migrating to the latest JUCE version

This commit is contained in:
2022-11-04 23:11:33 +01:00
committed by Nikolai Rodionov
parent 4257a0f8ba
commit faf8f18333
2796 changed files with 888518 additions and 784244 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,416 +1,416 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a colour, also including a transparency value.
The colour is stored internally as unsigned 8-bit red, green, blue and alpha values.
@tags{Graphics}
*/
class JUCE_API Colour final
{
public:
//==============================================================================
/** Creates a transparent black colour. */
Colour() = default;
/** Creates a copy of another Colour object. */
Colour (const Colour&) = default;
/** Creates a colour from a 32-bit ARGB value.
The format of this number is:
((alpha << 24) | (red << 16) | (green << 8) | blue).
All components in the range 0x00 to 0xff.
An alpha of 0x00 is completely transparent, alpha of 0xff is opaque.
@see getPixelARGB
*/
explicit Colour (uint32 argb) noexcept;
/** Creates an opaque colour using 8-bit red, green and blue values */
Colour (uint8 red,
uint8 green,
uint8 blue) noexcept;
/** Creates an opaque colour using 8-bit red, green and blue values */
static Colour fromRGB (uint8 red,
uint8 green,
uint8 blue) noexcept;
/** Creates a colour using 8-bit red, green, blue and alpha values. */
Colour (uint8 red,
uint8 green,
uint8 blue,
uint8 alpha) noexcept;
/** Creates a colour using 8-bit red, green, blue and alpha values. */
static Colour fromRGBA (uint8 red,
uint8 green,
uint8 blue,
uint8 alpha) noexcept;
/** Creates a colour from 8-bit red, green, and blue values, and a floating-point alpha.
Alpha of 0.0 is transparent, alpha of 1.0f is opaque.
Values outside the valid range will be clipped.
*/
Colour (uint8 red,
uint8 green,
uint8 blue,
float alpha) noexcept;
/** Creates a colour using floating point red, green, blue and alpha values.
Numbers outside the range 0..1 will be clipped.
*/
static Colour fromFloatRGBA (float red,
float green,
float blue,
float alpha) noexcept;
/** Creates a colour using floating point hue, saturation and brightness values, and an 8-bit alpha.
The floating point values must be between 0.0 and 1.0.
An alpha of 0x00 is completely transparent, alpha of 0xff is opaque.
Values outside the valid range will be clipped.
*/
Colour (float hue,
float saturation,
float brightness,
uint8 alpha) noexcept;
/** Creates a colour using floating point hue, saturation, brightness and alpha values.
All values must be between 0.0 and 1.0.
Numbers outside the valid range will be clipped.
*/
Colour (float hue,
float saturation,
float brightness,
float alpha) noexcept;
/** Creates a colour using floating point hue, saturation, brightness and alpha values.
All values must be between 0.0 and 1.0.
Numbers outside the valid range will be clipped.
*/
static Colour fromHSV (float hue,
float saturation,
float brightness,
float alpha) noexcept;
/** Creates a colour using floating point hue, saturation, lightness and alpha values.
All values must be between 0.0 and 1.0.
Numbers outside the valid range will be clipped.
*/
static Colour fromHSL (float hue,
float saturation,
float lightness,
float alpha) noexcept;
/** Creates a colour using a PixelARGB object. This function assumes that the argb pixel is
not premultiplied.
*/
Colour (PixelARGB argb) noexcept;
/** Creates a colour using a PixelRGB object.
*/
Colour (PixelRGB rgb) noexcept;
/** Creates a colour using a PixelAlpha object.
*/
Colour (PixelAlpha alpha) noexcept;
/** Destructor. */
~Colour() = default;
/** Copies another Colour object. */
Colour& operator= (const Colour&) = default;
/** Compares two colours. */
bool operator== (const Colour& other) const noexcept;
/** Compares two colours. */
bool operator!= (const Colour& other) const noexcept;
//==============================================================================
/** Returns the red component of this colour.
@returns a value between 0x00 and 0xff.
*/
uint8 getRed() const noexcept { return argb.getRed(); }
/** Returns the green component of this colour.
@returns a value between 0x00 and 0xff.
*/
uint8 getGreen() const noexcept { return argb.getGreen(); }
/** Returns the blue component of this colour.
@returns a value between 0x00 and 0xff.
*/
uint8 getBlue() const noexcept { return argb.getBlue(); }
/** Returns the red component of this colour as a floating point value.
@returns a value between 0.0 and 1.0
*/
float getFloatRed() const noexcept;
/** Returns the green component of this colour as a floating point value.
@returns a value between 0.0 and 1.0
*/
float getFloatGreen() const noexcept;
/** Returns the blue component of this colour as a floating point value.
@returns a value between 0.0 and 1.0
*/
float getFloatBlue() const noexcept;
/** Returns a premultiplied ARGB pixel object that represents this colour.
*/
const PixelARGB getPixelARGB() const noexcept;
/** Returns a 32-bit integer that represents this colour.
The format of this number is:
((alpha << 24) | (red << 16) | (green << 8) | blue).
*/
uint32 getARGB() const noexcept;
//==============================================================================
/** Returns the colour's alpha (opacity).
Alpha of 0x00 is completely transparent, 0xff is completely opaque.
*/
uint8 getAlpha() const noexcept { return argb.getAlpha(); }
/** Returns the colour's alpha (opacity) as a floating point value.
Alpha of 0.0 is completely transparent, 1.0 is completely opaque.
*/
float getFloatAlpha() const noexcept;
/** Returns true if this colour is completely opaque.
Equivalent to (getAlpha() == 0xff).
*/
bool isOpaque() const noexcept;
/** Returns true if this colour is completely transparent.
Equivalent to (getAlpha() == 0x00).
*/
bool isTransparent() const noexcept;
/** Returns a colour that's the same colour as this one, but with a new alpha value. */
Colour withAlpha (uint8 newAlpha) const noexcept;
/** Returns a colour that's the same colour as this one, but with a new alpha value. */
Colour withAlpha (float newAlpha) const noexcept;
/** Returns a colour that's the same colour as this one, but with a modified alpha value.
The new colour's alpha will be this object's alpha multiplied by the value passed-in.
*/
Colour withMultipliedAlpha (float alphaMultiplier) const noexcept;
//==============================================================================
/** Returns a colour that is the result of alpha-compositing a new colour over this one.
If the foreground colour is semi-transparent, it is blended onto this colour accordingly.
*/
Colour overlaidWith (Colour foregroundColour) const noexcept;
/** Returns a colour that lies somewhere between this one and another.
If amountOfOther is zero, the result is 100% this colour, if amountOfOther
is 1.0, the result is 100% of the other colour.
*/
Colour interpolatedWith (Colour other, float proportionOfOther) const noexcept;
//==============================================================================
/** Returns the colour's hue component.
The value returned is in the range 0.0 to 1.0
*/
float getHue() const noexcept;
/** Returns the colour's saturation component.
The value returned is in the range 0.0 to 1.0
*/
float getSaturation() const noexcept;
/** Returns the colour's saturation component as represented in the HSL colour space.
The value returned is in the range 0.0 to 1.0
*/
float getSaturationHSL() const noexcept;
/** Returns the colour's brightness component.
The value returned is in the range 0.0 to 1.0
*/
float getBrightness() const noexcept;
/** Returns the colour's lightness component.
The value returned is in the range 0.0 to 1.0
*/
float getLightness() const noexcept;
/** Returns a skewed brightness value, adjusted to better reflect the way the human
eye responds to different colour channels. This makes it better than getBrightness()
for comparing differences in brightness.
*/
float getPerceivedBrightness() const noexcept;
/** Returns the colour's hue, saturation and brightness components all at once.
The values returned are in the range 0.0 to 1.0
*/
void getHSB (float& hue,
float& saturation,
float& brightness) const noexcept;
/** Returns the colour's hue, saturation and lightness components all at once.
The values returned are in the range 0.0 to 1.0
*/
void getHSL (float& hue,
float& saturation,
float& lightness) const noexcept;
//==============================================================================
/** Returns a copy of this colour with a different hue. */
Colour withHue (float newHue) const noexcept;
/** Returns a copy of this colour with a different saturation. */
Colour withSaturation (float newSaturation) const noexcept;
/** Returns a copy of this colour with a different saturation in the HSL colour space. */
Colour withSaturationHSL (float newSaturation) const noexcept;
/** Returns a copy of this colour with a different brightness.
@see brighter, darker, withMultipliedBrightness
*/
Colour withBrightness (float newBrightness) const noexcept;
/** Returns a copy of this colour with a different lightness.
@see lighter, darker, withMultipliedLightness
*/
Colour withLightness (float newLightness) const noexcept;
/** Returns a copy of this colour with its hue rotated.
The new colour's hue is ((this->getHue() + amountToRotate) % 1.0)
@see brighter, darker, withMultipliedBrightness
*/
Colour withRotatedHue (float amountToRotate) const noexcept;
/** Returns a copy of this colour with its saturation multiplied by the given value.
The new colour's saturation is (this->getSaturation() * multiplier)
(the result is clipped to legal limits).
*/
Colour withMultipliedSaturation (float multiplier) const noexcept;
/** Returns a copy of this colour with its saturation multiplied by the given value.
The new colour's saturation is (this->getSaturation() * multiplier)
(the result is clipped to legal limits).
This will be in the HSL colour space.
*/
Colour withMultipliedSaturationHSL (float multiplier) const noexcept;
/** Returns a copy of this colour with its brightness multiplied by the given value.
The new colour's brightness is (this->getBrightness() * multiplier)
(the result is clipped to legal limits).
*/
Colour withMultipliedBrightness (float amount) const noexcept;
/** Returns a copy of this colour with its lightness multiplied by the given value.
The new colour's lightness is (this->lightness() * multiplier)
(the result is clipped to legal limits).
*/
Colour withMultipliedLightness (float amount) const noexcept;
//==============================================================================
/** Returns a brighter version of this colour.
@param amountBrighter how much brighter to make it - a value greater than or equal to 0,
where 0 is unchanged, and higher values make it brighter
@see withMultipliedBrightness
*/
Colour brighter (float amountBrighter = 0.4f) const noexcept;
/** Returns a darker version of this colour.
@param amountDarker how much darker to make it - a value greater than or equal to 0,
where 0 is unchanged, and higher values make it darker
@see withMultipliedBrightness
*/
Colour darker (float amountDarker = 0.4f) const noexcept;
//==============================================================================
/** Returns a colour that will be clearly visible against this colour.
The amount parameter indicates how contrasting the new colour should
be, so e.g. Colours::black.contrasting (0.1f) will return a colour
that's just a little bit lighter; Colours::black.contrasting (1.0f) will
return white; Colours::white.contrasting (1.0f) will return black, etc.
*/
Colour contrasting (float amount = 1.0f) const noexcept;
/** Returns a colour that is as close as possible to a target colour whilst
still being in contrast to this one.
The colour that is returned will be the targetColour, but with its luminosity
nudged up or down so that it differs from the luminosity of this colour
by at least the amount specified by minLuminosityDiff.
*/
Colour contrasting (Colour targetColour, float minLuminosityDiff) const noexcept;
/** Returns a colour that contrasts against two colours.
Looks for a colour that contrasts with both of the colours passed-in.
Handy for things like choosing a highlight colour in text editors, etc.
*/
static Colour contrasting (Colour colour1,
Colour colour2) noexcept;
//==============================================================================
/** Returns an opaque shade of grey.
@param brightness the level of grey to return - 0 is black, 1.0 is white
*/
static Colour greyLevel (float brightness) noexcept;
//==============================================================================
/** Returns a stringified version of this colour.
The string can be turned back into a colour using the fromString() method.
*/
String toString() const;
/** Reads the colour from a string that was created with toString(). */
static Colour fromString (StringRef encodedColourString);
/** Returns the colour as a hex string in the form RRGGBB or AARRGGBB. */
String toDisplayString (bool includeAlphaValue) const;
private:
//==============================================================================
PixelARGB argb { 0, 0, 0, 0 };
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a colour, also including a transparency value.
The colour is stored internally as unsigned 8-bit red, green, blue and alpha values.
@tags{Graphics}
*/
class JUCE_API Colour final
{
public:
//==============================================================================
/** Creates a transparent black colour. */
Colour() = default;
/** Creates a copy of another Colour object. */
Colour (const Colour&) = default;
/** Creates a colour from a 32-bit ARGB value.
The format of this number is:
((alpha << 24) | (red << 16) | (green << 8) | blue).
All components in the range 0x00 to 0xff.
An alpha of 0x00 is completely transparent, alpha of 0xff is opaque.
@see getPixelARGB
*/
explicit Colour (uint32 argb) noexcept;
/** Creates an opaque colour using 8-bit red, green and blue values */
Colour (uint8 red,
uint8 green,
uint8 blue) noexcept;
/** Creates an opaque colour using 8-bit red, green and blue values */
static Colour fromRGB (uint8 red,
uint8 green,
uint8 blue) noexcept;
/** Creates a colour using 8-bit red, green, blue and alpha values. */
Colour (uint8 red,
uint8 green,
uint8 blue,
uint8 alpha) noexcept;
/** Creates a colour using 8-bit red, green, blue and alpha values. */
static Colour fromRGBA (uint8 red,
uint8 green,
uint8 blue,
uint8 alpha) noexcept;
/** Creates a colour from 8-bit red, green, and blue values, and a floating-point alpha.
Alpha of 0.0 is transparent, alpha of 1.0f is opaque.
Values outside the valid range will be clipped.
*/
Colour (uint8 red,
uint8 green,
uint8 blue,
float alpha) noexcept;
/** Creates a colour using floating point red, green, blue and alpha values.
Numbers outside the range 0..1 will be clipped.
*/
static Colour fromFloatRGBA (float red,
float green,
float blue,
float alpha) noexcept;
/** Creates a colour using floating point hue, saturation and brightness values, and an 8-bit alpha.
The floating point values must be between 0.0 and 1.0.
An alpha of 0x00 is completely transparent, alpha of 0xff is opaque.
Values outside the valid range will be clipped.
*/
Colour (float hue,
float saturation,
float brightness,
uint8 alpha) noexcept;
/** Creates a colour using floating point hue, saturation, brightness and alpha values.
All values must be between 0.0 and 1.0.
Numbers outside the valid range will be clipped.
*/
Colour (float hue,
float saturation,
float brightness,
float alpha) noexcept;
/** Creates a colour using floating point hue, saturation, brightness and alpha values.
All values must be between 0.0 and 1.0.
Numbers outside the valid range will be clipped.
*/
static Colour fromHSV (float hue,
float saturation,
float brightness,
float alpha) noexcept;
/** Creates a colour using floating point hue, saturation, lightness and alpha values.
All values must be between 0.0 and 1.0.
Numbers outside the valid range will be clipped.
*/
static Colour fromHSL (float hue,
float saturation,
float lightness,
float alpha) noexcept;
/** Creates a colour using a PixelARGB object. This function assumes that the argb pixel is
not premultiplied.
*/
Colour (PixelARGB argb) noexcept;
/** Creates a colour using a PixelRGB object.
*/
Colour (PixelRGB rgb) noexcept;
/** Creates a colour using a PixelAlpha object.
*/
Colour (PixelAlpha alpha) noexcept;
/** Destructor. */
~Colour() = default;
/** Copies another Colour object. */
Colour& operator= (const Colour&) = default;
/** Compares two colours. */
bool operator== (const Colour& other) const noexcept;
/** Compares two colours. */
bool operator!= (const Colour& other) const noexcept;
//==============================================================================
/** Returns the red component of this colour.
@returns a value between 0x00 and 0xff.
*/
uint8 getRed() const noexcept { return argb.getRed(); }
/** Returns the green component of this colour.
@returns a value between 0x00 and 0xff.
*/
uint8 getGreen() const noexcept { return argb.getGreen(); }
/** Returns the blue component of this colour.
@returns a value between 0x00 and 0xff.
*/
uint8 getBlue() const noexcept { return argb.getBlue(); }
/** Returns the red component of this colour as a floating point value.
@returns a value between 0.0 and 1.0
*/
float getFloatRed() const noexcept;
/** Returns the green component of this colour as a floating point value.
@returns a value between 0.0 and 1.0
*/
float getFloatGreen() const noexcept;
/** Returns the blue component of this colour as a floating point value.
@returns a value between 0.0 and 1.0
*/
float getFloatBlue() const noexcept;
/** Returns a premultiplied ARGB pixel object that represents this colour.
*/
const PixelARGB getPixelARGB() const noexcept;
/** Returns a 32-bit integer that represents this colour.
The format of this number is:
((alpha << 24) | (red << 16) | (green << 8) | blue).
*/
uint32 getARGB() const noexcept;
//==============================================================================
/** Returns the colour's alpha (opacity).
Alpha of 0x00 is completely transparent, 0xff is completely opaque.
*/
uint8 getAlpha() const noexcept { return argb.getAlpha(); }
/** Returns the colour's alpha (opacity) as a floating point value.
Alpha of 0.0 is completely transparent, 1.0 is completely opaque.
*/
float getFloatAlpha() const noexcept;
/** Returns true if this colour is completely opaque.
Equivalent to (getAlpha() == 0xff).
*/
bool isOpaque() const noexcept;
/** Returns true if this colour is completely transparent.
Equivalent to (getAlpha() == 0x00).
*/
bool isTransparent() const noexcept;
/** Returns a colour that's the same colour as this one, but with a new alpha value. */
Colour withAlpha (uint8 newAlpha) const noexcept;
/** Returns a colour that's the same colour as this one, but with a new alpha value. */
Colour withAlpha (float newAlpha) const noexcept;
/** Returns a colour that's the same colour as this one, but with a modified alpha value.
The new colour's alpha will be this object's alpha multiplied by the value passed-in.
*/
Colour withMultipliedAlpha (float alphaMultiplier) const noexcept;
//==============================================================================
/** Returns a colour that is the result of alpha-compositing a new colour over this one.
If the foreground colour is semi-transparent, it is blended onto this colour accordingly.
*/
Colour overlaidWith (Colour foregroundColour) const noexcept;
/** Returns a colour that lies somewhere between this one and another.
If amountOfOther is zero, the result is 100% this colour, if amountOfOther
is 1.0, the result is 100% of the other colour.
*/
Colour interpolatedWith (Colour other, float proportionOfOther) const noexcept;
//==============================================================================
/** Returns the colour's hue component.
The value returned is in the range 0.0 to 1.0
*/
float getHue() const noexcept;
/** Returns the colour's saturation component.
The value returned is in the range 0.0 to 1.0
*/
float getSaturation() const noexcept;
/** Returns the colour's saturation component as represented in the HSL colour space.
The value returned is in the range 0.0 to 1.0
*/
float getSaturationHSL() const noexcept;
/** Returns the colour's brightness component.
The value returned is in the range 0.0 to 1.0
*/
float getBrightness() const noexcept;
/** Returns the colour's lightness component.
The value returned is in the range 0.0 to 1.0
*/
float getLightness() const noexcept;
/** Returns a skewed brightness value, adjusted to better reflect the way the human
eye responds to different colour channels. This makes it better than getBrightness()
for comparing differences in brightness.
*/
float getPerceivedBrightness() const noexcept;
/** Returns the colour's hue, saturation and brightness components all at once.
The values returned are in the range 0.0 to 1.0
*/
void getHSB (float& hue,
float& saturation,
float& brightness) const noexcept;
/** Returns the colour's hue, saturation and lightness components all at once.
The values returned are in the range 0.0 to 1.0
*/
void getHSL (float& hue,
float& saturation,
float& lightness) const noexcept;
//==============================================================================
/** Returns a copy of this colour with a different hue. */
JUCE_NODISCARD Colour withHue (float newHue) const noexcept;
/** Returns a copy of this colour with a different saturation. */
JUCE_NODISCARD Colour withSaturation (float newSaturation) const noexcept;
/** Returns a copy of this colour with a different saturation in the HSL colour space. */
JUCE_NODISCARD Colour withSaturationHSL (float newSaturation) const noexcept;
/** Returns a copy of this colour with a different brightness.
@see brighter, darker, withMultipliedBrightness
*/
JUCE_NODISCARD Colour withBrightness (float newBrightness) const noexcept;
/** Returns a copy of this colour with a different lightness.
@see lighter, darker, withMultipliedLightness
*/
JUCE_NODISCARD Colour withLightness (float newLightness) const noexcept;
/** Returns a copy of this colour with its hue rotated.
The new colour's hue is ((this->getHue() + amountToRotate) % 1.0)
@see brighter, darker, withMultipliedBrightness
*/
JUCE_NODISCARD Colour withRotatedHue (float amountToRotate) const noexcept;
/** Returns a copy of this colour with its saturation multiplied by the given value.
The new colour's saturation is (this->getSaturation() * multiplier)
(the result is clipped to legal limits).
*/
JUCE_NODISCARD Colour withMultipliedSaturation (float multiplier) const noexcept;
/** Returns a copy of this colour with its saturation multiplied by the given value.
The new colour's saturation is (this->getSaturation() * multiplier)
(the result is clipped to legal limits).
This will be in the HSL colour space.
*/
JUCE_NODISCARD Colour withMultipliedSaturationHSL (float multiplier) const noexcept;
/** Returns a copy of this colour with its brightness multiplied by the given value.
The new colour's brightness is (this->getBrightness() * multiplier)
(the result is clipped to legal limits).
*/
JUCE_NODISCARD Colour withMultipliedBrightness (float amount) const noexcept;
/** Returns a copy of this colour with its lightness multiplied by the given value.
The new colour's lightness is (this->lightness() * multiplier)
(the result is clipped to legal limits).
*/
JUCE_NODISCARD Colour withMultipliedLightness (float amount) const noexcept;
//==============================================================================
/** Returns a brighter version of this colour.
@param amountBrighter how much brighter to make it - a value greater than or equal to 0,
where 0 is unchanged, and higher values make it brighter
@see withMultipliedBrightness
*/
JUCE_NODISCARD Colour brighter (float amountBrighter = 0.4f) const noexcept;
/** Returns a darker version of this colour.
@param amountDarker how much darker to make it - a value greater than or equal to 0,
where 0 is unchanged, and higher values make it darker
@see withMultipliedBrightness
*/
JUCE_NODISCARD Colour darker (float amountDarker = 0.4f) const noexcept;
//==============================================================================
/** Returns a colour that will be clearly visible against this colour.
The amount parameter indicates how contrasting the new colour should
be, so e.g. Colours::black.contrasting (0.1f) will return a colour
that's just a little bit lighter; Colours::black.contrasting (1.0f) will
return white; Colours::white.contrasting (1.0f) will return black, etc.
*/
JUCE_NODISCARD Colour contrasting (float amount = 1.0f) const noexcept;
/** Returns a colour that is as close as possible to a target colour whilst
still being in contrast to this one.
The colour that is returned will be the targetColour, but with its luminosity
nudged up or down so that it differs from the luminosity of this colour
by at least the amount specified by minLuminosityDiff.
*/
JUCE_NODISCARD Colour contrasting (Colour targetColour, float minLuminosityDiff) const noexcept;
/** Returns a colour that contrasts against two colours.
Looks for a colour that contrasts with both of the colours passed-in.
Handy for things like choosing a highlight colour in text editors, etc.
*/
JUCE_NODISCARD static Colour contrasting (Colour colour1,
Colour colour2) noexcept;
//==============================================================================
/** Returns an opaque shade of grey.
@param brightness the level of grey to return - 0 is black, 1.0 is white
*/
JUCE_NODISCARD static Colour greyLevel (float brightness) noexcept;
//==============================================================================
/** Returns a stringified version of this colour.
The string can be turned back into a colour using the fromString() method.
*/
String toString() const;
/** Reads the colour from a string that was created with toString(). */
JUCE_NODISCARD static Colour fromString (StringRef encodedColourString);
/** Returns the colour as a hex string in the form RRGGBB or AARRGGBB. */
String toDisplayString (bool includeAlphaValue) const;
private:
//==============================================================================
PixelARGB argb { 0, 0, 0, 0 };
};
} // namespace juce

