar>
struct CmplxSIMDOps
{
using vSIMDType = typename SIMDNativeOps<Scalar>::vSIMDType;
static vSIMDType JUCE_VECTOR_CALLTYPE load (const Scalar* a) noexcept
{
return SIMDNativeOps<Scalar>::load (a);
}
static void JUCE_VECTOR_CALLTYPE store (vSIMDType value, Scalar* dest) noexcept
{
SIMDNativeOps<Scalar>::store (value, dest);
}
static vSIMDType JUCE_VECTOR_CALLTYPE expand (Scalar s) noexcept
{
return SIMDNativeOps<Scalar>::expand (s);
}
static Scalar JUCE_VECTOR_CALLTYPE get (vSIMDType v, std::size_t i) noexcept
{
return SIMDNativeOps<Scalar>::get (v, i);
}
static vSIMDType JUCE_VECTOR_CALLTYPE set (vSIMDType v, std::size_t i, Scalar s) noexcept
{
return SIMDNativeOps<Scalar>::set (v, i, s);
}
static Scalar JUCE_VECTOR_CALLTYPE sum (vSIMDType a) noexcept
{
return SIMDNativeOps<Scalar>::sum (a);
}
static vSIMDType JUCE_VECTOR_CALLTYPE mul (vSIMDType a, vSIMDType b) noexcept
{
return SIMDNativeOps<Scalar>::mul (a, b);
}
static vSIMDType JUCE_VECTOR_CALLTYPE muladd (vSIMDType a, vSIMDType b, vSIMDType c) noexcept
{
return SIMDNativeOps<Scalar>::multiplyAdd (a, b, c);
}
};
// The pure complex version
template <typename Scalar>
struct CmplxSIMDOps<std::complex<Scalar>>
{
using vSIMDType = typename SIMDNativeOps<Scalar>::vSIMDType;
static vSIMDType JUCE_VECTOR_CALLTYPE load (const std::complex<Scalar>* a) noexcept
{
return SIMDNativeOps<Scalar>::load (reinterpret_cast<const Scalar*> (a));
}
static void JUCE_VECTOR_CALLTYPE store (vSIMDType value, std::complex<Scalar>* dest) noexcept
{
SIMDNativeOps<Scalar>::store (value, reinterpret_cast<Scalar*> (dest));
}
static vSIMDType JUCE_VECTOR_CALLTYPE expand (std::complex<Scalar> s) noexcept
{
const int n = sizeof (vSIMDType) / sizeof (Scalar);
union
{
vSIMDType v;
Scalar floats[(size_t) n];
} u;
for (int i = 0; i < n; ++i)
u.floats[i] = (i & 1) == 0 ? s.real() : s.imag();
return u.v;
}
static std::complex<Scalar> JUCE_VECTOR_CALLTYPE get (vSIMDType v, std::size_t i) noexcept
{
auto j = i << 1;
return std::complex<Scalar> (SIMDNativeOps<Scalar>::get (v, j), SIMDNativeOps<Scalar>::get (v, j + 1));
}
static vSIMDType JUCE_VECTOR_CALLTYPE set (vSIMDType v, std::size_t i, std::complex<Scalar> s) noexcept
{
auto j = i << 1;
return SIMDNativeOps<Scalar>::set (SIMDNativeOps<Scalar>::set (v, j, s.real()), j + 1, s.imag());
}
static std::complex<Scalar> JUCE_VECTOR_CALLTYPE sum (vSIMDType a) noexcept
{
vSIMDType result = SIMDNativeOps<Scalar>::oddevensum (a);
auto* ptr = reinterpret_cast<const Scalar*> (&result);
return std::complex<Scalar> (ptr[0], ptr[1]);
}
static vSIMDType JUCE_VECTOR_CALLTYPE mul (vSIMDType a, vSIMDType b) noexcept
{
return SIMDNativeOps<Scalar>::cmplxmul (a, b);
}
static vSIMDType JUCE_VECTOR_CALLTYPE muladd (vSIMDType a, vSIMDType b, vSIMDType c) noexcept
{
return SIMDNativeOps<Scalar>::add (a, SIMDNativeOps<Scalar>::cmplxmul (b, c));
}
};
#endif
//==============================================================================
namespace util
{
template <typename Type>
inline void snapToZero (SIMDRegister<Type>&) noexcept {}
}
} // namespace dsp
// Extend some common used global functions to SIMDRegister types
template <typename Type>
inline dsp::SIMDRegister<Type> JUCE_VECTOR_CALLTYPE jmin (dsp::SIMDRegister<Type> a, dsp::SIMDRegister<Type> b) { return dsp::SIMDRegister<Type>::min (a, b); }
template <typename Type>
inline dsp::SIMDRegister<Type> JUCE_VECTOR_CALLTYPE jmax (dsp::SIMDRegister<Type> a, dsp::SIMDRegister<Type> b) { return dsp::SIMDRegister<Type>::max (a, b); }
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
//==============================================================================
template <typename Type>
struct SIMDRegister<Type>::ElementAccess
{
ElementAccess (const ElementAccess&) = default;
operator Type() const { return simd.get (idx); }
ElementAccess& operator= (Type scalar) noexcept { simd.set (idx, scalar); return *this; }
ElementAccess& operator= (const ElementAccess& o) noexcept { return operator= ((Type) o); }
private:
friend struct SIMDRegister;