View File

@ -1,270 +1,270 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
ColourGradient::ColourGradient() noexcept : isRadial (false)
{
#if JUCE_DEBUG
point1.setX (987654.0f);
#define JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED jassert (point1.x != 987654.0f);
#else
#define JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED
#endif
}
ColourGradient::ColourGradient (const ColourGradient& other)
: point1 (other.point1), point2 (other.point2), isRadial (other.isRadial), colours (other.colours)
{}
ColourGradient::ColourGradient (ColourGradient&& other) noexcept
: point1 (other.point1), point2 (other.point2), isRadial (other.isRadial),
colours (std::move (other.colours))
{}
ColourGradient& ColourGradient::operator= (const ColourGradient& other)
{
point1 = other.point1;
point2 = other.point2;
isRadial = other.isRadial;
colours = other.colours;
return *this;
}
ColourGradient& ColourGradient::operator= (ColourGradient&& other) noexcept
{
point1 = other.point1;
point2 = other.point2;
isRadial = other.isRadial;
colours = std::move (other.colours);
return *this;
}
ColourGradient::ColourGradient (Colour colour1, float x1, float y1,
Colour colour2, float x2, float y2, bool radial)
: ColourGradient (colour1, Point<float> (x1, y1),
colour2, Point<float> (x2, y2), radial)
{
}
ColourGradient::ColourGradient (Colour colour1, Point<float> p1,
Colour colour2, Point<float> p2, bool radial)
: point1 (p1),
point2 (p2),
isRadial (radial)
{
colours.add (ColourPoint { 0.0, colour1 },
ColourPoint { 1.0, colour2 });
}
ColourGradient::~ColourGradient() {}
ColourGradient ColourGradient::vertical (Colour c1, float y1, Colour c2, float y2)
{
return { c1, 0, y1, c2, 0, y2, false };
}
ColourGradient ColourGradient::horizontal (Colour c1, float x1, Colour c2, float x2)
{
return { c1, x1, 0, c2, x2, 0, false };
}
bool ColourGradient::operator== (const ColourGradient& other) const noexcept
{
return point1 == other.point1 && point2 == other.point2
&& isRadial == other.isRadial
&& colours == other.colours;
}
bool ColourGradient::operator!= (const ColourGradient& other) const noexcept
{
return ! operator== (other);
}
//==============================================================================
void ColourGradient::clearColours()
{
colours.clear();
}
int ColourGradient::addColour (const double proportionAlongGradient, Colour colour)
{
// must be within the two end-points
jassert (proportionAlongGradient >= 0 && proportionAlongGradient <= 1.0);
if (proportionAlongGradient <= 0)
{
colours.set (0, { 0.0, colour });
return 0;
}
auto pos = jmin (1.0, proportionAlongGradient);
int i;
for (i = 0; i < colours.size(); ++i)
if (colours.getReference(i).position > pos)
break;
colours.insert (i, { pos, colour });
return i;
}
void ColourGradient::removeColour (int index)
{
jassert (index > 0 && index < colours.size() - 1);
colours.remove (index);
}
void ColourGradient::multiplyOpacity (const float multiplier) noexcept
{
for (auto& c : colours)
c.colour = c.colour.withMultipliedAlpha (multiplier);
}
//==============================================================================
int ColourGradient::getNumColours() const noexcept
{
return colours.size();
}
double ColourGradient::getColourPosition (int index) const noexcept
{
if (isPositiveAndBelow (index, colours.size()))
return colours.getReference (index).position;
return 0;
}
Colour ColourGradient::getColour (int index) const noexcept
{
if (isPositiveAndBelow (index, colours.size()))
return colours.getReference (index).colour;
return {};
}
void ColourGradient::setColour (int index, Colour newColour) noexcept
{
if (isPositiveAndBelow (index, colours.size()))
colours.getReference (index).colour = newColour;
}
Colour ColourGradient::getColourAtPosition (double position) const noexcept
{
jassert (colours.getReference(0).position == 0.0); // the first colour specified has to go at position 0
if (position <= 0 || colours.size() <= 1)
return colours.getReference(0).colour;
int i = colours.size() - 1;
while (position < colours.getReference(i).position)
--i;
auto& p1 = colours.getReference (i);
if (i >= colours.size() - 1)
return p1.colour;
auto& p2 = colours.getReference (i + 1);
return p1.colour.interpolatedWith (p2.colour, (float) ((position - p1.position) / (p2.position - p1.position)));
}
//==============================================================================
void ColourGradient::createLookupTable (PixelARGB* const lookupTable, const int numEntries) const noexcept
{
JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED // Trying to use this object without setting its coordinates?
jassert (colours.size() >= 2);
jassert (numEntries > 0);
jassert (colours.getReference(0).position == 0.0); // The first colour specified has to go at position 0
auto pix1 = colours.getReference (0).colour.getPixelARGB();
int index = 0;
for (int j = 1; j < colours.size(); ++j)
{
auto& p = colours.getReference (j);
auto numToDo = roundToInt (p.position * (numEntries - 1)) - index;
auto pix2 = p.colour.getPixelARGB();
for (int i = 0; i < numToDo; ++i)
{
jassert (index >= 0 && index < numEntries);
lookupTable[index] = pix1;
lookupTable[index].tween (pix2, (uint32) ((i << 8) / numToDo));
++index;
}
pix1 = pix2;
}
while (index < numEntries)
lookupTable [index++] = pix1;
}
int ColourGradient::createLookupTable (const AffineTransform& transform, HeapBlock<PixelARGB>& lookupTable) const
{
JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED // Trying to use this object without setting its coordinates?
jassert (colours.size() >= 2);
auto numEntries = jlimit (1, jmax (1, (colours.size() - 1) << 8),
3 * (int) point1.transformedBy (transform)
.getDistanceFrom (point2.transformedBy (transform)));
lookupTable.malloc (numEntries);
createLookupTable (lookupTable, numEntries);
return numEntries;
}
bool ColourGradient::isOpaque() const noexcept
{
for (auto& c : colours)
if (! c.colour.isOpaque())
return false;
return true;
}
bool ColourGradient::isInvisible() const noexcept
{
for (auto& c : colours)
if (! c.colour.isTransparent())
return false;
return true;
}
bool ColourGradient::ColourPoint::operator== (ColourPoint other) const noexcept
{
return position == other.position && colour == other.colour;
}
bool ColourGradient::ColourPoint::operator!= (ColourPoint other) const noexcept
{
return position != other.position || colour != other.colour;
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
ColourGradient::ColourGradient() noexcept : isRadial (false)
{
#if JUCE_DEBUG
point1.setX (987654.0f);
#define JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED jassert (point1.x != 987654.0f);
#else
#define JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED
#endif
}
ColourGradient::ColourGradient (const ColourGradient& other)
: point1 (other.point1), point2 (other.point2), isRadial (other.isRadial), colours (other.colours)
{}
ColourGradient::ColourGradient (ColourGradient&& other) noexcept
: point1 (other.point1), point2 (other.point2), isRadial (other.isRadial),
colours (std::move (other.colours))
{}
ColourGradient& ColourGradient::operator= (const ColourGradient& other)
{
point1 = other.point1;
point2 = other.point2;
isRadial = other.isRadial;
colours = other.colours;
return *this;
}
ColourGradient& ColourGradient::operator= (ColourGradient&& other) noexcept
{
point1 = other.point1;
point2 = other.point2;
isRadial = other.isRadial;
colours = std::move (other.colours);
return *this;
}
ColourGradient::ColourGradient (Colour colour1, float x1, float y1,
Colour colour2, float x2, float y2, bool radial)
: ColourGradient (colour1, Point<float> (x1, y1),
colour2, Point<float> (x2, y2), radial)
{
}
ColourGradient::ColourGradient (Colour colour1, Point<float> p1,
Colour colour2, Point<float> p2, bool radial)
: point1 (p1),
point2 (p2),
isRadial (radial)
{
colours.add (ColourPoint { 0.0, colour1 },
ColourPoint { 1.0, colour2 });
}
ColourGradient::~ColourGradient() {}
ColourGradient ColourGradient::vertical (Colour c1, float y1, Colour c2, float y2)
{
return { c1, 0, y1, c2, 0, y2, false };
}
ColourGradient ColourGradient::horizontal (Colour c1, float x1, Colour c2, float x2)
{
return { c1, x1, 0, c2, x2, 0, false };
}
bool ColourGradient::operator== (const ColourGradient& other) const noexcept
{
return point1 == other.point1 && point2 == other.point2
&& isRadial == other.isRadial
&& colours == other.colours;
}
bool ColourGradient::operator!= (const ColourGradient& other) const noexcept
{
return ! operator== (other);
}
//==============================================================================
void ColourGradient::clearColours()
{
colours.clear();
}
int ColourGradient::addColour (const double proportionAlongGradient, Colour colour)
{
// must be within the two end-points
jassert (proportionAlongGradient >= 0 && proportionAlongGradient <= 1.0);
if (proportionAlongGradient <= 0)
{
colours.set (0, { 0.0, colour });
return 0;
}
auto pos = jmin (1.0, proportionAlongGradient);
int i;
for (i = 0; i < colours.size(); ++i)
if (colours.getReference(i).position > pos)
break;
colours.insert (i, { pos, colour });
return i;
}
void ColourGradient::removeColour (int index)
{
jassert (index > 0 && index < colours.size() - 1);
colours.remove (index);
}
void ColourGradient::multiplyOpacity (const float multiplier) noexcept
{
for (auto& c : colours)
c.colour = c.colour.withMultipliedAlpha (multiplier);
}
//==============================================================================
int ColourGradient::getNumColours() const noexcept
{
return colours.size();
}
double ColourGradient::getColourPosition (int index) const noexcept
{
if (isPositiveAndBelow (index, colours.size()))
return colours.getReference (index).position;
return 0;
}
Colour ColourGradient::getColour (int index) const noexcept
{
if (isPositiveAndBelow (index, colours.size()))
return colours.getReference (index).colour;
return {};
}
void ColourGradient::setColour (int index, Colour newColour) noexcept
{
if (isPositiveAndBelow (index, colours.size()))
colours.getReference (index).colour = newColour;
}
Colour ColourGradient::getColourAtPosition (double position) const noexcept
{
jassert (colours.getReference(0).position == 0.0); // the first colour specified has to go at position 0
if (position <= 0 || colours.size() <= 1)
return colours.getReference(0).colour;
int i = colours.size() - 1;
while (position < colours.getReference(i).position)
--i;
auto& p1 = colours.getReference (i);
if (i >= colours.size() - 1)
return p1.colour;
auto& p2 = colours.getReference (i + 1);
return p1.colour.interpolatedWith (p2.colour, (float) ((position - p1.position) / (p2.position - p1.position)));
}
//==============================================================================
void ColourGradient::createLookupTable (PixelARGB* const lookupTable, const int numEntries) const noexcept
{
JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED // Trying to use this object without setting its coordinates?
jassert (colours.size() >= 2);
jassert (numEntries > 0);
jassert (colours.getReference(0).position == 0.0); // The first colour specified has to go at position 0
auto pix1 = colours.getReference (0).colour.getPixelARGB();
int index = 0;
for (int j = 1; j < colours.size(); ++j)
{
auto& p = colours.getReference (j);
auto numToDo = roundToInt (p.position * (numEntries - 1)) - index;
auto pix2 = p.colour.getPixelARGB();
for (int i = 0; i < numToDo; ++i)
{
jassert (index >= 0 && index < numEntries);
lookupTable[index] = pix1;
lookupTable[index].tween (pix2, (uint32) ((i << 8) / numToDo));
++index;
}
pix1 = pix2;
}
while (index < numEntries)
lookupTable [index++] = pix1;
}
int ColourGradient::createLookupTable (const AffineTransform& transform, HeapBlock<PixelARGB>& lookupTable) const
{
JUCE_COLOURGRADIENT_CHECK_COORDS_INITIALISED // Trying to use this object without setting its coordinates?
jassert (colours.size() >= 2);
auto numEntries = jlimit (1, jmax (1, (colours.size() - 1) << 8),
3 * (int) point1.transformedBy (transform)
.getDistanceFrom (point2.transformedBy (transform)));
lookupTable.malloc (numEntries);
createLookupTable (lookupTable, numEntries);
return numEntries;
}
bool ColourGradient::isOpaque() const noexcept
{
for (auto& c : colours)
if (! c.colour.isOpaque())
return false;
return true;
}
bool ColourGradient::isInvisible() const noexcept
{
for (auto& c : colours)
if (! c.colour.isTransparent())
return false;
return true;
}
bool ColourGradient::ColourPoint::operator== (ColourPoint other) const noexcept
{
return position == other.position && colour == other.colour;
}
bool ColourGradient::ColourPoint::operator!= (ColourPoint other) const noexcept
{
return position != other.position || colour != other.colour;
}
} // namespace juce

View File

@ -1,224 +1,224 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Describes the layout and colours that should be used to paint a colour gradient.
@see Graphics::setGradientFill
@tags{Graphics}
*/
class JUCE_API ColourGradient final
{
public:
/** Creates an uninitialised gradient.
If you use this constructor instead of the other one, be sure to set all the
object's public member variables before using it!
*/
ColourGradient() noexcept;
ColourGradient (const ColourGradient&);
ColourGradient (ColourGradient&&) noexcept;
ColourGradient& operator= (const ColourGradient&);
ColourGradient& operator= (ColourGradient&&) noexcept;
//==============================================================================
/** Creates a gradient object.
(x1, y1) is the location to draw with colour1. Likewise (x2, y2) is where
colour2 should be. In between them there's a gradient.
If isRadial is true, the colours form a circular gradient with (x1, y1) at
its centre.
The alpha transparencies of the colours are used, so note that
if you blend from transparent to a solid colour, the RGB of the transparent
colour will become visible in parts of the gradient. e.g. blending
from Colour::transparentBlack to Colours::white will produce a
muddy grey colour midway, but Colour::transparentWhite to Colours::white
will be white all the way across.
@see ColourGradient
*/
ColourGradient (Colour colour1, float x1, float y1,
Colour colour2, float x2, float y2,
bool isRadial);
/** Creates a gradient object.
point1 is the location to draw with colour1. Likewise point2 is where
colour2 should be. In between them there's a gradient.
If isRadial is true, the colours form a circular gradient with point1 at
its centre.
The alpha transparencies of the colours are used, so note that
if you blend from transparent to a solid colour, the RGB of the transparent
colour will become visible in parts of the gradient. e.g. blending
from Colour::transparentBlack to Colours::white will produce a
muddy grey colour midway, but Colour::transparentWhite to Colours::white
will be white all the way across.
@see ColourGradient
*/
ColourGradient (Colour colour1, Point<float> point1,
Colour colour2, Point<float> point2,
bool isRadial);
//==============================================================================
/** Creates a vertical linear gradient between two Y coordinates */
static ColourGradient vertical (Colour colour1, float y1,
Colour colour2, float y2);
/** Creates a horizontal linear gradient between two X coordinates */
static ColourGradient horizontal (Colour colour1, float x1,
Colour colour2, float x2);
/** Creates a vertical linear gradient from top to bottom in a rectangle */
template <typename Type>
static ColourGradient vertical (Colour colourTop, Colour colourBottom, Rectangle<Type> area)
{
return vertical (colourTop, (float) area.getY(), colourBottom, (float) area.getBottom());
}
/** Creates a horizontal linear gradient from right to left in a rectangle */
template <typename Type>
static ColourGradient horizontal (Colour colourLeft, Colour colourRight, Rectangle<Type> area)
{
return horizontal (colourLeft, (float) area.getX(), colourRight, (float) area.getRight());
}
/** Destructor */
~ColourGradient();
//==============================================================================
/** Removes any colours that have been added.
This will also remove any start and end colours, so the gradient won't work. You'll
need to add more colours with addColour().
*/
void clearColours();
/** Adds a colour at a point along the length of the gradient.
This allows the gradient to go through a spectrum of colours, instead of just a
start and end colour.
@param proportionAlongGradient a value between 0 and 1.0, which is the proportion
of the distance along the line between the two points
at which the colour should occur.
@param colour the colour that should be used at this point
@returns the index at which the new point was added
*/
int addColour (double proportionAlongGradient, Colour colour);
/** Removes one of the colours from the gradient. */
void removeColour (int index);
/** Multiplies the alpha value of all the colours by the given scale factor */
void multiplyOpacity (float multiplier) noexcept;
//==============================================================================
/** Returns the number of colour-stops that have been added. */
int getNumColours() const noexcept;
/** Returns the position along the length of the gradient of the colour with this index.
The index is from 0 to getNumColours() - 1. The return value will be between 0.0 and 1.0
*/
double getColourPosition (int index) const noexcept;
/** Returns the colour that was added with a given index.
The index is from 0 to getNumColours() - 1.
*/
Colour getColour (int index) const noexcept;
/** Changes the colour at a given index.
The index is from 0 to getNumColours() - 1.
*/
void setColour (int index, Colour newColour) noexcept;
/** Returns the an interpolated colour at any position along the gradient.
@param position the position along the gradient, between 0 and 1
*/
Colour getColourAtPosition (double position) const noexcept;
//==============================================================================
/** Creates a set of interpolated premultiplied ARGB values.
This will resize the HeapBlock, fill it with the colours, and will return the number of
colours that it added.
When calling this, the ColourGradient must have at least 2 colour stops specified.
*/
int createLookupTable (const AffineTransform& transform, HeapBlock<PixelARGB>& resultLookupTable) const;
/** Creates a set of interpolated premultiplied ARGB values.
This will fill an array of a user-specified size with the gradient, interpolating to fit.
The numEntries argument specifies the size of the array, and this size must be greater than zero.
When calling this, the ColourGradient must have at least 2 colour stops specified.
*/
void createLookupTable (PixelARGB* resultLookupTable, int numEntries) const noexcept;
/** Returns true if all colours are opaque. */
bool isOpaque() const noexcept;
/** Returns true if all colours are completely transparent. */
bool isInvisible() const noexcept;
//==============================================================================
Point<float> point1, point2;
/** If true, the gradient should be filled circularly, centred around
point1, with point2 defining a point on the circumference.
If false, the gradient is linear between the two points.
*/
bool isRadial;
bool operator== (const ColourGradient&) const noexcept;
bool operator!= (const ColourGradient&) const noexcept;
private:
//==============================================================================
struct ColourPoint
{
bool operator== (ColourPoint) const noexcept;
bool operator!= (ColourPoint) const noexcept;
double position;
Colour colour;
};
Array<ColourPoint> colours;
JUCE_LEAK_DETECTOR (ColourGradient)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Describes the layout and colours that should be used to paint a colour gradient.
@see Graphics::setGradientFill
@tags{Graphics}
*/
class JUCE_API ColourGradient final
{
public:
/** Creates an uninitialised gradient.
If you use this constructor instead of the other one, be sure to set all the
object's public member variables before using it!
*/
ColourGradient() noexcept;
ColourGradient (const ColourGradient&);
ColourGradient (ColourGradient&&) noexcept;
ColourGradient& operator= (const ColourGradient&);
ColourGradient& operator= (ColourGradient&&) noexcept;
//==============================================================================
/** Creates a gradient object.
(x1, y1) is the location to draw with colour1. Likewise (x2, y2) is where
colour2 should be. In between them there's a gradient.
If isRadial is true, the colours form a circular gradient with (x1, y1) at
its centre.
The alpha transparencies of the colours are used, so note that
if you blend from transparent to a solid colour, the RGB of the transparent
colour will become visible in parts of the gradient. e.g. blending
from Colour::transparentBlack to Colours::white will produce a
muddy grey colour midway, but Colour::transparentWhite to Colours::white
will be white all the way across.
@see ColourGradient
*/
ColourGradient (Colour colour1, float x1, float y1,
Colour colour2, float x2, float y2,
bool isRadial);
/** Creates a gradient object.
point1 is the location to draw with colour1. Likewise point2 is where
colour2 should be. In between them there's a gradient.
If isRadial is true, the colours form a circular gradient with point1 at
its centre.
The alpha transparencies of the colours are used, so note that
if you blend from transparent to a solid colour, the RGB of the transparent
colour will become visible in parts of the gradient. e.g. blending
from Colour::transparentBlack to Colours::white will produce a
muddy grey colour midway, but Colour::transparentWhite to Colours::white
will be white all the way across.
@see ColourGradient
*/
ColourGradient (Colour colour1, Point<float> point1,
Colour colour2, Point<float> point2,
bool isRadial);
//==============================================================================
/** Creates a vertical linear gradient between two Y coordinates */
static ColourGradient vertical (Colour colour1, float y1,
Colour colour2, float y2);
/** Creates a horizontal linear gradient between two X coordinates */
static ColourGradient horizontal (Colour colour1, float x1,
Colour colour2, float x2);
/** Creates a vertical linear gradient from top to bottom in a rectangle */
template <typename Type>
static ColourGradient vertical (Colour colourTop, Colour colourBottom, Rectangle<Type> area)
{
return vertical (colourTop, (float) area.getY(), colourBottom, (float) area.getBottom());
}
/** Creates a horizontal linear gradient from right to left in a rectangle */
template <typename Type>
static ColourGradient horizontal (Colour colourLeft, Colour colourRight, Rectangle<Type> area)
{
return horizontal (colourLeft, (float) area.getX(), colourRight, (float) area.getRight());
}
/** Destructor */
~ColourGradient();
//==============================================================================
/** Removes any colours that have been added.
This will also remove any start and end colours, so the gradient won't work. You'll
need to add more colours with addColour().
*/
void clearColours();
/** Adds a colour at a point along the length of the gradient.
This allows the gradient to go through a spectrum of colours, instead of just a
start and end colour.
@param proportionAlongGradient a value between 0 and 1.0, which is the proportion
of the distance along the line between the two points
at which the colour should occur.
@param colour the colour that should be used at this point
@returns the index at which the new point was added
*/
int addColour (double proportionAlongGradient, Colour colour);
/** Removes one of the colours from the gradient. */
void removeColour (int index);
/** Multiplies the alpha value of all the colours by the given scale factor */
void multiplyOpacity (float multiplier) noexcept;
//==============================================================================
/** Returns the number of colour-stops that have been added. */
int getNumColours() const noexcept;
/** Returns the position along the length of the gradient of the colour with this index.
The index is from 0 to getNumColours() - 1. The return value will be between 0.0 and 1.0
*/
double getColourPosition (int index) const noexcept;
/** Returns the colour that was added with a given index.
The index is from 0 to getNumColours() - 1.
*/
Colour getColour (int index) const noexcept;
/** Changes the colour at a given index.
The index is from 0 to getNumColours() - 1.
*/
void setColour (int index, Colour newColour) noexcept;
/** Returns the an interpolated colour at any position along the gradient.
@param position the position along the gradient, between 0 and 1
*/
Colour getColourAtPosition (double position) const noexcept;
//==============================================================================
/** Creates a set of interpolated premultiplied ARGB values.
This will resize the HeapBlock, fill it with the colours, and will return the number of
colours that it added.
When calling this, the ColourGradient must have at least 2 colour stops specified.
*/
int createLookupTable (const AffineTransform& transform, HeapBlock<PixelARGB>& resultLookupTable) const;
/** Creates a set of interpolated premultiplied ARGB values.
This will fill an array of a user-specified size with the gradient, interpolating to fit.
The numEntries argument specifies the size of the array, and this size must be greater than zero.
When calling this, the ColourGradient must have at least 2 colour stops specified.
*/
void createLookupTable (PixelARGB* resultLookupTable, int numEntries) const noexcept;
/** Returns true if all colours are opaque. */
bool isOpaque() const noexcept;
/** Returns true if all colours are completely transparent. */
bool isInvisible() const noexcept;
//==============================================================================
Point<float> point1, point2;
/** If true, the gradient should be filled circularly, centred around
point1, with point2 defining a point on the circumference.
If false, the gradient is linear between the two points.
*/
bool isRadial;
bool operator== (const ColourGradient&) const noexcept;
bool operator!= (const ColourGradient&) const noexcept;
private:
//==============================================================================
struct ColourPoint
{
bool operator== (ColourPoint) const noexcept;
bool operator!= (ColourPoint) const noexcept;
double position;
Colour colour;
};
Array<ColourPoint> colours;
JUCE_LEAK_DETECTOR (ColourGradient)
};
} // namespace juce

View File

@ -1,189 +1,196 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
Colour Colours::findColourForName (const String& colourName,
Colour defaultColour)
{
struct StringHashAndColour { uint32 stringHash, colour; };
static const StringHashAndColour presets[]
{
{ 0x05978fff, 0xff000000 }, /* black */
{ 0x06bdcc29, 0xffffffff }, /* white */
{ 0x002e305a, 0xff0000ff }, /* blue */
{ 0x00308adf, 0xff808080 }, /* grey */
{ 0x05e0cf03, 0xff008000 }, /* green */
{ 0x0001b891, 0xffff0000 }, /* red */
{ 0xd43c6474, 0xffffff00 }, /* yellow */
{ 0x620886da, 0xfff0f8ff }, /* aliceblue */
{ 0x20a2676a, 0xfffaebd7 }, /* antiquewhite */
{ 0x002dcebc, 0xff00ffff }, /* aqua */
{ 0x46bb5f7e, 0xff7fffd4 }, /* aquamarine */
{ 0x0590228f, 0xfff0ffff }, /* azure */
{ 0x05947fe4, 0xfff5f5dc }, /* beige */
{ 0xad388e35, 0xffffe4c4 }, /* bisque */
{ 0x00674f7e, 0xffffebcd }, /* blanchedalmond */
{ 0x39129959, 0xff8a2be2 }, /* blueviolet */
{ 0x059a8136, 0xffa52a2a }, /* brown */
{ 0x89cea8f9, 0xffdeb887 }, /* burlywood */
{ 0x0fa260cf, 0xff5f9ea0 }, /* cadetblue */
{ 0x6b748956, 0xff7fff00 }, /* chartreuse */
{ 0x2903623c, 0xffd2691e }, /* chocolate */
{ 0x05a74431, 0xffff7f50 }, /* coral */
{ 0x618d42dd, 0xff6495ed }, /* cornflowerblue */
{ 0xe4b479fd, 0xfffff8dc }, /* cornsilk */
{ 0x3d8c4edf, 0xffdc143c }, /* crimson */
{ 0x002ed323, 0xff00ffff }, /* cyan */
{ 0x67cc74d0, 0xff00008b }, /* darkblue */
{ 0x67cd1799, 0xff008b8b }, /* darkcyan */
{ 0x31bbd168, 0xffb8860b }, /* darkgoldenrod */
{ 0x67cecf55, 0xff555555 }, /* darkgrey */
{ 0x920b194d, 0xff006400 }, /* darkgreen */
{ 0x923edd4c, 0xffbdb76b }, /* darkkhaki */
{ 0x5c293873, 0xff8b008b }, /* darkmagenta */
{ 0x6b6671fe, 0xff556b2f }, /* darkolivegreen */
{ 0xbcfd2524, 0xffff8c00 }, /* darkorange */
{ 0xbcfdf799, 0xff9932cc }, /* darkorchid */
{ 0x55ee0d5b, 0xff8b0000 }, /* darkred */
{ 0xc2e5f564, 0xffe9967a }, /* darksalmon */
{ 0x61be858a, 0xff8fbc8f }, /* darkseagreen */
{ 0xc2b0f2bd, 0xff483d8b }, /* darkslateblue */
{ 0xc2b34d42, 0xff2f4f4f }, /* darkslategrey */
{ 0x7cf2b06b, 0xff00ced1 }, /* darkturquoise */
{ 0xc8769375, 0xff9400d3 }, /* darkviolet */
{ 0x25832862, 0xffff1493 }, /* deeppink */
{ 0xfcad568f, 0xff00bfff }, /* deepskyblue */
{ 0x634c8b67, 0xff696969 }, /* dimgrey */
{ 0x45c1ce55, 0xff1e90ff }, /* dodgerblue */
{ 0xef19e3cb, 0xffb22222 }, /* firebrick */
{ 0xb852b195, 0xfffffaf0 }, /* floralwhite */
{ 0xd086fd06, 0xff228b22 }, /* forestgreen */
{ 0xe106b6d7, 0xffff00ff }, /* fuchsia */
{ 0x7880d61e, 0xffdcdcdc }, /* gainsboro */
{ 0x2018a2fa, 0xfff8f8ff }, /* ghostwhite */
{ 0x00308060, 0xffffd700 }, /* gold */
{ 0xb3b3bc1e, 0xffdaa520 }, /* goldenrod */
{ 0xbab8a537, 0xffadff2f }, /* greenyellow */
{ 0xe4cacafb, 0xfff0fff0 }, /* honeydew */
{ 0x41892743, 0xffff69b4 }, /* hotpink */
{ 0xd5796f1a, 0xffcd5c5c }, /* indianred */
{ 0xb969fed2, 0xff4b0082 }, /* indigo */
{ 0x05fef6a9, 0xfffffff0 }, /* ivory */
{ 0x06149302, 0xfff0e68c }, /* khaki */
{ 0xad5a05c7, 0xffe6e6fa }, /* lavender */
{ 0x7c4d5b99, 0xfffff0f5 }, /* lavenderblush */
{ 0x41cc4377, 0xff7cfc00 }, /* lawngreen */
{ 0x195756f0, 0xfffffacd }, /* lemonchiffon */
{ 0x28e4ea70, 0xffadd8e6 }, /* lightblue */
{ 0xf3c7ccdb, 0xfff08080 }, /* lightcoral */
{ 0x28e58d39, 0xffe0ffff }, /* lightcyan */
{ 0x21234e3c, 0xfffafad2 }, /* lightgoldenrodyellow */
{ 0xf40157ad, 0xff90ee90 }, /* lightgreen */
{ 0x28e744f5, 0xffd3d3d3 }, /* lightgrey */
{ 0x28eb3b8c, 0xffffb6c1 }, /* lightpink */
{ 0x9fb78304, 0xffffa07a }, /* lightsalmon */
{ 0x50632b2a, 0xff20b2aa }, /* lightseagreen */
{ 0x68fb7b25, 0xff87cefa }, /* lightskyblue */
{ 0xa8a35ba2, 0xff778899 }, /* lightslategrey */
{ 0xa20d484f, 0xffb0c4de }, /* lightsteelblue */
{ 0xaa2cf10a, 0xffffffe0 }, /* lightyellow */
{ 0x0032afd5, 0xff00ff00 }, /* lime */
{ 0x607bbc4e, 0xff32cd32 }, /* limegreen */
{ 0x06234efa, 0xfffaf0e6 }, /* linen */
{ 0x316858a9, 0xffff00ff }, /* magenta */
{ 0xbf8ca470, 0xff800000 }, /* maroon */
{ 0xbd58e0b3, 0xff66cdaa }, /* mediumaquamarine */
{ 0x967dfd4f, 0xff0000cd }, /* mediumblue */
{ 0x056f5c58, 0xffba55d3 }, /* mediumorchid */
{ 0x07556b71, 0xff9370db }, /* mediumpurple */
{ 0x5369b689, 0xff3cb371 }, /* mediumseagreen */
{ 0x066be19e, 0xff7b68ee }, /* mediumslateblue */
{ 0x3256b281, 0xff00fa9a }, /* mediumspringgreen */
{ 0xc0ad9f4c, 0xff48d1cc }, /* mediumturquoise */
{ 0x628e63dd, 0xffc71585 }, /* mediumvioletred */
{ 0x168eb32a, 0xff191970 }, /* midnightblue */
{ 0x4306b960, 0xfff5fffa }, /* mintcream */
{ 0x4cbc0e6b, 0xffffe4e1 }, /* mistyrose */
{ 0xd9447d59, 0xffffe4b5 }, /* moccasin */
{ 0xe97218a6, 0xffffdead }, /* navajowhite */
{ 0x00337bb6, 0xff000080 }, /* navy */
{ 0xadd2d33e, 0xfffdf5e6 }, /* oldlace */
{ 0x064ee1db, 0xff808000 }, /* olive */
{ 0x9e33a98a, 0xff6b8e23 }, /* olivedrab */
{ 0xc3de262e, 0xffffa500 }, /* orange */
{ 0x58bebba3, 0xffff4500 }, /* orangered */
{ 0xc3def8a3, 0xffda70d6 }, /* orchid */
{ 0x28cb4834, 0xffeee8aa }, /* palegoldenrod */
{ 0x3d9dd619, 0xff98fb98 }, /* palegreen */
{ 0x74022737, 0xffafeeee }, /* paleturquoise */
{ 0x15e2ebc8, 0xffdb7093 }, /* palevioletred */
{ 0x5fd898e2, 0xffffefd5 }, /* papayawhip */
{ 0x93e1b776, 0xffffdab9 }, /* peachpuff */
{ 0x003472f8, 0xffcd853f }, /* peru */
{ 0x00348176, 0xffffc0cb }, /* pink */
{ 0x00348d94, 0xffdda0dd }, /* plum */
{ 0xd036be93, 0xffb0e0e6 }, /* powderblue */
{ 0xc5c507bc, 0xff800080 }, /* purple */
{ 0xf381f607, 0xff663399 }, /* rebeccapurple */
{ 0xa89d65b3, 0xffbc8f8f }, /* rosybrown */
{ 0xbd9413e1, 0xff4169e1 }, /* royalblue */
{ 0xf456044f, 0xff8b4513 }, /* saddlebrown */
{ 0xc9c6f66e, 0xfffa8072 }, /* salmon */
{ 0x0bb131e1, 0xfff4a460 }, /* sandybrown */
{ 0x34636c14, 0xff2e8b57 }, /* seagreen */
{ 0x3507fb41, 0xfffff5ee }, /* seashell */
{ 0xca348772, 0xffa0522d }, /* sienna */
{ 0xca37d30d, 0xffc0c0c0 }, /* silver */
{ 0x80da74fb, 0xff87ceeb }, /* skyblue */
{ 0x44a8dd73, 0xff6a5acd }, /* slateblue */
{ 0x44ab37f8, 0xff708090 }, /* slategrey */
{ 0x0035f183, 0xfffffafa }, /* snow */
{ 0xd5440d16, 0xff00ff7f }, /* springgreen */
{ 0x3e1524a5, 0xff4682b4 }, /* steelblue */
{ 0x0001bfa1, 0xffd2b48c }, /* tan */
{ 0x0036425c, 0xff008080 }, /* teal */
{ 0xafc8858f, 0xffd8bfd8 }, /* thistle */
{ 0xcc41600a, 0xffff6347 }, /* tomato */
{ 0xfeea9b21, 0xff40e0d0 }, /* turquoise */
{ 0xcf57947f, 0xffee82ee }, /* violet */
{ 0x06bdbae7, 0xfff5deb3 }, /* wheat */
{ 0x10802ee6, 0xfff5f5f5 }, /* whitesmoke */
{ 0xe1b5130f, 0xff9acd32 }, /* yellowgreen */
};
const auto hash = (uint32) colourName.trim().toLowerCase().hashCode();
for (auto entry : presets)
if (entry.stringHash == hash)
return Colour (entry.colour);
return defaultColour;
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
Colour Colours::findColourForName (const String& colourName,
Colour defaultColour)
{
struct StringHashAndColour { uint32 stringHash, colour; };
static const StringHashAndColour presets[]
{
{ 0x05978fff, 0xff000000 }, /* black */
{ 0x06bdcc29, 0xffffffff }, /* white */
{ 0x002e305a, 0xff0000ff }, /* blue */
{ 0x00308adf, 0xff808080 }, /* grey */
{ 0x00308a63, 0xff808080 }, /* gray */
{ 0x05e0cf03, 0xff008000 }, /* green */
{ 0x0001b891, 0xffff0000 }, /* red */
{ 0xd43c6474, 0xffffff00 }, /* yellow */
{ 0x620886da, 0xfff0f8ff }, /* aliceblue */
{ 0x20a2676a, 0xfffaebd7 }, /* antiquewhite */
{ 0x002dcebc, 0xff00ffff }, /* aqua */
{ 0x46bb5f7e, 0xff7fffd4 }, /* aquamarine */
{ 0x0590228f, 0xfff0ffff }, /* azure */
{ 0x05947fe4, 0xfff5f5dc }, /* beige */
{ 0xad388e35, 0xffffe4c4 }, /* bisque */
{ 0x00674f7e, 0xffffebcd }, /* blanchedalmond */
{ 0x39129959, 0xff8a2be2 }, /* blueviolet */
{ 0x059a8136, 0xffa52a2a }, /* brown */
{ 0x89cea8f9, 0xffdeb887 }, /* burlywood */
{ 0x0fa260cf, 0xff5f9ea0 }, /* cadetblue */
{ 0x6b748956, 0xff7fff00 }, /* chartreuse */
{ 0x2903623c, 0xffd2691e }, /* chocolate */
{ 0x05a74431, 0xffff7f50 }, /* coral */
{ 0x618d42dd, 0xff6495ed }, /* cornflowerblue */
{ 0xe4b479fd, 0xfffff8dc }, /* cornsilk */
{ 0x3d8c4edf, 0xffdc143c }, /* crimson */
{ 0x002ed323, 0xff00ffff }, /* cyan */
{ 0x67cc74d0, 0xff00008b }, /* darkblue */
{ 0x67cd1799, 0xff008b8b }, /* darkcyan */
{ 0x31bbd168, 0xffb8860b }, /* darkgoldenrod */
{ 0x67cecf55, 0xff555555 }, /* darkgrey */
{ 0x67ceced9, 0xff555555 }, /* darkgray */
{ 0x920b194d, 0xff006400 }, /* darkgreen */
{ 0x923edd4c, 0xffbdb76b }, /* darkkhaki */
{ 0x5c293873, 0xff8b008b }, /* darkmagenta */
{ 0x6b6671fe, 0xff556b2f }, /* darkolivegreen */
{ 0xbcfd2524, 0xffff8c00 }, /* darkorange */
{ 0xbcfdf799, 0xff9932cc }, /* darkorchid */
{ 0x55ee0d5b, 0xff8b0000 }, /* darkred */
{ 0xc2e5f564, 0xffe9967a }, /* darksalmon */
{ 0x61be858a, 0xff8fbc8f }, /* darkseagreen */
{ 0xc2b0f2bd, 0xff483d8b }, /* darkslateblue */
{ 0xc2b34d42, 0xff2f4f4f }, /* darkslategrey */
{ 0xc2b34cc6, 0xff2f4f4f }, /* darkslategray */
{ 0x7cf2b06b, 0xff00ced1 }, /* darkturquoise */
{ 0xc8769375, 0xff9400d3 }, /* darkviolet */
{ 0x25832862, 0xffff1493 }, /* deeppink */
{ 0xfcad568f, 0xff00bfff }, /* deepskyblue */
{ 0x634c8b67, 0xff696969 }, /* dimgrey */
{ 0x634c8aeb, 0xff696969 }, /* dimgray */
{ 0x45c1ce55, 0xff1e90ff }, /* dodgerblue */
{ 0xef19e3cb, 0xffb22222 }, /* firebrick */
{ 0xb852b195, 0xfffffaf0 }, /* floralwhite */
{ 0xd086fd06, 0xff228b22 }, /* forestgreen */
{ 0xe106b6d7, 0xffff00ff }, /* fuchsia */
{ 0x7880d61e, 0xffdcdcdc }, /* gainsboro */
{ 0x2018a2fa, 0xfff8f8ff }, /* ghostwhite */
{ 0x00308060, 0xffffd700 }, /* gold */
{ 0xb3b3bc1e, 0xffdaa520 }, /* goldenrod */
{ 0xbab8a537, 0xffadff2f }, /* greenyellow */
{ 0xe4cacafb, 0xfff0fff0 }, /* honeydew */
{ 0x41892743, 0xffff69b4 }, /* hotpink */
{ 0xd5796f1a, 0xffcd5c5c }, /* indianred */
{ 0xb969fed2, 0xff4b0082 }, /* indigo */
{ 0x05fef6a9, 0xfffffff0 }, /* ivory */
{ 0x06149302, 0xfff0e68c }, /* khaki */
{ 0xad5a05c7, 0xffe6e6fa }, /* lavender */
{ 0x7c4d5b99, 0xfffff0f5 }, /* lavenderblush */
{ 0x41cc4377, 0xff7cfc00 }, /* lawngreen */
{ 0x195756f0, 0xfffffacd }, /* lemonchiffon */
{ 0x28e4ea70, 0xffadd8e6 }, /* lightblue */
{ 0xf3c7ccdb, 0xfff08080 }, /* lightcoral */
{ 0x28e58d39, 0xffe0ffff }, /* lightcyan */
{ 0x21234e3c, 0xfffafad2 }, /* lightgoldenrodyellow */
{ 0xf40157ad, 0xff90ee90 }, /* lightgreen */
{ 0x28e744f5, 0xffd3d3d3 }, /* lightgrey */
{ 0x28e74479, 0xffd3d3d3 }, /* lightgray */
{ 0x28eb3b8c, 0xffffb6c1 }, /* lightpink */
{ 0x9fb78304, 0xffffa07a }, /* lightsalmon */
{ 0x50632b2a, 0xff20b2aa }, /* lightseagreen */
{ 0x68fb7b25, 0xff87cefa }, /* lightskyblue */
{ 0xa8a35ba2, 0xff778899 }, /* lightslategrey */
{ 0xa8a35b26, 0xff778899 }, /* lightslategray */
{ 0xa20d484f, 0xffb0c4de }, /* lightsteelblue */
{ 0xaa2cf10a, 0xffffffe0 }, /* lightyellow */
{ 0x0032afd5, 0xff00ff00 }, /* lime */
{ 0x607bbc4e, 0xff32cd32 }, /* limegreen */
{ 0x06234efa, 0xfffaf0e6 }, /* linen */
{ 0x316858a9, 0xffff00ff }, /* magenta */
{ 0xbf8ca470, 0xff800000 }, /* maroon */
{ 0xbd58e0b3, 0xff66cdaa }, /* mediumaquamarine */
{ 0x967dfd4f, 0xff0000cd }, /* mediumblue */
{ 0x056f5c58, 0xffba55d3 }, /* mediumorchid */
{ 0x07556b71, 0xff9370db }, /* mediumpurple */
{ 0x5369b689, 0xff3cb371 }, /* mediumseagreen */
{ 0x066be19e, 0xff7b68ee }, /* mediumslateblue */
{ 0x3256b281, 0xff00fa9a }, /* mediumspringgreen */
{ 0xc0ad9f4c, 0xff48d1cc }, /* mediumturquoise */
{ 0x628e63dd, 0xffc71585 }, /* mediumvioletred */
{ 0x168eb32a, 0xff191970 }, /* midnightblue */
{ 0x4306b960, 0xfff5fffa }, /* mintcream */
{ 0x4cbc0e6b, 0xffffe4e1 }, /* mistyrose */
{ 0xd9447d59, 0xffffe4b5 }, /* moccasin */
{ 0xe97218a6, 0xffffdead }, /* navajowhite */
{ 0x00337bb6, 0xff000080 }, /* navy */
{ 0xadd2d33e, 0xfffdf5e6 }, /* oldlace */
{ 0x064ee1db, 0xff808000 }, /* olive */
{ 0x9e33a98a, 0xff6b8e23 }, /* olivedrab */
{ 0xc3de262e, 0xffffa500 }, /* orange */
{ 0x58bebba3, 0xffff4500 }, /* orangered */
{ 0xc3def8a3, 0xffda70d6 }, /* orchid */
{ 0x28cb4834, 0xffeee8aa }, /* palegoldenrod */
{ 0x3d9dd619, 0xff98fb98 }, /* palegreen */
{ 0x74022737, 0xffafeeee }, /* paleturquoise */
{ 0x15e2ebc8, 0xffdb7093 }, /* palevioletred */
{ 0x5fd898e2, 0xffffefd5 }, /* papayawhip */
{ 0x93e1b776, 0xffffdab9 }, /* peachpuff */
{ 0x003472f8, 0xffcd853f }, /* peru */
{ 0x00348176, 0xffffc0cb }, /* pink */
{ 0x00348d94, 0xffdda0dd }, /* plum */
{ 0xd036be93, 0xffb0e0e6 }, /* powderblue */
{ 0xc5c507bc, 0xff800080 }, /* purple */
{ 0xf381f607, 0xff663399 }, /* rebeccapurple */
{ 0xa89d65b3, 0xffbc8f8f }, /* rosybrown */
{ 0xbd9413e1, 0xff4169e1 }, /* royalblue */
{ 0xf456044f, 0xff8b4513 }, /* saddlebrown */
{ 0xc9c6f66e, 0xfffa8072 }, /* salmon */
{ 0x0bb131e1, 0xfff4a460 }, /* sandybrown */
{ 0x34636c14, 0xff2e8b57 }, /* seagreen */
{ 0x3507fb41, 0xfffff5ee }, /* seashell */
{ 0xca348772, 0xffa0522d }, /* sienna */
{ 0xca37d30d, 0xffc0c0c0 }, /* silver */
{ 0x80da74fb, 0xff87ceeb }, /* skyblue */
{ 0x44a8dd73, 0xff6a5acd }, /* slateblue */
{ 0x44ab37f8, 0xff708090 }, /* slategrey */
{ 0x44ab377c, 0xff708090 }, /* slategray */
{ 0x0035f183, 0xfffffafa }, /* snow */
{ 0xd5440d16, 0xff00ff7f }, /* springgreen */
{ 0x3e1524a5, 0xff4682b4 }, /* steelblue */
{ 0x0001bfa1, 0xffd2b48c }, /* tan */
{ 0x0036425c, 0xff008080 }, /* teal */
{ 0xafc8858f, 0xffd8bfd8 }, /* thistle */
{ 0xcc41600a, 0xffff6347 }, /* tomato */
{ 0xfeea9b21, 0xff40e0d0 }, /* turquoise */
{ 0xcf57947f, 0xffee82ee }, /* violet */
{ 0x06bdbae7, 0xfff5deb3 }, /* wheat */
{ 0x10802ee6, 0xfff5f5f5 }, /* whitesmoke */
{ 0xe1b5130f, 0xff9acd32 }, /* yellowgreen */
};
const auto hash = (uint32) colourName.trim().toLowerCase().hashCode();
for (auto entry : presets)
if (entry.stringHash == hash)
return Colour (entry.colour);
return defaultColour;
}
} // namespace juce