ElementAccess (SIMDRegister& owner, size_t index) noexcept : simd (owner), idx (index) {}
SIMDRegister& simd;
size_t idx;
};
#ifndef DOXYGEN
//==============================================================================
/* This class is used internally by SIMDRegister to abstract away differences
in operations which are different for complex and pure floating point types. */
// the pure floating-point version
template <typename Scalar>
struct CmplxSIMDOps
{
using vSIMDType = typename SIMDNativeOps<Scalar>::vSIMDType;
static vSIMDType JUCE_VECTOR_CALLTYPE load (const Scalar* a) noexcept
{
return SIMDNativeOps<Scalar>::load (a);
}
static void JUCE_VECTOR_CALLTYPE store (vSIMDType value, Scalar* dest) noexcept
{
SIMDNativeOps<Scalar>::store (value, dest);
}
static vSIMDType JUCE_VECTOR_CALLTYPE expand (Scalar s) noexcept
{
return SIMDNativeOps<Scalar>::expand (s);
}
static Scalar JUCE_VECTOR_CALLTYPE get (vSIMDType v, std::size_t i) noexcept
{
return SIMDNativeOps<Scalar>::get (v, i);
}
static vSIMDType JUCE_VECTOR_CALLTYPE set (vSIMDType v, std::size_t i, Scalar s) noexcept
{
return SIMDNativeOps<Scalar>::set (v, i, s);
}
static Scalar JUCE_VECTOR_CALLTYPE sum (vSIMDType a) noexcept
{
return SIMDNativeOps<Scalar>::sum (a);
}
static vSIMDType JUCE_VECTOR_CALLTYPE mul (vSIMDType a, vSIMDType b) noexcept
{
return SIMDNativeOps<Scalar>::mul (a, b);
}
static vSIMDType JUCE_VECTOR_CALLTYPE muladd (vSIMDType a, vSIMDType b, vSIMDType c) noexcept
{
return SIMDNativeOps<Scalar>::multiplyAdd (a, b, c);
}
};
// The pure complex version
template <typename Scalar>
struct CmplxSIMDOps<std::complex<Scalar>>
{
using vSIMDType = typename SIMDNativeOps<Scalar>::vSIMDType;
static vSIMDType JUCE_VECTOR_CALLTYPE load (const std::complex<Scalar>* a) noexcept
{
return SIMDNativeOps<Scalar>::load (reinterpret_cast<const Scalar*> (a));
}
static void JUCE_VECTOR_CALLTYPE store (vSIMDType value, std::complex<Scalar>* dest) noexcept
{
SIMDNativeOps<Scalar>::store (value, reinterpret_cast<Scalar*> (dest));
}
static vSIMDType JUCE_VECTOR_CALLTYPE expand (std::complex<Scalar> s) noexcept
{
const int n = sizeof (vSIMDType) / sizeof (Scalar);
union
{
vSIMDType v;
Scalar floats[(size_t) n];
} u;
for (int i = 0; i < n; ++i)
u.floats[i] = (i & 1) == 0 ? s.real() : s.imag();
return u.v;
}
static std::complex<Scalar> JUCE_VECTOR_CALLTYPE get (vSIMDType v, std::size_t i) noexcept
{
auto j = i << 1;
return std::complex<Scalar> (SIMDNativeOps<Scalar>::get (v, j), SIMDNativeOps<Scalar>::get (v, j + 1));
}
static vSIMDType JUCE_VECTOR_CALLTYPE set (vSIMDType v, std::size_t i, std::complex<Scalar> s) noexcept
{
auto j = i << 1;
return SIMDNativeOps<Scalar>::set (SIMDNativeOps<Scalar>::set (v, j, s.real()), j + 1, s.imag());
}
static std::complex<Scalar> JUCE_VECTOR_CALLTYPE sum (vSIMDType a) noexcept
{
vSIMDType result = SIMDNativeOps<Scalar>::oddevensum (a);
auto* ptr = reinterpret_cast<const Scalar*> (&result);
return std::complex<Scalar> (ptr[0], ptr[1]);
}
static vSIMDType JUCE_VECTOR_CALLTYPE mul (vSIMDType a, vSIMDType b) noexcept
{
return SIMDNativeOps<Scalar>::cmplxmul (a, b);
}
static vSIMDType JUCE_VECTOR_CALLTYPE muladd (vSIMDType a, vSIMDType b, vSIMDType c) noexcept
{
return SIMDNativeOps<Scalar>::add (a, SIMDNativeOps<Scalar>::cmplxmul (b, c));
}
};
#endif
//==============================================================================
namespace util
{
template <typename Type>
inline void snapToZero (SIMDRegister<Type>&) noexcept {}
}
} // namespace dsp
// Extend some common used global functions to SIMDRegister types
template <typename Type>
inline dsp::SIMDRegister<Type> JUCE_VECTOR_CALLTYPE jmin (dsp::SIMDRegister<Type> a, dsp::SIMDRegister<Type> b) { return dsp::SIMDRegister<Type>::min (a, b); }
template <typename Type>
inline dsp::SIMDRegister<Type> JUCE_VECTOR_CALLTYPE jmax (dsp::SIMDRegister<Type> a, dsp::SIMDRegister<Type> b) { return dsp::SIMDRegister<Type>::max (a, b); }
} // namespace juce

File diff suppressed because it is too large Load Diff