View File

@ -1,196 +1,196 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Contains a set of predefined named colours (mostly standard HTML colours)
@see Colour
@tags{Graphics}
*/
namespace Colours
{
const Colour transparentBlack { 0 };
const Colour transparentWhite { 0x00ffffff };
const Colour aliceblue { 0xfff0f8ff };
const Colour antiquewhite { 0xfffaebd7 };
const Colour aqua { 0xff00ffff };
const Colour aquamarine { 0xff7fffd4 };
const Colour azure { 0xfff0ffff };
const Colour beige { 0xfff5f5dc };
const Colour bisque { 0xffffe4c4 };
const Colour black { 0xff000000 };
const Colour blanchedalmond { 0xffffebcd };
const Colour blue { 0xff0000ff };
const Colour blueviolet { 0xff8a2be2 };
const Colour brown { 0xffa52a2a };
const Colour burlywood { 0xffdeb887 };
const Colour cadetblue { 0xff5f9ea0 };
const Colour chartreuse { 0xff7fff00 };
const Colour chocolate { 0xffd2691e };
const Colour coral { 0xffff7f50 };
const Colour cornflowerblue { 0xff6495ed };
const Colour cornsilk { 0xfffff8dc };
const Colour crimson { 0xffdc143c };
const Colour cyan { 0xff00ffff };
const Colour darkblue { 0xff00008b };
const Colour darkcyan { 0xff008b8b };
const Colour darkgoldenrod { 0xffb8860b };
const Colour darkgrey { 0xff555555 };
const Colour darkgreen { 0xff006400 };
const Colour darkkhaki { 0xffbdb76b };
const Colour darkmagenta { 0xff8b008b };
const Colour darkolivegreen { 0xff556b2f };
const Colour darkorange { 0xffff8c00 };
const Colour darkorchid { 0xff9932cc };
const Colour darkred { 0xff8b0000 };
const Colour darksalmon { 0xffe9967a };
const Colour darkseagreen { 0xff8fbc8f };
const Colour darkslateblue { 0xff483d8b };
const Colour darkslategrey { 0xff2f4f4f };
const Colour darkturquoise { 0xff00ced1 };
const Colour darkviolet { 0xff9400d3 };
const Colour deeppink { 0xffff1493 };
const Colour deepskyblue { 0xff00bfff };
const Colour dimgrey { 0xff696969 };
const Colour dodgerblue { 0xff1e90ff };
const Colour firebrick { 0xffb22222 };
const Colour floralwhite { 0xfffffaf0 };
const Colour forestgreen { 0xff228b22 };
const Colour fuchsia { 0xffff00ff };
const Colour gainsboro { 0xffdcdcdc };
const Colour ghostwhite { 0xfff8f8ff };
const Colour gold { 0xffffd700 };
const Colour goldenrod { 0xffdaa520 };
const Colour grey { 0xff808080 };
const Colour green { 0xff008000 };
const Colour greenyellow { 0xffadff2f };
const Colour honeydew { 0xfff0fff0 };
const Colour hotpink { 0xffff69b4 };
const Colour indianred { 0xffcd5c5c };
const Colour indigo { 0xff4b0082 };
const Colour ivory { 0xfffffff0 };
const Colour khaki { 0xfff0e68c };
const Colour lavender { 0xffe6e6fa };
const Colour lavenderblush { 0xfffff0f5 };
const Colour lawngreen { 0xff7cfc00 };
const Colour lemonchiffon { 0xfffffacd };
const Colour lightblue { 0xffadd8e6 };
const Colour lightcoral { 0xfff08080 };
const Colour lightcyan { 0xffe0ffff };
const Colour lightgoldenrodyellow { 0xfffafad2 };
const Colour lightgreen { 0xff90ee90 };
const Colour lightgrey { 0xffd3d3d3 };
const Colour lightpink { 0xffffb6c1 };
const Colour lightsalmon { 0xffffa07a };
const Colour lightseagreen { 0xff20b2aa };
const Colour lightskyblue { 0xff87cefa };
const Colour lightslategrey { 0xff778899 };
const Colour lightsteelblue { 0xffb0c4de };
const Colour lightyellow { 0xffffffe0 };
const Colour lime { 0xff00ff00 };
const Colour limegreen { 0xff32cd32 };
const Colour linen { 0xfffaf0e6 };
const Colour magenta { 0xffff00ff };
const Colour maroon { 0xff800000 };
const Colour mediumaquamarine { 0xff66cdaa };
const Colour mediumblue { 0xff0000cd };
const Colour mediumorchid { 0xffba55d3 };
const Colour mediumpurple { 0xff9370db };
const Colour mediumseagreen { 0xff3cb371 };
const Colour mediumslateblue { 0xff7b68ee };
const Colour mediumspringgreen { 0xff00fa9a };
const Colour mediumturquoise { 0xff48d1cc };
const Colour mediumvioletred { 0xffc71585 };
const Colour midnightblue { 0xff191970 };
const Colour mintcream { 0xfff5fffa };
const Colour mistyrose { 0xffffe4e1 };
const Colour moccasin { 0xffffe4b5 };
const Colour navajowhite { 0xffffdead };
const Colour navy { 0xff000080 };
const Colour oldlace { 0xfffdf5e6 };
const Colour olive { 0xff808000 };
const Colour olivedrab { 0xff6b8e23 };
const Colour orange { 0xffffa500 };
const Colour orangered { 0xffff4500 };
const Colour orchid { 0xffda70d6 };
const Colour palegoldenrod { 0xffeee8aa };
const Colour palegreen { 0xff98fb98 };
const Colour paleturquoise { 0xffafeeee };
const Colour palevioletred { 0xffdb7093 };
const Colour papayawhip { 0xffffefd5 };
const Colour peachpuff { 0xffffdab9 };
const Colour peru { 0xffcd853f };
const Colour pink { 0xffffc0cb };
const Colour plum { 0xffdda0dd };
const Colour powderblue { 0xffb0e0e6 };
const Colour purple { 0xff800080 };
const Colour rebeccapurple { 0xff663399 };
const Colour red { 0xffff0000 };
const Colour rosybrown { 0xffbc8f8f };
const Colour royalblue { 0xff4169e1 };
const Colour saddlebrown { 0xff8b4513 };
const Colour salmon { 0xfffa8072 };
const Colour sandybrown { 0xfff4a460 };
const Colour seagreen { 0xff2e8b57 };
const Colour seashell { 0xfffff5ee };
const Colour sienna { 0xffa0522d };
const Colour silver { 0xffc0c0c0 };
const Colour skyblue { 0xff87ceeb };
const Colour slateblue { 0xff6a5acd };
const Colour slategrey { 0xff708090 };
const Colour snow { 0xfffffafa };
const Colour springgreen { 0xff00ff7f };
const Colour steelblue { 0xff4682b4 };
const Colour tan { 0xffd2b48c };
const Colour teal { 0xff008080 };
const Colour thistle { 0xffd8bfd8 };
const Colour tomato { 0xffff6347 };
const Colour turquoise { 0xff40e0d0 };
const Colour violet { 0xffee82ee };
const Colour wheat { 0xfff5deb3 };
const Colour white { 0xffffffff };
const Colour whitesmoke { 0xfff5f5f5 };
const Colour yellow { 0xffffff00 };
const Colour yellowgreen { 0xff9acd32 };
/** Attempts to look up a string in the list of known colour names, and return
the appropriate colour.
A non-case-sensitive search is made of the list of predefined colours, and
if a match is found, that colour is returned. If no match is found, the
colour passed in as the defaultColour parameter is returned.
*/
JUCE_API Colour findColourForName (const String& colourName,
Colour defaultColour);
} // namespace Colours
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Contains a set of predefined named colours (mostly standard HTML colours)
@see Colour
@tags{Graphics}
*/
namespace Colours
{
const Colour transparentBlack { 0 };
const Colour transparentWhite { 0x00ffffff };
const Colour aliceblue { 0xfff0f8ff };
const Colour antiquewhite { 0xfffaebd7 };
const Colour aqua { 0xff00ffff };
const Colour aquamarine { 0xff7fffd4 };
const Colour azure { 0xfff0ffff };
const Colour beige { 0xfff5f5dc };
const Colour bisque { 0xffffe4c4 };
const Colour black { 0xff000000 };
const Colour blanchedalmond { 0xffffebcd };
const Colour blue { 0xff0000ff };
const Colour blueviolet { 0xff8a2be2 };
const Colour brown { 0xffa52a2a };
const Colour burlywood { 0xffdeb887 };
const Colour cadetblue { 0xff5f9ea0 };
const Colour chartreuse { 0xff7fff00 };
const Colour chocolate { 0xffd2691e };
const Colour coral { 0xffff7f50 };
const Colour cornflowerblue { 0xff6495ed };
const Colour cornsilk { 0xfffff8dc };
const Colour crimson { 0xffdc143c };
const Colour cyan { 0xff00ffff };
const Colour darkblue { 0xff00008b };
const Colour darkcyan { 0xff008b8b };
const Colour darkgoldenrod { 0xffb8860b };
const Colour darkgrey { 0xff555555 };
const Colour darkgreen { 0xff006400 };
const Colour darkkhaki { 0xffbdb76b };
const Colour darkmagenta { 0xff8b008b };
const Colour darkolivegreen { 0xff556b2f };
const Colour darkorange { 0xffff8c00 };
const Colour darkorchid { 0xff9932cc };
const Colour darkred { 0xff8b0000 };
const Colour darksalmon { 0xffe9967a };
const Colour darkseagreen { 0xff8fbc8f };
const Colour darkslateblue { 0xff483d8b };
const Colour darkslategrey { 0xff2f4f4f };
const Colour darkturquoise { 0xff00ced1 };
const Colour darkviolet { 0xff9400d3 };
const Colour deeppink { 0xffff1493 };
const Colour deepskyblue { 0xff00bfff };
const Colour dimgrey { 0xff696969 };
const Colour dodgerblue { 0xff1e90ff };
const Colour firebrick { 0xffb22222 };
const Colour floralwhite { 0xfffffaf0 };
const Colour forestgreen { 0xff228b22 };
const Colour fuchsia { 0xffff00ff };
const Colour gainsboro { 0xffdcdcdc };
const Colour ghostwhite { 0xfff8f8ff };
const Colour gold { 0xffffd700 };
const Colour goldenrod { 0xffdaa520 };
const Colour grey { 0xff808080 };
const Colour green { 0xff008000 };
const Colour greenyellow { 0xffadff2f };
const Colour honeydew { 0xfff0fff0 };
const Colour hotpink { 0xffff69b4 };
const Colour indianred { 0xffcd5c5c };
const Colour indigo { 0xff4b0082 };
const Colour ivory { 0xfffffff0 };
const Colour khaki { 0xfff0e68c };
const Colour lavender { 0xffe6e6fa };
const Colour lavenderblush { 0xfffff0f5 };
const Colour lawngreen { 0xff7cfc00 };
const Colour lemonchiffon { 0xfffffacd };
const Colour lightblue { 0xffadd8e6 };
const Colour lightcoral { 0xfff08080 };
const Colour lightcyan { 0xffe0ffff };
const Colour lightgoldenrodyellow { 0xfffafad2 };
const Colour lightgreen { 0xff90ee90 };
const Colour lightgrey { 0xffd3d3d3 };
const Colour lightpink { 0xffffb6c1 };
const Colour lightsalmon { 0xffffa07a };
const Colour lightseagreen { 0xff20b2aa };
const Colour lightskyblue { 0xff87cefa };
const Colour lightslategrey { 0xff778899 };
const Colour lightsteelblue { 0xffb0c4de };
const Colour lightyellow { 0xffffffe0 };
const Colour lime { 0xff00ff00 };
const Colour limegreen { 0xff32cd32 };
const Colour linen { 0xfffaf0e6 };
const Colour magenta { 0xffff00ff };
const Colour maroon { 0xff800000 };
const Colour mediumaquamarine { 0xff66cdaa };
const Colour mediumblue { 0xff0000cd };
const Colour mediumorchid { 0xffba55d3 };
const Colour mediumpurple { 0xff9370db };
const Colour mediumseagreen { 0xff3cb371 };
const Colour mediumslateblue { 0xff7b68ee };
const Colour mediumspringgreen { 0xff00fa9a };
const Colour mediumturquoise { 0xff48d1cc };
const Colour mediumvioletred { 0xffc71585 };
const Colour midnightblue { 0xff191970 };
const Colour mintcream { 0xfff5fffa };
const Colour mistyrose { 0xffffe4e1 };
const Colour moccasin { 0xffffe4b5 };
const Colour navajowhite { 0xffffdead };
const Colour navy { 0xff000080 };
const Colour oldlace { 0xfffdf5e6 };
const Colour olive { 0xff808000 };
const Colour olivedrab { 0xff6b8e23 };
const Colour orange { 0xffffa500 };
const Colour orangered { 0xffff4500 };
const Colour orchid { 0xffda70d6 };
const Colour palegoldenrod { 0xffeee8aa };
const Colour palegreen { 0xff98fb98 };
const Colour paleturquoise { 0xffafeeee };
const Colour palevioletred { 0xffdb7093 };
const Colour papayawhip { 0xffffefd5 };
const Colour peachpuff { 0xffffdab9 };
const Colour peru { 0xffcd853f };
const Colour pink { 0xffffc0cb };
const Colour plum { 0xffdda0dd };
const Colour powderblue { 0xffb0e0e6 };
const Colour purple { 0xff800080 };
const Colour rebeccapurple { 0xff663399 };
const Colour red { 0xffff0000 };
const Colour rosybrown { 0xffbc8f8f };
const Colour royalblue { 0xff4169e1 };
const Colour saddlebrown { 0xff8b4513 };
const Colour salmon { 0xfffa8072 };
const Colour sandybrown { 0xfff4a460 };
const Colour seagreen { 0xff2e8b57 };
const Colour seashell { 0xfffff5ee };
const Colour sienna { 0xffa0522d };
const Colour silver { 0xffc0c0c0 };
const Colour skyblue { 0xff87ceeb };
const Colour slateblue { 0xff6a5acd };
const Colour slategrey { 0xff708090 };
const Colour snow { 0xfffffafa };
const Colour springgreen { 0xff00ff7f };
const Colour steelblue { 0xff4682b4 };
const Colour tan { 0xffd2b48c };
const Colour teal { 0xff008080 };
const Colour thistle { 0xffd8bfd8 };
const Colour tomato { 0xffff6347 };
const Colour turquoise { 0xff40e0d0 };
const Colour violet { 0xffee82ee };
const Colour wheat { 0xfff5deb3 };
const Colour white { 0xffffffff };
const Colour whitesmoke { 0xfff5f5f5 };
const Colour yellow { 0xffffff00 };
const Colour yellowgreen { 0xff9acd32 };
/** Attempts to look up a string in the list of known colour names, and return
the appropriate colour.
A non-case-sensitive search is made of the list of predefined colours, and
if a match is found, that colour is returned. If no match is found, the
colour passed in as the defaultColour parameter is returned.
*/
JUCE_API Colour findColourForName (const String& colourName,
Colour defaultColour);
} // namespace Colours
} // namespace juce

View File

@ -1,157 +1,157 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
FillType::FillType() noexcept
: colour (0xff000000)
{
}
FillType::FillType (Colour c) noexcept
: colour (c)
{
}
FillType::FillType (const ColourGradient& g)
: colour (0xff000000), gradient (new ColourGradient (g))
{
}
FillType::FillType (ColourGradient&& g)
: colour (0xff000000), gradient (new ColourGradient (std::move (g)))
{
}
FillType::FillType (const Image& im, const AffineTransform& t) noexcept
: colour (0xff000000), image (im), transform (t)
{
}
FillType::FillType (const FillType& other)
: colour (other.colour),
gradient (createCopyIfNotNull (other.gradient.get())),
image (other.image),
transform (other.transform)
{
}
FillType& FillType::operator= (const FillType& other)
{
if (this != &other)
{
colour = other.colour;
gradient.reset (createCopyIfNotNull (other.gradient.get()));
image = other.image;
transform = other.transform;
}
return *this;
}
FillType::FillType (FillType&& other) noexcept
: colour (other.colour),
gradient (std::move (other.gradient)),
image (std::move (other.image)),
transform (other.transform)
{
}
FillType& FillType::operator= (FillType&& other) noexcept
{
jassert (this != &other); // hopefully the compiler should make this situation impossible!
colour = other.colour;
gradient = std::move (other.gradient);
image = std::move (other.image);
transform = other.transform;
return *this;
}
FillType::~FillType() noexcept
{
}
bool FillType::operator== (const FillType& other) const
{
return colour == other.colour && image == other.image
&& transform == other.transform
&& (gradient == other.gradient
|| (gradient != nullptr && other.gradient != nullptr && *gradient == *other.gradient));
}
bool FillType::operator!= (const FillType& other) const
{
return ! operator== (other);
}
void FillType::setColour (Colour newColour) noexcept
{
gradient.reset();
image = {};
colour = newColour;
}
void FillType::setGradient (const ColourGradient& newGradient)
{
if (gradient != nullptr)
{
*gradient = newGradient;
}
else
{
image = {};
gradient.reset (new ColourGradient (newGradient));
colour = Colours::black;
}
}
void FillType::setTiledImage (const Image& newImage, const AffineTransform& newTransform) noexcept
{
gradient.reset();
image = newImage;
transform = newTransform;
colour = Colours::black;
}
void FillType::setOpacity (const float newOpacity) noexcept
{
colour = colour.withAlpha (newOpacity);
}
bool FillType::isInvisible() const noexcept
{
return colour.isTransparent() || (gradient != nullptr && gradient->isInvisible());
}
FillType FillType::transformed (const AffineTransform& t) const
{
FillType f (*this);
f.transform = f.transform.followedBy (t);
return f;
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
FillType::FillType() noexcept
: colour (0xff000000)
{
}
FillType::FillType (Colour c) noexcept
: colour (c)
{
}
FillType::FillType (const ColourGradient& g)
: colour (0xff000000), gradient (new ColourGradient (g))
{
}
FillType::FillType (ColourGradient&& g)
: colour (0xff000000), gradient (new ColourGradient (std::move (g)))
{
}
FillType::FillType (const Image& im, const AffineTransform& t) noexcept
: colour (0xff000000), image (im), transform (t)
{
}
FillType::FillType (const FillType& other)
: colour (other.colour),
gradient (createCopyIfNotNull (other.gradient.get())),
image (other.image),
transform (other.transform)
{
}
FillType& FillType::operator= (const FillType& other)
{
if (this != &other)
{
colour = other.colour;
gradient.reset (createCopyIfNotNull (other.gradient.get()));
image = other.image;
transform = other.transform;
}
return *this;
}
FillType::FillType (FillType&& other) noexcept
: colour (other.colour),
gradient (std::move (other.gradient)),
image (std::move (other.image)),
transform (other.transform)
{
}
FillType& FillType::operator= (FillType&& other) noexcept
{
jassert (this != &other); // hopefully the compiler should make this situation impossible!
colour = other.colour;
gradient = std::move (other.gradient);
image = std::move (other.image);
transform = other.transform;
return *this;
}
FillType::~FillType() noexcept
{
}
bool FillType::operator== (const FillType& other) const
{
return colour == other.colour && image == other.image
&& transform == other.transform
&& (gradient == other.gradient
|| (gradient != nullptr && other.gradient != nullptr && *gradient == *other.gradient));
}
bool FillType::operator!= (const FillType& other) const
{
return ! operator== (other);
}
void FillType::setColour (Colour newColour) noexcept
{
gradient.reset();
image = {};
colour = newColour;
}
void FillType::setGradient (const ColourGradient& newGradient)
{
if (gradient != nullptr)
{
*gradient = newGradient;
}
else
{
image = {};
gradient.reset (new ColourGradient (newGradient));
colour = Colours::black;
}
}
void FillType::setTiledImage (const Image& newImage, const AffineTransform& newTransform) noexcept
{
gradient.reset();
image = newImage;
transform = newTransform;
colour = Colours::black;
}
void FillType::setOpacity (const float newOpacity) noexcept
{
colour = colour.withAlpha (newOpacity);
}
bool FillType::isInvisible() const noexcept
{
return colour.isTransparent() || (gradient != nullptr && gradient->isInvisible());
}
FillType FillType::transformed (const AffineTransform& t) const
{
FillType f (*this);
f.transform = f.transform.followedBy (t);
return f;
}
} // namespace juce

View File

@ -1,156 +1,156 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a colour or fill pattern to use for rendering paths.
This is used by the Graphics and DrawablePath classes as a way to encapsulate
a brush type. It can either be a solid colour, a gradient, or a tiled image.
@see Graphics::setFillType, DrawablePath::setFill
@tags{Graphics}
*/
class JUCE_API FillType final
{
public:
//==============================================================================
/** Creates a default fill type, of solid black. */
FillType() noexcept;
/** Creates a fill type of a solid colour.
@see setColour
*/
FillType (Colour colour) noexcept;
/** Creates a gradient fill type.
@see setGradient
*/
FillType (const ColourGradient& gradient);
/** Creates a gradient fill type.
@see setGradient
*/
FillType (ColourGradient&& gradient);
/** Creates a tiled image fill type. The transform allows you to set the scaling, offset
and rotation of the pattern.
@see setTiledImage
*/
FillType (const Image& image, const AffineTransform& transform) noexcept;
/** Creates a copy of another FillType. */
FillType (const FillType&);
/** Makes a copy of another FillType. */
FillType& operator= (const FillType&);
/** Move constructor */
FillType (FillType&&) noexcept;
/** Move assignment operator */
FillType& operator= (FillType&&) noexcept;
/** Destructor. */
~FillType() noexcept;
//==============================================================================
/** Returns true if this is a solid colour fill, and not a gradient or image. */
bool isColour() const noexcept { return gradient == nullptr && image.isNull(); }
/** Returns true if this is a gradient fill. */
bool isGradient() const noexcept { return gradient != nullptr; }
/** Returns true if this is a tiled image pattern fill. */
bool isTiledImage() const noexcept { return image.isValid(); }
/** Turns this object into a solid colour fill.
If the object was an image or gradient, those fields will no longer be valid. */
void setColour (Colour newColour) noexcept;
/** Turns this object into a gradient fill. */
void setGradient (const ColourGradient& newGradient);
/** Turns this object into a tiled image fill type. The transform allows you to set
the scaling, offset and rotation of the pattern.
*/
void setTiledImage (const Image& image, const AffineTransform& transform) noexcept;
/** Changes the opacity that should be used.
If the fill is a solid colour, this just changes the opacity of that colour. For
gradients and image tiles, it changes the opacity that will be used for them.
*/
void setOpacity (float newOpacity) noexcept;
/** Returns the current opacity to be applied to the colour, gradient, or image.
@see setOpacity
*/
float getOpacity() const noexcept { return colour.getFloatAlpha(); }
/** Returns true if this fill type is completely transparent. */
bool isInvisible() const noexcept;
/** Returns a copy of this fill, adding the specified transform applied to the
existing transform.
*/
FillType transformed (const AffineTransform& transform) const;
//==============================================================================
/** The solid colour being used.
If the fill type is not a solid colour, the alpha channel of this colour indicates
the opacity that should be used for the fill, and the RGB channels are ignored.
*/
Colour colour;
/** Returns the gradient that should be used for filling.
This will be nullptr if the object is some other type of fill.
If a gradient is active, the overall opacity with which it should be applied
is indicated by the alpha channel of the colour variable.
*/
std::unique_ptr<ColourGradient> gradient;
/** The image that should be used for tiling.
If an image fill is active, the overall opacity with which it should be applied
is indicated by the alpha channel of the colour variable.
*/
Image image;
/** The transform that should be applied to the image or gradient that's being drawn. */
AffineTransform transform;
//==============================================================================
bool operator== (const FillType&) const;
bool operator!= (const FillType&) const;
private:
JUCE_LEAK_DETECTOR (FillType)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a colour or fill pattern to use for rendering paths.
This is used by the Graphics and DrawablePath classes as a way to encapsulate
a brush type. It can either be a solid colour, a gradient, or a tiled image.
@see Graphics::setFillType, DrawablePath::setFill
@tags{Graphics}
*/
class JUCE_API FillType final
{
public:
//==============================================================================
/** Creates a default fill type, of solid black. */
FillType() noexcept;
/** Creates a fill type of a solid colour.
@see setColour
*/
FillType (Colour colour) noexcept;
/** Creates a gradient fill type.
@see setGradient
*/
FillType (const ColourGradient& gradient);
/** Creates a gradient fill type.
@see setGradient
*/
FillType (ColourGradient&& gradient);
/** Creates a tiled image fill type. The transform allows you to set the scaling, offset
and rotation of the pattern.
@see setTiledImage
*/
FillType (const Image& image, const AffineTransform& transform) noexcept;
/** Creates a copy of another FillType. */
FillType (const FillType&);
/** Makes a copy of another FillType. */
FillType& operator= (const FillType&);
/** Move constructor */
FillType (FillType&&) noexcept;
/** Move assignment operator */
FillType& operator= (FillType&&) noexcept;
/** Destructor. */
~FillType() noexcept;
//==============================================================================
/** Returns true if this is a solid colour fill, and not a gradient or image. */
bool isColour() const noexcept { return gradient == nullptr && image.isNull(); }
/** Returns true if this is a gradient fill. */
bool isGradient() const noexcept { return gradient != nullptr; }
/** Returns true if this is a tiled image pattern fill. */
bool isTiledImage() const noexcept { return image.isValid(); }
/** Turns this object into a solid colour fill.
If the object was an image or gradient, those fields will no longer be valid. */
void setColour (Colour newColour) noexcept;
/** Turns this object into a gradient fill. */
void setGradient (const ColourGradient& newGradient);
/** Turns this object into a tiled image fill type. The transform allows you to set
the scaling, offset and rotation of the pattern.
*/
void setTiledImage (const Image& image, const AffineTransform& transform) noexcept;
/** Changes the opacity that should be used.
If the fill is a solid colour, this just changes the opacity of that colour. For
gradients and image tiles, it changes the opacity that will be used for them.
*/
void setOpacity (float newOpacity) noexcept;
/** Returns the current opacity to be applied to the colour, gradient, or image.
@see setOpacity
*/
float getOpacity() const noexcept { return colour.getFloatAlpha(); }
/** Returns true if this fill type is completely transparent. */
bool isInvisible() const noexcept;
/** Returns a copy of this fill, adding the specified transform applied to the
existing transform.
*/
FillType transformed (const AffineTransform& transform) const;
//==============================================================================
/** The solid colour being used.
If the fill type is not a solid colour, the alpha channel of this colour indicates
the opacity that should be used for the fill, and the RGB channels are ignored.
*/
Colour colour;
/** Returns the gradient that should be used for filling.
This will be nullptr if the object is some other type of fill.
If a gradient is active, the overall opacity with which it should be applied
is indicated by the alpha channel of the colour variable.
*/
std::unique_ptr<ColourGradient> gradient;
/** The image that should be used for tiling.
If an image fill is active, the overall opacity with which it should be applied
is indicated by the alpha channel of the colour variable.
*/
Image image;
/** The transform that should be applied to the image or gradient that's being drawn. */
AffineTransform transform;
//==============================================================================
bool operator== (const FillType&) const;
bool operator!= (const FillType&) const;
private:
JUCE_LEAK_DETECTOR (FillType)
};
} // namespace juce

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,102 +1,102 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Interface class for graphics context objects, used internally by the Graphics class.
Users are not supposed to create instances of this class directly - do your drawing
via the Graphics object instead.
It's a base class for different types of graphics context, that may perform software-based
or OS-accelerated rendering.
E.g. the LowLevelGraphicsSoftwareRenderer renders onto an image in memory, but other
subclasses could render directly to a windows HDC, a Quartz context, or an OpenGL
context.
@tags{Graphics}
*/
class JUCE_API LowLevelGraphicsContext
{
protected:
//==============================================================================
LowLevelGraphicsContext();
public:
virtual ~LowLevelGraphicsContext();
/** Returns true if this device is vector-based, e.g. a printer. */
virtual bool isVectorDevice() const = 0;
//==============================================================================
/** Moves the origin to a new position.
The coordinates are relative to the current origin, and indicate the new position
of (0, 0).
*/
virtual void setOrigin (Point<int>) = 0;
virtual void addTransform (const AffineTransform&) = 0;
virtual float getPhysicalPixelScaleFactor() = 0;
virtual bool clipToRectangle (const Rectangle<int>&) = 0;
virtual bool clipToRectangleList (const RectangleList<int>&) = 0;
virtual void excludeClipRectangle (const Rectangle<int>&) = 0;
virtual void clipToPath (const Path&, const AffineTransform&) = 0;
virtual void clipToImageAlpha (const Image&, const AffineTransform&) = 0;
virtual bool clipRegionIntersects (const Rectangle<int>&) = 0;
virtual Rectangle<int> getClipBounds() const = 0;
virtual bool isClipEmpty() const = 0;
virtual void saveState() = 0;
virtual void restoreState() = 0;
virtual void beginTransparencyLayer (float opacity) = 0;
virtual void endTransparencyLayer() = 0;
//==============================================================================
virtual void setFill (const FillType&) = 0;
virtual void setOpacity (float) = 0;
virtual void setInterpolationQuality (Graphics::ResamplingQuality) = 0;
//==============================================================================
virtual void fillRect (const Rectangle<int>&, bool replaceExistingContents) = 0;
virtual void fillRect (const Rectangle<float>&) = 0;
virtual void fillRectList (const RectangleList<float>&) = 0;
virtual void fillPath (const Path&, const AffineTransform&) = 0;
virtual void drawImage (const Image&, const AffineTransform&) = 0;
virtual void drawLine (const Line<float>&) = 0;
virtual void setFont (const Font&) = 0;
virtual const Font& getFont() = 0;
virtual void drawGlyph (int glyphNumber, const AffineTransform&) = 0;
virtual bool drawTextLayout (const AttributedString&, const Rectangle<float>&) { return false; }
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Interface class for graphics context objects, used internally by the Graphics class.
Users are not supposed to create instances of this class directly - do your drawing
via the Graphics object instead.
It's a base class for different types of graphics context, that may perform software-based
or OS-accelerated rendering.
E.g. the LowLevelGraphicsSoftwareRenderer renders onto an image in memory, but other
subclasses could render directly to a windows HDC, a Quartz context, or an OpenGL
context.
@tags{Graphics}
*/
class JUCE_API LowLevelGraphicsContext
{
protected:
//==============================================================================
LowLevelGraphicsContext() = default;
public:
virtual ~LowLevelGraphicsContext() = default;
/** Returns true if this device is vector-based, e.g. a printer. */
virtual bool isVectorDevice() const = 0;
//==============================================================================
/** Moves the origin to a new position.
The coordinates are relative to the current origin, and indicate the new position
of (0, 0).
*/
virtual void setOrigin (Point<int>) = 0;
virtual void addTransform (const AffineTransform&) = 0;
virtual float getPhysicalPixelScaleFactor() = 0;
virtual bool clipToRectangle (const Rectangle<int>&) = 0;
virtual bool clipToRectangleList (const RectangleList<int>&) = 0;
virtual void excludeClipRectangle (const Rectangle<int>&) = 0;
virtual void clipToPath (const Path&, const AffineTransform&) = 0;
virtual void clipToImageAlpha (const Image&, const AffineTransform&) = 0;
virtual bool clipRegionIntersects (const Rectangle<int>&) = 0;
virtual Rectangle<int> getClipBounds() const = 0;
virtual bool isClipEmpty() const = 0;
virtual void saveState() = 0;
virtual void restoreState() = 0;
virtual void beginTransparencyLayer (float opacity) = 0;
virtual void endTransparencyLayer() = 0;
//==============================================================================
virtual void setFill (const FillType&) = 0;
virtual void setOpacity (float) = 0;
virtual void setInterpolationQuality (Graphics::ResamplingQuality) = 0;
//==============================================================================
virtual void fillRect (const Rectangle<int>&, bool replaceExistingContents) = 0;
virtual void fillRect (const Rectangle<float>&) = 0;
virtual void fillRectList (const RectangleList<float>&) = 0;
virtual void fillPath (const Path&, const AffineTransform&) = 0;
virtual void drawImage (const Image&, const AffineTransform&) = 0;
virtual void drawLine (const Line<float>&) = 0;
virtual void setFont (const Font&) = 0;
virtual const Font& getFont() = 0;
virtual void drawGlyph (int glyphNumber, const AffineTransform&) = 0;
virtual bool drawTextLayout (const AttributedString&, const Rectangle<float>&) { return false; }
};
} // namespace juce

View File

@ -1,119 +1,117 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
An implementation of LowLevelGraphicsContext that turns the drawing operations
into a PostScript document.
@tags{Graphics}
*/
class JUCE_API LowLevelGraphicsPostScriptRenderer : public LowLevelGraphicsContext
{
public:
//==============================================================================
LowLevelGraphicsPostScriptRenderer (OutputStream& resultingPostScript,
const String& documentTitle,
int totalWidth,
int totalHeight);
~LowLevelGraphicsPostScriptRenderer() override;
//==============================================================================
bool isVectorDevice() const override;
void setOrigin (Point<int>) override;
void addTransform (const AffineTransform&) override;
float getPhysicalPixelScaleFactor() override;
bool clipToRectangle (const Rectangle<int>&) override;
bool clipToRectangleList (const RectangleList<int>&) override;
void excludeClipRectangle (const Rectangle<int>&) override;
void clipToPath (const Path&, const AffineTransform&) override;
void clipToImageAlpha (const Image&, const AffineTransform&) override;
void saveState() override;
void restoreState() override;
void beginTransparencyLayer (float) override;
void endTransparencyLayer() override;
bool clipRegionIntersects (const Rectangle<int>&) override;
Rectangle<int> getClipBounds() const override;
bool isClipEmpty() const override;
//==============================================================================
void setFill (const FillType&) override;
void setOpacity (float) override;
void setInterpolationQuality (Graphics::ResamplingQuality) override;
//==============================================================================
void fillRect (const Rectangle<int>&, bool replaceExistingContents) override;
void fillRect (const Rectangle<float>&) override;
void fillRectList (const RectangleList<float>&) override;
void fillPath (const Path&, const AffineTransform&) override;
void drawImage (const Image&, const AffineTransform&) override;
void drawLine (const Line <float>&) override;
//==============================================================================
const Font& getFont() override;
void setFont (const Font&) override;
void drawGlyph (int glyphNumber, const AffineTransform&) override;
protected:
//==============================================================================
OutputStream& out;
int totalWidth, totalHeight;
bool needToClip;
Colour lastColour;
/** Describes a saved state */
struct SavedState
{
SavedState();
SavedState& operator= (const SavedState&) = delete;
~SavedState();
RectangleList<int> clip;
int xOffset, yOffset;
FillType fillType;
Font font;
};
OwnedArray<SavedState> stateStack;
void writeClip();
void writeColour (Colour colour);
void writePath (const Path&) const;
void writeXY (float x, float y) const;
void writeTransform (const AffineTransform&) const;
void writeImage (const Image&, int sx, int sy, int maxW, int maxH) const;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (LowLevelGraphicsPostScriptRenderer)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
An implementation of LowLevelGraphicsContext that turns the drawing operations
into a PostScript document.
@tags{Graphics}
*/
class JUCE_API LowLevelGraphicsPostScriptRenderer : public LowLevelGraphicsContext
{
public:
//==============================================================================
LowLevelGraphicsPostScriptRenderer (OutputStream& resultingPostScript,
const String& documentTitle,
int totalWidth,
int totalHeight);
//==============================================================================
bool isVectorDevice() const override;
void setOrigin (Point<int>) override;
void addTransform (const AffineTransform&) override;
float getPhysicalPixelScaleFactor() override;
bool clipToRectangle (const Rectangle<int>&) override;
bool clipToRectangleList (const RectangleList<int>&) override;
void excludeClipRectangle (const Rectangle<int>&) override;
void clipToPath (const Path&, const AffineTransform&) override;
void clipToImageAlpha (const Image&, const AffineTransform&) override;
void saveState() override;
void restoreState() override;
void beginTransparencyLayer (float) override;
void endTransparencyLayer() override;
bool clipRegionIntersects (const Rectangle<int>&) override;
Rectangle<int> getClipBounds() const override;
bool isClipEmpty() const override;
//==============================================================================
void setFill (const FillType&) override;
void setOpacity (float) override;
void setInterpolationQuality (Graphics::ResamplingQuality) override;
//==============================================================================
void fillRect (const Rectangle<int>&, bool replaceExistingContents) override;
void fillRect (const Rectangle<float>&) override;
void fillRectList (const RectangleList<float>&) override;
void fillPath (const Path&, const AffineTransform&) override;
void drawImage (const Image&, const AffineTransform&) override;
void drawLine (const Line <float>&) override;
//==============================================================================
const Font& getFont() override;
void setFont (const Font&) override;
void drawGlyph (int glyphNumber, const AffineTransform&) override;
protected:
//==============================================================================
OutputStream& out;
int totalWidth, totalHeight;
bool needToClip;
Colour lastColour;
/** Describes a saved state */
struct SavedState
{
SavedState();
SavedState (const SavedState&) = default;
SavedState& operator= (const SavedState&) = delete;
RectangleList<int> clip;
int xOffset, yOffset;
FillType fillType;
Font font;
};
OwnedArray<SavedState> stateStack;
void writeClip();
void writeColour (Colour colour);
void writePath (const Path&) const;
void writeXY (float x, float y) const;
void writeTransform (const AffineTransform&) const;
void writeImage (const Image&, int sx, int sy, int maxW, int maxH) const;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (LowLevelGraphicsPostScriptRenderer)
};
} // namespace juce

View File

@ -1,44 +1,44 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
LowLevelGraphicsSoftwareRenderer::LowLevelGraphicsSoftwareRenderer (const Image& image)
: RenderingHelpers::StackBasedLowLevelGraphicsContext<RenderingHelpers::SoftwareRendererSavedState>
(new RenderingHelpers::SoftwareRendererSavedState (image, image.getBounds()))
{
}
LowLevelGraphicsSoftwareRenderer::LowLevelGraphicsSoftwareRenderer (const Image& image, Point<int> origin,
const RectangleList<int>& initialClip)
: RenderingHelpers::StackBasedLowLevelGraphicsContext<RenderingHelpers::SoftwareRendererSavedState>
(new RenderingHelpers::SoftwareRendererSavedState (image, initialClip, origin))
{
}
LowLevelGraphicsSoftwareRenderer::~LowLevelGraphicsSoftwareRenderer() {}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
LowLevelGraphicsSoftwareRenderer::LowLevelGraphicsSoftwareRenderer (const Image& image)
: RenderingHelpers::StackBasedLowLevelGraphicsContext<RenderingHelpers::SoftwareRendererSavedState>
(new RenderingHelpers::SoftwareRendererSavedState (image, image.getBounds()))
{
}
LowLevelGraphicsSoftwareRenderer::LowLevelGraphicsSoftwareRenderer (const Image& image, Point<int> origin,
const RectangleList<int>& initialClip)
: RenderingHelpers::StackBasedLowLevelGraphicsContext<RenderingHelpers::SoftwareRendererSavedState>
(new RenderingHelpers::SoftwareRendererSavedState (image, initialClip, origin))
{
}
LowLevelGraphicsSoftwareRenderer::~LowLevelGraphicsSoftwareRenderer() {}
} // namespace juce

View File

@ -1,57 +1,57 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A lowest-common-denominator implementation of LowLevelGraphicsContext that does all
its rendering in memory.
User code is not supposed to create instances of this class directly - do all your
rendering via the Graphics class instead.
@tags{Graphics}
*/
class JUCE_API LowLevelGraphicsSoftwareRenderer : public RenderingHelpers::StackBasedLowLevelGraphicsContext<RenderingHelpers::SoftwareRendererSavedState>
{
public:
//==============================================================================
/** Creates a context to render into an image. */
LowLevelGraphicsSoftwareRenderer (const Image& imageToRenderOnto);
/** Creates a context to render into a clipped subsection of an image. */
LowLevelGraphicsSoftwareRenderer (const Image& imageToRenderOnto, Point<int> origin,
const RectangleList<int>& initialClip);
/** Destructor. */
~LowLevelGraphicsSoftwareRenderer() override;
private:
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (LowLevelGraphicsSoftwareRenderer)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A lowest-common-denominator implementation of LowLevelGraphicsContext that does all
its rendering in memory.
User code is not supposed to create instances of this class directly - do all your
rendering via the Graphics class instead.
@tags{Graphics}
*/
class JUCE_API LowLevelGraphicsSoftwareRenderer : public RenderingHelpers::StackBasedLowLevelGraphicsContext<RenderingHelpers::SoftwareRendererSavedState>
{
public:
//==============================================================================
/** Creates a context to render into an image. */
LowLevelGraphicsSoftwareRenderer (const Image& imageToRenderOnto);
/** Creates a context to render into a clipped subsection of an image. */
LowLevelGraphicsSoftwareRenderer (const Image& imageToRenderOnto, Point<int> origin,
const RectangleList<int>& initialClip);
/** Destructor. */
~LowLevelGraphicsSoftwareRenderer() override;
private:
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (LowLevelGraphicsSoftwareRenderer)
};
} // namespace juce

View File

@ -1,183 +1,183 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
static void blurDataTriplets (uint8* d, int num, const int delta) noexcept
{
uint32 last = d[0];
d[0] = (uint8) ((d[0] + d[delta] + 1) / 3);
d += delta;
num -= 2;
do
{
const uint32 newLast = d[0];
d[0] = (uint8) ((last + d[0] + d[delta] + 1) / 3);
d += delta;
last = newLast;
}
while (--num > 0);
d[0] = (uint8) ((last + d[0] + 1) / 3);
}
static void blurSingleChannelImage (uint8* const data, const int width, const int height,
const int lineStride, const int repetitions) noexcept
{
jassert (width > 2 && height > 2);
for (int y = 0; y < height; ++y)
for (int i = repetitions; --i >= 0;)
blurDataTriplets (data + lineStride * y, width, 1);
for (int x = 0; x < width; ++x)
for (int i = repetitions; --i >= 0;)
blurDataTriplets (data + x, height, lineStride);
}
static void blurSingleChannelImage (Image& image, int radius)
{
const Image::BitmapData bm (image, Image::BitmapData::readWrite);
blurSingleChannelImage (bm.data, bm.width, bm.height, bm.lineStride, 2 * radius);
}
//==============================================================================
DropShadow::DropShadow (Colour shadowColour, const int r, Point<int> o) noexcept
: colour (shadowColour), radius (r), offset (o)
{
jassert (radius > 0);
}
void DropShadow::drawForImage (Graphics& g, const Image& srcImage) const
{
jassert (radius > 0);
if (srcImage.isValid())
{
Image shadowImage (srcImage.convertedToFormat (Image::SingleChannel));
shadowImage.duplicateIfShared();
blurSingleChannelImage (shadowImage, radius);
g.setColour (colour);
g.drawImageAt (shadowImage, offset.x, offset.y, true);
}
}
void DropShadow::drawForPath (Graphics& g, const Path& path) const
{
jassert (radius > 0);
auto area = (path.getBounds().getSmallestIntegerContainer() + offset)
.expanded (radius + 1)
.getIntersection (g.getClipBounds().expanded (radius + 1));
if (area.getWidth() > 2 && area.getHeight() > 2)
{
Image renderedPath (Image::SingleChannel, area.getWidth(), area.getHeight(), true);
{
Graphics g2 (renderedPath);
g2.setColour (Colours::white);
g2.fillPath (path, AffineTransform::translation ((float) (offset.x - area.getX()),
(float) (offset.y - area.getY())));
}
blurSingleChannelImage (renderedPath, radius);
g.setColour (colour);
g.drawImageAt (renderedPath, area.getX(), area.getY(), true);
}
}
static void drawShadowSection (Graphics& g, ColourGradient& cg, Rectangle<float> area,
bool isCorner, float centreX, float centreY, float edgeX, float edgeY)
{
cg.point1 = area.getRelativePoint (centreX, centreY);
cg.point2 = area.getRelativePoint (edgeX, edgeY);
cg.isRadial = isCorner;
g.setGradientFill (cg);
g.fillRect (area);
}
void DropShadow::drawForRectangle (Graphics& g, const Rectangle<int>& targetArea) const
{
ColourGradient cg (colour, 0, 0, colour.withAlpha (0.0f), 0, 0, false);
for (float i = 0.05f; i < 1.0f; i += 0.1f)
cg.addColour (1.0 - i, colour.withMultipliedAlpha (i * i));
const float radiusInset = (float) radius / 2.0f;
const float expandedRadius = (float) radius + radiusInset;
auto area = targetArea.toFloat().reduced (radiusInset) + offset.toFloat();
auto r = area.expanded (expandedRadius);
auto top = r.removeFromTop (expandedRadius);
auto bottom = r.removeFromBottom (expandedRadius);
drawShadowSection (g, cg, top.removeFromLeft (expandedRadius), true, 1.0f, 1.0f, 0, 1.0f);
drawShadowSection (g, cg, top.removeFromRight (expandedRadius), true, 0, 1.0f, 1.0f, 1.0f);
drawShadowSection (g, cg, top, false, 0, 1.0f, 0, 0);
drawShadowSection (g, cg, bottom.removeFromLeft (expandedRadius), true, 1.0f, 0, 0, 0);
drawShadowSection (g, cg, bottom.removeFromRight (expandedRadius), true, 0, 0, 1.0f, 0);
drawShadowSection (g, cg, bottom, false, 0, 0, 0, 1.0f);
drawShadowSection (g, cg, r.removeFromLeft (expandedRadius), false, 1.0f, 0, 0, 0);
drawShadowSection (g, cg, r.removeFromRight (expandedRadius), false, 0, 0, 1.0f, 0);
g.setColour (colour);
g.fillRect (area);
}
//==============================================================================
DropShadowEffect::DropShadowEffect() {}
DropShadowEffect::~DropShadowEffect() {}
void DropShadowEffect::setShadowProperties (const DropShadow& newShadow)
{
shadow = newShadow;
}
void DropShadowEffect::applyEffect (Image& image, Graphics& g, float scaleFactor, float alpha)
{
DropShadow s (shadow);
s.radius = roundToInt ((float) s.radius * scaleFactor);
s.colour = s.colour.withMultipliedAlpha (alpha);
s.offset.x = roundToInt ((float) s.offset.x * scaleFactor);
s.offset.y = roundToInt ((float) s.offset.y * scaleFactor);
s.drawForImage (g, image);
g.setOpacity (alpha);
g.drawImageAt (image, 0, 0);
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
static void blurDataTriplets (uint8* d, int num, const int delta) noexcept
{
uint32 last = d[0];
d[0] = (uint8) ((d[0] + d[delta] + 1) / 3);
d += delta;
num -= 2;
do
{
const uint32 newLast = d[0];
d[0] = (uint8) ((last + d[0] + d[delta] + 1) / 3);
d += delta;
last = newLast;
}
while (--num > 0);
d[0] = (uint8) ((last + d[0] + 1) / 3);
}
static void blurSingleChannelImage (uint8* const data, const int width, const int height,
const int lineStride, const int repetitions) noexcept
{
jassert (width > 2 && height > 2);
for (int y = 0; y < height; ++y)
for (int i = repetitions; --i >= 0;)
blurDataTriplets (data + lineStride * y, width, 1);
for (int x = 0; x < width; ++x)
for (int i = repetitions; --i >= 0;)
blurDataTriplets (data + x, height, lineStride);
}
static void blurSingleChannelImage (Image& image, int radius)
{
const Image::BitmapData bm (image, Image::BitmapData::readWrite);
blurSingleChannelImage (bm.data, bm.width, bm.height, bm.lineStride, 2 * radius);
}
//==============================================================================
DropShadow::DropShadow (Colour shadowColour, const int r, Point<int> o) noexcept
: colour (shadowColour), radius (r), offset (o)
{
jassert (radius > 0);
}
void DropShadow::drawForImage (Graphics& g, const Image& srcImage) const
{
jassert (radius > 0);
if (srcImage.isValid())
{
Image shadowImage (srcImage.convertedToFormat (Image::SingleChannel));
shadowImage.duplicateIfShared();
blurSingleChannelImage (shadowImage, radius);
g.setColour (colour);
g.drawImageAt (shadowImage, offset.x, offset.y, true);
}
}
void DropShadow::drawForPath (Graphics& g, const Path& path) const
{
jassert (radius > 0);
auto area = (path.getBounds().getSmallestIntegerContainer() + offset)
.expanded (radius + 1)
.getIntersection (g.getClipBounds().expanded (radius + 1));
if (area.getWidth() > 2 && area.getHeight() > 2)
{
Image renderedPath (Image::SingleChannel, area.getWidth(), area.getHeight(), true);
{
Graphics g2 (renderedPath);
g2.setColour (Colours::white);
g2.fillPath (path, AffineTransform::translation ((float) (offset.x - area.getX()),
(float) (offset.y - area.getY())));
}
blurSingleChannelImage (renderedPath, radius);
g.setColour (colour);
g.drawImageAt (renderedPath, area.getX(), area.getY(), true);
}
}
static void drawShadowSection (Graphics& g, ColourGradient& cg, Rectangle<float> area,
bool isCorner, float centreX, float centreY, float edgeX, float edgeY)
{
cg.point1 = area.getRelativePoint (centreX, centreY);
cg.point2 = area.getRelativePoint (edgeX, edgeY);
cg.isRadial = isCorner;
g.setGradientFill (cg);
g.fillRect (area);
}
void DropShadow::drawForRectangle (Graphics& g, const Rectangle<int>& targetArea) const
{
ColourGradient cg (colour, 0, 0, colour.withAlpha (0.0f), 0, 0, false);
for (float i = 0.05f; i < 1.0f; i += 0.1f)
cg.addColour (1.0 - i, colour.withMultipliedAlpha (i * i));
const float radiusInset = (float) radius / 2.0f;
const float expandedRadius = (float) radius + radiusInset;
auto area = targetArea.toFloat().reduced (radiusInset) + offset.toFloat();
auto r = area.expanded (expandedRadius);
auto top = r.removeFromTop (expandedRadius);
auto bottom = r.removeFromBottom (expandedRadius);
drawShadowSection (g, cg, top.removeFromLeft (expandedRadius), true, 1.0f, 1.0f, 0, 1.0f);
drawShadowSection (g, cg, top.removeFromRight (expandedRadius), true, 0, 1.0f, 1.0f, 1.0f);
drawShadowSection (g, cg, top, false, 0, 1.0f, 0, 0);
drawShadowSection (g, cg, bottom.removeFromLeft (expandedRadius), true, 1.0f, 0, 0, 0);
drawShadowSection (g, cg, bottom.removeFromRight (expandedRadius), true, 0, 0, 1.0f, 0);
drawShadowSection (g, cg, bottom, false, 0, 0, 0, 1.0f);
drawShadowSection (g, cg, r.removeFromLeft (expandedRadius), false, 1.0f, 0, 0, 0);
drawShadowSection (g, cg, r.removeFromRight (expandedRadius), false, 0, 0, 1.0f, 0);
g.setColour (colour);
g.fillRect (area);
}
//==============================================================================
DropShadowEffect::DropShadowEffect() {}
DropShadowEffect::~DropShadowEffect() {}
void DropShadowEffect::setShadowProperties (const DropShadow& newShadow)
{
shadow = newShadow;
}
void DropShadowEffect::applyEffect (Image& image, Graphics& g, float scaleFactor, float alpha)
{
DropShadow s (shadow);
s.radius = roundToInt ((float) s.radius * scaleFactor);
s.colour = s.colour.withMultipliedAlpha (alpha);
s.offset.x = roundToInt ((float) s.offset.x * scaleFactor);
s.offset.y = roundToInt ((float) s.offset.y * scaleFactor);
s.drawForImage (g, image);
g.setOpacity (alpha);
g.drawImageAt (image, 0, 0);
}
} // namespace juce

View File

@ -1,113 +1,113 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Defines a drop-shadow effect.
@tags{Graphics}
*/
struct JUCE_API DropShadow
{
/** Creates a default drop-shadow effect. */
DropShadow() = default;
/** Creates a drop-shadow object with the given parameters. */
DropShadow (Colour shadowColour, int radius, Point<int> offset) noexcept;
/** Renders a drop-shadow based on the alpha-channel of the given image. */
void drawForImage (Graphics& g, const Image& srcImage) const;
/** Renders a drop-shadow based on the shape of a path. */
void drawForPath (Graphics& g, const Path& path) const;
/** Renders a drop-shadow for a rectangle.
Note that for speed, this approximates the shadow using gradients.
*/
void drawForRectangle (Graphics& g, const Rectangle<int>& area) const;
/** The colour with which to render the shadow.
In most cases you'll probably want to leave this as black with an alpha
value of around 0.5
*/
Colour colour { 0x90000000 };
/** The approximate spread of the shadow. */
int radius { 4 };
/** The offset of the shadow. */
Point<int> offset;
};
//==============================================================================
/**
An effect filter that adds a drop-shadow behind the image's content.
(This will only work on images/components that aren't opaque, of course).
When added to a component, this effect will draw a soft-edged
shadow based on what gets drawn inside it. The shadow will also
be applied to the component's children.
For speed, this doesn't use a proper gaussian blur, but cheats by
using a simple bilinear filter. If you need a really high-quality
shadow, check out ImageConvolutionKernel::createGaussianBlur()
@see Component::setComponentEffect
@tags{Graphics}
*/
class JUCE_API DropShadowEffect : public ImageEffectFilter
{
public:
//==============================================================================
/** Creates a default drop-shadow effect.
To customise the shadow's appearance, use the setShadowProperties() method.
*/
DropShadowEffect();
/** Destructor. */
~DropShadowEffect() override;
//==============================================================================
/** Sets up parameters affecting the shadow's appearance. */
void setShadowProperties (const DropShadow& newShadow);
//==============================================================================
/** @internal */
void applyEffect (Image& sourceImage, Graphics& destContext, float scaleFactor, float alpha) override;
private:
//==============================================================================
DropShadow shadow;
JUCE_LEAK_DETECTOR (DropShadowEffect)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Defines a drop-shadow effect.
@tags{Graphics}
*/
struct JUCE_API DropShadow
{
/** Creates a default drop-shadow effect. */
DropShadow() = default;
/** Creates a drop-shadow object with the given parameters. */
DropShadow (Colour shadowColour, int radius, Point<int> offset) noexcept;
/** Renders a drop-shadow based on the alpha-channel of the given image. */
void drawForImage (Graphics& g, const Image& srcImage) const;
/** Renders a drop-shadow based on the shape of a path. */
void drawForPath (Graphics& g, const Path& path) const;
/** Renders a drop-shadow for a rectangle.
Note that for speed, this approximates the shadow using gradients.
*/
void drawForRectangle (Graphics& g, const Rectangle<int>& area) const;
/** The colour with which to render the shadow.
In most cases you'll probably want to leave this as black with an alpha
value of around 0.5
*/
Colour colour { 0x90000000 };
/** The approximate spread of the shadow. */
int radius { 4 };
/** The offset of the shadow. */
Point<int> offset;
};
//==============================================================================
/**
An effect filter that adds a drop-shadow behind the image's content.
(This will only work on images/components that aren't opaque, of course).
When added to a component, this effect will draw a soft-edged
shadow based on what gets drawn inside it. The shadow will also
be applied to the component's children.
For speed, this doesn't use a proper gaussian blur, but cheats by
using a simple bilinear filter. If you need a really high-quality
shadow, check out ImageConvolutionKernel::createGaussianBlur()
@see Component::setComponentEffect
@tags{Graphics}
*/
class JUCE_API DropShadowEffect : public ImageEffectFilter
{
public:
//==============================================================================
/** Creates a default drop-shadow effect.
To customise the shadow's appearance, use the setShadowProperties() method.
*/
DropShadowEffect();
/** Destructor. */
~DropShadowEffect() override;
//==============================================================================
/** Sets up parameters affecting the shadow's appearance. */
void setShadowProperties (const DropShadow& newShadow);
//==============================================================================
/** @internal */
void applyEffect (Image& sourceImage, Graphics& destContext, float scaleFactor, float alpha) override;
private:
//==============================================================================
DropShadow shadow;
JUCE_LEAK_DETECTOR (DropShadowEffect)
};
} // namespace juce

View File

@ -1,57 +1,57 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
GlowEffect::GlowEffect() {}
GlowEffect::~GlowEffect() {}
void GlowEffect::setGlowProperties (float newRadius, Colour newColour, Point<int> pos)
{
radius = newRadius;
colour = newColour;
offset = pos;
}
void GlowEffect::applyEffect (Image& image, Graphics& g, float scaleFactor, float alpha)
{
Image temp (image.getFormat(), image.getWidth(), image.getHeight(), true);
ImageConvolutionKernel blurKernel (roundToInt (radius * scaleFactor * 2.0f));
blurKernel.createGaussianBlur (radius);
blurKernel.rescaleAllValues (radius);
blurKernel.applyToImage (temp, image, image.getBounds());
g.setColour (colour.withMultipliedAlpha (alpha));
g.drawImageAt (temp, offset.x, offset.y, true);
g.setOpacity (alpha);
g.drawImageAt (image, offset.x, offset.y, false);
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
GlowEffect::GlowEffect() {}
GlowEffect::~GlowEffect() {}
void GlowEffect::setGlowProperties (float newRadius, Colour newColour, Point<int> pos)
{
radius = newRadius;
colour = newColour;
offset = pos;
}
void GlowEffect::applyEffect (Image& image, Graphics& g, float scaleFactor, float alpha)
{
Image temp (image.getFormat(), image.getWidth(), image.getHeight(), true);
ImageConvolutionKernel blurKernel (roundToInt (radius * scaleFactor * 2.0f));
blurKernel.createGaussianBlur (radius);
blurKernel.rescaleAllValues (radius);
blurKernel.applyToImage (temp, image, image.getBounds());
g.setColour (colour.withMultipliedAlpha (alpha));
g.drawImageAt (temp, offset.x, offset.y, true);
g.setOpacity (alpha);
g.drawImageAt (image, offset.x, offset.y, false);
}
} // namespace juce

View File

@ -1,76 +1,76 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A component effect that adds a coloured blur around the component's contents.
(This will only work on non-opaque components).
@see Component::setComponentEffect, DropShadowEffect
@tags{Graphics}
*/
class JUCE_API GlowEffect : public ImageEffectFilter
{
public:
//==============================================================================
/** Creates a default 'glow' effect.
To customise its appearance, use the setGlowProperties() method.
*/
GlowEffect();
/** Destructor. */
~GlowEffect() override;
//==============================================================================
/** Sets the glow's radius and colour.
The radius is how large the blur should be, and the colour is
used to render it (for a less intense glow, lower the colour's
opacity).
*/
void setGlowProperties (float newRadius,
Colour newColour,
Point<int> offset = {});
//==============================================================================
/** @internal */
void applyEffect (Image&, Graphics&, float scaleFactor, float alpha) override;
private:
//==============================================================================
float radius = 2.0f;
Colour colour { Colours::white };
Point<int> offset;
JUCE_LEAK_DETECTOR (GlowEffect)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A component effect that adds a coloured blur around the component's contents.
(This will only work on non-opaque components).
@see Component::setComponentEffect, DropShadowEffect
@tags{Graphics}
*/
class JUCE_API GlowEffect : public ImageEffectFilter
{
public:
//==============================================================================
/** Creates a default 'glow' effect.
To customise its appearance, use the setGlowProperties() method.
*/
GlowEffect();
/** Destructor. */
~GlowEffect() override;
//==============================================================================
/** Sets the glow's radius and colour.
The radius is how large the blur should be, and the colour is
used to render it (for a less intense glow, lower the colour's
opacity).
*/
void setGlowProperties (float newRadius,
Colour newColour,
Point<int> offset = {});
//==============================================================================
/** @internal */
void applyEffect (Image&, Graphics&, float scaleFactor, float alpha) override;
private:
//==============================================================================
float radius = 2.0f;
Colour colour { Colours::white };
Point<int> offset;
JUCE_LEAK_DETECTOR (GlowEffect)
};
} // namespace juce

View File

@ -1,71 +1,71 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A graphical effect filter that can be applied to components.
An ImageEffectFilter can be applied to the image that a component
paints before it hits the screen.
This is used for adding effects like shadows, blurs, etc.
@see Component::setComponentEffect
@tags{Graphics}
*/
class JUCE_API ImageEffectFilter
{
public:
//==============================================================================
/** Overridden to render the effect.
The implementation of this method must use the image that is passed in
as its source, and should render its output to the graphics context passed in.
@param sourceImage the image that the source component has just rendered with
its paint() method. The image may or may not have an alpha
channel, depending on whether the component is opaque.
@param destContext the graphics context to use to draw the resultant image.
@param scaleFactor a scale factor that has been applied to the image - e.g. if
this is 2, then the image is actually scaled-up to twice the
original resolution
@param alpha the alpha with which to draw the resultant image to the
target context
*/
virtual void applyEffect (Image& sourceImage,
Graphics& destContext,
float scaleFactor,
float alpha) = 0;
/** Destructor. */
virtual ~ImageEffectFilter() = default;
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A graphical effect filter that can be applied to components.
An ImageEffectFilter can be applied to the image that a component
paints before it hits the screen.
This is used for adding effects like shadows, blurs, etc.
@see Component::setComponentEffect
@tags{Graphics}
*/
class JUCE_API ImageEffectFilter
{
public:
//==============================================================================
/** Overridden to render the effect.
The implementation of this method must use the image that is passed in
as its source, and should render its output to the graphics context passed in.
@param sourceImage the image that the source component has just rendered with
its paint() method. The image may or may not have an alpha
channel, depending on whether the component is opaque.
@param destContext the graphics context to use to draw the resultant image.
@param scaleFactor a scale factor that has been applied to the image - e.g. if
this is 2, then the image is actually scaled-up to twice the
original resolution
@param alpha the alpha with which to draw the resultant image to the
target context
*/
virtual void applyEffect (Image& sourceImage,
Graphics& destContext,
float scaleFactor,
float alpha) = 0;
/** Destructor. */
virtual ~ImageEffectFilter() = default;
};
} // namespace juce

View File

@ -1,254 +1,282 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace
{
int getLength (const Array<AttributedString::Attribute>& atts) noexcept
{
return atts.size() != 0 ? atts.getReference (atts.size() - 1).range.getEnd() : 0;
}
void splitAttributeRanges (Array<AttributedString::Attribute>& atts, int position)
{
for (int i = atts.size(); --i >= 0;)
{
const auto& att = atts.getUnchecked (i);
auto offset = position - att.range.getStart();
if (offset >= 0)
{
if (offset > 0 && position < att.range.getEnd())
{
atts.insert (i + 1, AttributedString::Attribute (att));
atts.getReference (i).range.setEnd (position);
atts.getReference (i + 1).range.setStart (position);
}
break;
}
}
}
Range<int> splitAttributeRanges (Array<AttributedString::Attribute>& atts, Range<int> newRange)
{
newRange = newRange.getIntersectionWith ({ 0, getLength (atts) });
if (! newRange.isEmpty())
{
splitAttributeRanges (atts, newRange.getStart());
splitAttributeRanges (atts, newRange.getEnd());
}
return newRange;
}
void mergeAdjacentRanges (Array<AttributedString::Attribute>& atts)
{
for (int i = atts.size() - 1; --i >= 0;)
{
auto& a1 = atts.getReference (i);
auto& a2 = atts.getReference (i + 1);
if (a1.colour == a2.colour && a1.font == a2.font)
{
a1.range.setEnd (a2.range.getEnd());
atts.remove (i + 1);
if (i < atts.size() - 1)
++i;
}
}
}
void appendRange (Array<AttributedString::Attribute>& atts,
int length, const Font* f, const Colour* c)
{
if (atts.size() == 0)
{
atts.add ({ Range<int> (0, length), f != nullptr ? *f : Font(), c != nullptr ? *c : Colour (0xff000000) });
}
else
{
auto start = getLength (atts);
atts.add ({ Range<int> (start, start + length),
f != nullptr ? *f : atts.getReference (atts.size() - 1).font,
c != nullptr ? *c : atts.getReference (atts.size() - 1).colour });
mergeAdjacentRanges (atts);
}
}
void applyFontAndColour (Array<AttributedString::Attribute>& atts,
Range<int> range, const Font* f, const Colour* c)
{
range = splitAttributeRanges (atts, range);
for (auto& att : atts)
{
if (range.getStart() < att.range.getEnd())
{
if (range.getEnd() <= att.range.getStart())
break;
if (c != nullptr) att.colour = *c;
if (f != nullptr) att.font = *f;
}
}
mergeAdjacentRanges (atts);
}
void truncate (Array<AttributedString::Attribute>& atts, int newLength)
{
splitAttributeRanges (atts, newLength);
for (int i = atts.size(); --i >= 0;)
if (atts.getReference (i).range.getStart() >= newLength)
atts.remove (i);
}
}
//==============================================================================
AttributedString::Attribute::Attribute (Range<int> r, const Font& f, Colour c) noexcept
: range (r), font (f), colour (c)
{
}
//==============================================================================
void AttributedString::setText (const String& newText)
{
auto newLength = newText.length();
auto oldLength = getLength (attributes);
if (newLength > oldLength)
appendRange (attributes, newLength - oldLength, nullptr, nullptr);
else if (newLength < oldLength)
truncate (attributes, newLength);
text = newText;
}
void AttributedString::append (const String& textToAppend)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), nullptr, nullptr);
}
void AttributedString::append (const String& textToAppend, const Font& font)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), &font, nullptr);
}
void AttributedString::append (const String& textToAppend, Colour colour)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), nullptr, &colour);
}
void AttributedString::append (const String& textToAppend, const Font& font, Colour colour)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), &font, &colour);
}
void AttributedString::append (const AttributedString& other)
{
auto originalLength = getLength (attributes);
auto originalNumAtts = attributes.size();
text += other.text;
attributes.addArray (other.attributes);
for (auto i = originalNumAtts; i < attributes.size(); ++i)
attributes.getReference (i).range += originalLength;
mergeAdjacentRanges (attributes);
}
void AttributedString::clear()
{
text.clear();
attributes.clear();
}
void AttributedString::setJustification (Justification newJustification) noexcept
{
justification = newJustification;
}
void AttributedString::setWordWrap (WordWrap newWordWrap) noexcept
{
wordWrap = newWordWrap;
}
void AttributedString::setReadingDirection (ReadingDirection newReadingDirection) noexcept
{
readingDirection = newReadingDirection;
}
void AttributedString::setLineSpacing (const float newLineSpacing) noexcept
{
lineSpacing = newLineSpacing;
}
void AttributedString::setColour (Range<int> range, Colour colour)
{
applyFontAndColour (attributes, range, nullptr, &colour);
}
void AttributedString::setFont (Range<int> range, const Font& font)
{
applyFontAndColour (attributes, range, &font, nullptr);
}
void AttributedString::setColour (Colour colour)
{
setColour ({ 0, getLength (attributes) }, colour);
}
void AttributedString::setFont (const Font& font)
{
setFont ({ 0, getLength (attributes) }, font);
}
void AttributedString::draw (Graphics& g, const Rectangle<float>& area) const
{
if (text.isNotEmpty() && g.clipRegionIntersects (area.getSmallestIntegerContainer()))
{
jassert (text.length() == getLength (attributes));
if (! g.getInternalContext().drawTextLayout (*this, area))
{
TextLayout layout;
layout.createLayout (*this, area.getWidth());
layout.draw (g, area);
}
}
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace
{
int getLength (const Array<AttributedString::Attribute>& atts) noexcept
{
return atts.size() != 0 ? atts.getReference (atts.size() - 1).range.getEnd() : 0;
}
void splitAttributeRanges (Array<AttributedString::Attribute>& atts, int position)
{
for (int i = atts.size(); --i >= 0;)
{
const auto& att = atts.getUnchecked (i);
auto offset = position - att.range.getStart();
if (offset >= 0)
{
if (offset > 0 && position < att.range.getEnd())
{
atts.insert (i + 1, AttributedString::Attribute (att));
atts.getReference (i).range.setEnd (position);
atts.getReference (i + 1).range.setStart (position);
}
break;
}
}
}
inline bool areInvariantsMaintained (const String& text, const Array<AttributedString::Attribute>& atts)
{
if (atts.isEmpty())
return true;
if (atts.getFirst().range.getStart() != 0)
return false;
if (atts.getLast().range.getEnd() != text.length())
return false;
for (auto it = std::next (atts.begin()); it != atts.end(); ++it)
if (it->range.getStart() != std::prev (it)->range.getEnd())
return false;
return true;
}
Range<int> splitAttributeRanges (Array<AttributedString::Attribute>& atts, Range<int> newRange)
{
newRange = newRange.getIntersectionWith ({ 0, getLength (atts) });
if (! newRange.isEmpty())
{
splitAttributeRanges (atts, newRange.getStart());
splitAttributeRanges (atts, newRange.getEnd());
}
return newRange;
}
void mergeAdjacentRanges (Array<AttributedString::Attribute>& atts)
{
for (int i = atts.size() - 1; --i >= 0;)
{
auto& a1 = atts.getReference (i);
auto& a2 = atts.getReference (i + 1);
if (a1.colour == a2.colour && a1.font == a2.font)
{
a1.range.setEnd (a2.range.getEnd());
atts.remove (i + 1);
if (i < atts.size() - 1)
++i;
}
}
}
void appendRange (Array<AttributedString::Attribute>& atts,
int length, const Font* f, const Colour* c)
{
if (atts.size() == 0)
{
atts.add ({ Range<int> (0, length), f != nullptr ? *f : Font(), c != nullptr ? *c : Colour (0xff000000) });
}
else
{
auto start = getLength (atts);
atts.add ({ Range<int> (start, start + length),
f != nullptr ? *f : atts.getReference (atts.size() - 1).font,
c != nullptr ? *c : atts.getReference (atts.size() - 1).colour });
mergeAdjacentRanges (atts);
}
}
void applyFontAndColour (Array<AttributedString::Attribute>& atts,
Range<int> range, const Font* f, const Colour* c)
{
range = splitAttributeRanges (atts, range);
for (auto& att : atts)
{
if (range.getStart() < att.range.getEnd())
{
if (range.getEnd() <= att.range.getStart())
break;
if (c != nullptr) att.colour = *c;
if (f != nullptr) att.font = *f;
}
}
mergeAdjacentRanges (atts);
}
void truncate (Array<AttributedString::Attribute>& atts, int newLength)
{
splitAttributeRanges (atts, newLength);
for (int i = atts.size(); --i >= 0;)
if (atts.getReference (i).range.getStart() >= newLength)
atts.remove (i);
}
}
//==============================================================================
AttributedString::Attribute::Attribute (Range<int> r, const Font& f, Colour c) noexcept
: range (r), font (f), colour (c)
{
}
//==============================================================================
void AttributedString::setText (const String& newText)
{
auto newLength = newText.length();
auto oldLength = getLength (attributes);
if (newLength > oldLength)
appendRange (attributes, newLength - oldLength, nullptr, nullptr);
else if (newLength < oldLength)
truncate (attributes, newLength);
text = newText;
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::append (const String& textToAppend)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), nullptr, nullptr);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::append (const String& textToAppend, const Font& font)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), &font, nullptr);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::append (const String& textToAppend, Colour colour)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), nullptr, &colour);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::append (const String& textToAppend, const Font& font, Colour colour)
{
text += textToAppend;
appendRange (attributes, textToAppend.length(), &font, &colour);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::append (const AttributedString& other)
{
auto originalLength = getLength (attributes);
auto originalNumAtts = attributes.size();
text += other.text;
attributes.addArray (other.attributes);
for (auto i = originalNumAtts; i < attributes.size(); ++i)
attributes.getReference (i).range += originalLength;
mergeAdjacentRanges (attributes);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::clear()
{
text.clear();
attributes.clear();
}
void AttributedString::setJustification (Justification newJustification) noexcept
{
justification = newJustification;
}
void AttributedString::setWordWrap (WordWrap newWordWrap) noexcept
{
wordWrap = newWordWrap;
}
void AttributedString::setReadingDirection (ReadingDirection newReadingDirection) noexcept
{
readingDirection = newReadingDirection;
}
void AttributedString::setLineSpacing (const float newLineSpacing) noexcept
{
lineSpacing = newLineSpacing;
}
void AttributedString::setColour (Range<int> range, Colour colour)
{
applyFontAndColour (attributes, range, nullptr, &colour);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::setFont (Range<int> range, const Font& font)
{
applyFontAndColour (attributes, range, &font, nullptr);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::setColour (Colour colour)
{
setColour ({ 0, getLength (attributes) }, colour);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::setFont (const Font& font)
{
setFont ({ 0, getLength (attributes) }, font);
jassert (areInvariantsMaintained (text, attributes));
}
void AttributedString::draw (Graphics& g, const Rectangle<float>& area) const
{
if (text.isNotEmpty() && g.clipRegionIntersects (area.getSmallestIntegerContainer()))
{
jassert (text.length() == getLength (attributes));
if (! g.getInternalContext().drawTextLayout (*this, area))
{
TextLayout layout;
layout.createLayout (*this, area.getWidth());
layout.draw (g, area);
}
}
}
} // namespace juce

View File

@ -1,205 +1,210 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A text string with a set of colour/font settings that are associated with sub-ranges
of the text.
An attributed string lets you create a string with varied fonts, colours, word-wrapping,
layout, etc., and draw it using AttributedString::draw().
@see TextLayout
@tags{Graphics}
*/
class JUCE_API AttributedString
{
public:
/** Creates an empty attributed string. */
AttributedString() = default;
/** Creates an attributed string with the given text. */
explicit AttributedString (const String& newString) { setText (newString); }
AttributedString (const AttributedString&) = default;
AttributedString& operator= (const AttributedString&) = default;
AttributedString (AttributedString&&) noexcept = default;
AttributedString& operator= (AttributedString&&) noexcept = default;
//==============================================================================
/** Returns the complete text of this attributed string. */
const String& getText() const noexcept { return text; }
/** Replaces all the text.
This will change the text, but won't affect any of the colour or font attributes
that have been added.
*/
void setText (const String& newText);
/** Appends some text (with a default font and colour). */
void append (const String& textToAppend);
/** Appends some text, with a specified font, and the default colour (black). */
void append (const String& textToAppend, const Font& font);
/** Appends some text, with a specified colour, and the default font. */
void append (const String& textToAppend, Colour colour);
/** Appends some text, with a specified font and colour. */
void append (const String& textToAppend, const Font& font, Colour colour);
/** Appends another AttributedString to this one.
Note that this will only append the text, fonts, and colours - it won't copy any
other properties such as justification, line-spacing, etc from the other object.
*/
void append (const AttributedString& other);
/** Resets the string, clearing all text and attributes.
Note that this won't affect global settings like the justification type,
word-wrap mode, etc.
*/
void clear();
//==============================================================================
/** Draws this string within the given area.
The layout of the string within the rectangle is controlled by the justification
value passed to setJustification().
*/
void draw (Graphics& g, const Rectangle<float>& area) const;
//==============================================================================
/** Returns the justification that should be used for laying-out the text.
This may include both vertical and horizontal flags.
*/
Justification getJustification() const noexcept { return justification; }
/** Sets the justification that should be used for laying-out the text.
This may include both vertical and horizontal flags.
*/
void setJustification (Justification newJustification) noexcept;
//==============================================================================
/** Types of word-wrap behaviour.
@see getWordWrap, setWordWrap
*/
enum WordWrap
{
none, /**< No word-wrapping: lines extend indefinitely. */
byWord, /**< Lines are wrapped on a word boundary. */
byChar, /**< Lines are wrapped on a character boundary. */
};
/** Returns the word-wrapping behaviour. */
WordWrap getWordWrap() const noexcept { return wordWrap; }
/** Sets the word-wrapping behaviour. */
void setWordWrap (WordWrap newWordWrap) noexcept;
//==============================================================================
/** Types of reading direction that can be used.
@see getReadingDirection, setReadingDirection
*/
enum ReadingDirection
{
natural,
leftToRight,
rightToLeft,
};
/** Returns the reading direction for the text. */
ReadingDirection getReadingDirection() const noexcept { return readingDirection; }
/** Sets the reading direction that should be used for the text. */
void setReadingDirection (ReadingDirection newReadingDirection) noexcept;
//==============================================================================
/** Returns the extra line-spacing distance. */
float getLineSpacing() const noexcept { return lineSpacing; }
/** Sets an extra line-spacing distance. */
void setLineSpacing (float newLineSpacing) noexcept;
//==============================================================================
/** An attribute that has been applied to a range of characters in an AttributedString. */
class JUCE_API Attribute
{
public:
Attribute() = default;
Attribute (const Attribute&) = default;
Attribute& operator= (const Attribute&) = default;
Attribute (Attribute&&) noexcept = default;
Attribute& operator= (Attribute&&) noexcept = default;
/** Creates an attribute that specifies the font and colour for a range of characters. */
Attribute (Range<int> range, const Font& font, Colour colour) noexcept;
/** The range of characters to which this attribute will be applied. */
Range<int> range;
/** The font for this range of characters. */
Font font;
/** The colour for this range of characters. */
Colour colour { 0xff000000 };
private:
JUCE_LEAK_DETECTOR (Attribute)
};
/** Returns the number of attributes that have been added to this string. */
int getNumAttributes() const noexcept { return attributes.size(); }
/** Returns one of the string's attributes.
The index provided must be less than getNumAttributes(), and >= 0.
*/
const Attribute& getAttribute (int index) const noexcept { return attributes.getReference (index); }
//==============================================================================
/** Adds a colour attribute for the specified range. */
void setColour (Range<int> range, Colour colour);
/** Removes all existing colour attributes, and applies this colour to the whole string. */
void setColour (Colour colour);
/** Adds a font attribute for the specified range. */
void setFont (Range<int> range, const Font& font);
/** Removes all existing font attributes, and applies this font to the whole string. */
void setFont (const Font& font);
private:
String text;
float lineSpacing = 0.0f;
Justification justification = Justification::left;
WordWrap wordWrap = AttributedString::byWord;
ReadingDirection readingDirection = AttributedString::natural;
Array<Attribute> attributes;
JUCE_LEAK_DETECTOR (AttributedString)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A text string with a set of colour/font settings that are associated with sub-ranges
of the text.
An attributed string lets you create a string with varied fonts, colours, word-wrapping,
layout, etc., and draw it using AttributedString::draw().
Invariants:
- Every character in the string is a member of exactly one attribute.
- Attributes are sorted such that the range-end of attribute 'i' is equal to the
range-begin of attribute 'i + 1'.
@see TextLayout
@tags{Graphics}
*/
class JUCE_API AttributedString
{
public:
/** Creates an empty attributed string. */
AttributedString() = default;
/** Creates an attributed string with the given text. */
explicit AttributedString (const String& newString) { setText (newString); }
AttributedString (const AttributedString&) = default;
AttributedString& operator= (const AttributedString&) = default;
AttributedString (AttributedString&&) noexcept = default;
AttributedString& operator= (AttributedString&&) noexcept = default;
//==============================================================================
/** Returns the complete text of this attributed string. */
const String& getText() const noexcept { return text; }
/** Replaces all the text.
This will change the text, but won't affect any of the colour or font attributes
that have been added.
*/
void setText (const String& newText);
/** Appends some text (with a default font and colour). */
void append (const String& textToAppend);
/** Appends some text, with a specified font, and the default colour (black). */
void append (const String& textToAppend, const Font& font);
/** Appends some text, with a specified colour, and the default font. */
void append (const String& textToAppend, Colour colour);
/** Appends some text, with a specified font and colour. */
void append (const String& textToAppend, const Font& font, Colour colour);
/** Appends another AttributedString to this one.
Note that this will only append the text, fonts, and colours - it won't copy any
other properties such as justification, line-spacing, etc from the other object.
*/
void append (const AttributedString& other);
/** Resets the string, clearing all text and attributes.
Note that this won't affect global settings like the justification type,
word-wrap mode, etc.
*/
void clear();
//==============================================================================
/** Draws this string within the given area.
The layout of the string within the rectangle is controlled by the justification
value passed to setJustification().
*/
void draw (Graphics& g, const Rectangle<float>& area) const;
//==============================================================================
/** Returns the justification that should be used for laying-out the text.
This may include both vertical and horizontal flags.
*/
Justification getJustification() const noexcept { return justification; }
/** Sets the justification that should be used for laying-out the text.
This may include both vertical and horizontal flags.
*/
void setJustification (Justification newJustification) noexcept;
//==============================================================================
/** Types of word-wrap behaviour.
@see getWordWrap, setWordWrap
*/
enum WordWrap
{
none, /**< No word-wrapping: lines extend indefinitely. */
byWord, /**< Lines are wrapped on a word boundary. */
byChar, /**< Lines are wrapped on a character boundary. */
};
/** Returns the word-wrapping behaviour. */
WordWrap getWordWrap() const noexcept { return wordWrap; }
/** Sets the word-wrapping behaviour. */
void setWordWrap (WordWrap newWordWrap) noexcept;
//==============================================================================
/** Types of reading direction that can be used.
@see getReadingDirection, setReadingDirection
*/
enum ReadingDirection
{
natural,
leftToRight,
rightToLeft,
};
/** Returns the reading direction for the text. */
ReadingDirection getReadingDirection() const noexcept { return readingDirection; }
/** Sets the reading direction that should be used for the text. */
void setReadingDirection (ReadingDirection newReadingDirection) noexcept;
//==============================================================================
/** Returns the extra line-spacing distance. */
float getLineSpacing() const noexcept { return lineSpacing; }
/** Sets an extra line-spacing distance. */
void setLineSpacing (float newLineSpacing) noexcept;
//==============================================================================
/** An attribute that has been applied to a range of characters in an AttributedString. */
class JUCE_API Attribute
{
public:
Attribute() = default;
Attribute (const Attribute&) = default;
Attribute& operator= (const Attribute&) = default;
Attribute (Attribute&&) noexcept = default;
Attribute& operator= (Attribute&&) noexcept = default;
/** Creates an attribute that specifies the font and colour for a range of characters. */
Attribute (Range<int> range, const Font& font, Colour colour) noexcept;
/** The range of characters to which this attribute will be applied. */
Range<int> range;
/** The font for this range of characters. */
Font font;
/** The colour for this range of characters. */
Colour colour { 0xff000000 };
private:
JUCE_LEAK_DETECTOR (Attribute)
};
/** Returns the number of attributes that have been added to this string. */
int getNumAttributes() const noexcept { return attributes.size(); }
/** Returns one of the string's attributes.
The index provided must be less than getNumAttributes(), and >= 0.
*/
const Attribute& getAttribute (int index) const noexcept { return attributes.getReference (index); }
//==============================================================================
/** Adds a colour attribute for the specified range. */
void setColour (Range<int> range, Colour colour);
/** Removes all existing colour attributes, and applies this colour to the whole string. */
void setColour (Colour colour);
/** Adds a font attribute for the specified range. */
void setFont (Range<int> range, const Font& font);
/** Removes all existing font attributes, and applies this font to the whole string. */
void setFont (const Font& font);
private:
String text;
float lineSpacing = 0.0f;
Justification justification = Justification::left;
WordWrap wordWrap = AttributedString::byWord;
ReadingDirection readingDirection = AttributedString::natural;
Array<Attribute> attributes;
JUCE_LEAK_DETECTOR (AttributedString)
};
} // namespace juce

View File

@ -1,398 +1,398 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
class CustomTypeface::GlyphInfo
{
public:
GlyphInfo (juce_wchar c, const Path& p, float w) noexcept
: character (c), path (p), width (w)
{
}
struct KerningPair
{
juce_wchar character2;
float kerningAmount;
};
void addKerningPair (juce_wchar subsequentCharacter, float extraKerningAmount) noexcept
{
kerningPairs.add ({ subsequentCharacter, extraKerningAmount });
}
float getHorizontalSpacing (juce_wchar subsequentCharacter) const noexcept
{
if (subsequentCharacter != 0)
for (auto& kp : kerningPairs)
if (kp.character2 == subsequentCharacter)
return width + kp.kerningAmount;
return width;
}
const juce_wchar character;
const Path path;
float width;
Array<KerningPair> kerningPairs;
private:
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (GlyphInfo)
};
//==============================================================================
namespace CustomTypefaceHelpers
{
static juce_wchar readChar (InputStream& in)
{
auto n = (uint32) (uint16) in.readShort();
if (n >= 0xd800 && n <= 0xdfff)
{
auto nextWord = (uint32) (uint16) in.readShort();
jassert (nextWord >= 0xdc00); // illegal unicode character!
n = 0x10000 + (((n - 0xd800) << 10) | (nextWord - 0xdc00));
}
return (juce_wchar) n;
}
static void writeChar (OutputStream& out, juce_wchar charToWrite)
{
if (charToWrite >= 0x10000)
{
charToWrite -= 0x10000;
out.writeShort ((short) (uint16) (0xd800 + (charToWrite >> 10)));
out.writeShort ((short) (uint16) (0xdc00 + (charToWrite & 0x3ff)));
}
else
{
out.writeShort ((short) (uint16) charToWrite);
}
}
}
//==============================================================================
CustomTypeface::CustomTypeface()
: Typeface (String(), String())
{
clear();
}
CustomTypeface::CustomTypeface (InputStream& serialisedTypefaceStream)
: Typeface (String(), String())
{
clear();
GZIPDecompressorInputStream gzin (serialisedTypefaceStream);
BufferedInputStream in (gzin, 32768);
name = in.readString();
const bool isBold = in.readBool();
const bool isItalic = in.readBool();
style = FontStyleHelpers::getStyleName (isBold, isItalic);
ascent = in.readFloat();
defaultCharacter = CustomTypefaceHelpers::readChar (in);
auto numChars = in.readInt();
for (int i = 0; i < numChars; ++i)
{
auto c = CustomTypefaceHelpers::readChar (in);
auto width = in.readFloat();
Path p;
p.loadPathFromStream (in);
addGlyph (c, p, width);
}
auto numKerningPairs = in.readInt();
for (int i = 0; i < numKerningPairs; ++i)
{
auto char1 = CustomTypefaceHelpers::readChar (in);
auto char2 = CustomTypefaceHelpers::readChar (in);
addKerningPair (char1, char2, in.readFloat());
}
}
CustomTypeface::~CustomTypeface()
{
}
//==============================================================================
void CustomTypeface::clear()
{
defaultCharacter = 0;
ascent = 1.0f;
style = "Regular";
zeromem (lookupTable, sizeof (lookupTable));
glyphs.clear();
}
void CustomTypeface::setCharacteristics (const String& newName, float newAscent, bool isBold,
bool isItalic, juce_wchar newDefaultCharacter) noexcept
{
name = newName;
defaultCharacter = newDefaultCharacter;
ascent = newAscent;
style = FontStyleHelpers::getStyleName (isBold, isItalic);
}
void CustomTypeface::setCharacteristics (const String& newName, const String& newStyle,
float newAscent, juce_wchar newDefaultCharacter) noexcept
{
name = newName;
style = newStyle;
defaultCharacter = newDefaultCharacter;
ascent = newAscent;
}
void CustomTypeface::addGlyph (juce_wchar character, const Path& path, float width) noexcept
{
// Check that you're not trying to add the same character twice..
jassert (findGlyph (character, false) == nullptr);
if (isPositiveAndBelow ((int) character, numElementsInArray (lookupTable)))
lookupTable [character] = (short) glyphs.size();
glyphs.add (new GlyphInfo (character, path, width));
}
void CustomTypeface::addKerningPair (juce_wchar char1, juce_wchar char2, float extraAmount) noexcept
{
if (extraAmount != 0.0f)
{
if (auto* g = findGlyph (char1, true))
g->addKerningPair (char2, extraAmount);
else
jassertfalse; // can only add kerning pairs for characters that exist!
}
}
CustomTypeface::GlyphInfo* CustomTypeface::findGlyph (juce_wchar character, bool loadIfNeeded) noexcept
{
if (isPositiveAndBelow ((int) character, numElementsInArray (lookupTable)) && lookupTable [character] > 0)
return glyphs [(int) lookupTable [(int) character]];
for (auto* g : glyphs)
if (g->character == character)
return g;
if (loadIfNeeded && loadGlyphIfPossible (character))
return findGlyph (character, false);
return nullptr;
}
bool CustomTypeface::loadGlyphIfPossible (juce_wchar)
{
return false;
}
void CustomTypeface::addGlyphsFromOtherTypeface (Typeface& typefaceToCopy, juce_wchar characterStartIndex, int numCharacters) noexcept
{
setCharacteristics (name, style, typefaceToCopy.getAscent(), defaultCharacter);
for (int i = 0; i < numCharacters; ++i)
{
auto c = (juce_wchar) (characterStartIndex + static_cast<juce_wchar> (i));
Array<int> glyphIndexes;
Array<float> offsets;
typefaceToCopy.getGlyphPositions (String::charToString (c), glyphIndexes, offsets);
const int glyphIndex = glyphIndexes.getFirst();
if (glyphIndex >= 0 && glyphIndexes.size() > 0)
{
auto glyphWidth = offsets[1];
Path p;
typefaceToCopy.getOutlineForGlyph (glyphIndex, p);
addGlyph (c, p, glyphWidth);
for (int j = glyphs.size() - 1; --j >= 0;)
{
auto char2 = glyphs.getUnchecked (j)->character;
glyphIndexes.clearQuick();
offsets.clearQuick();
typefaceToCopy.getGlyphPositions (String::charToString (c) + String::charToString (char2), glyphIndexes, offsets);
if (offsets.size() > 1)
addKerningPair (c, char2, offsets[1] - glyphWidth);
}
}
}
}
bool CustomTypeface::writeToStream (OutputStream& outputStream)
{
GZIPCompressorOutputStream out (outputStream);
out.writeString (name);
out.writeBool (FontStyleHelpers::isBold (style));
out.writeBool (FontStyleHelpers::isItalic (style));
out.writeFloat (ascent);
CustomTypefaceHelpers::writeChar (out, defaultCharacter);
out.writeInt (glyphs.size());
int numKerningPairs = 0;
for (auto* g : glyphs)
{
CustomTypefaceHelpers::writeChar (out, g->character);
out.writeFloat (g->width);
g->path.writePathToStream (out);
numKerningPairs += g->kerningPairs.size();
}
out.writeInt (numKerningPairs);
for (auto* g : glyphs)
{
for (auto& p : g->kerningPairs)
{
CustomTypefaceHelpers::writeChar (out, g->character);
CustomTypefaceHelpers::writeChar (out, p.character2);
out.writeFloat (p.kerningAmount);
}
}
return true;
}
//==============================================================================
float CustomTypeface::getAscent() const { return ascent; }
float CustomTypeface::getDescent() const { return 1.0f - ascent; }
float CustomTypeface::getHeightToPointsFactor() const { return ascent; }
float CustomTypeface::getStringWidth (const String& text)
{
float x = 0;
for (auto t = text.getCharPointer(); ! t.isEmpty();)
{
auto c = t.getAndAdvance();
if (auto* glyph = findGlyph (c, true))
{
x += glyph->getHorizontalSpacing (*t);
}
else
{
if (auto fallbackTypeface = Typeface::getFallbackTypeface())
if (fallbackTypeface.get() != this)
x += fallbackTypeface->getStringWidth (String::charToString (c));
}
}
return x;
}
void CustomTypeface::getGlyphPositions (const String& text, Array<int>& resultGlyphs, Array<float>& xOffsets)
{
xOffsets.add (0);
float x = 0;
for (auto t = text.getCharPointer(); ! t.isEmpty();)
{
float width = 0.0f;
int glyphChar = 0;
auto c = t.getAndAdvance();
if (auto* glyph = findGlyph (c, true))
{
width = glyph->getHorizontalSpacing (*t);
glyphChar = (int) glyph->character;
}
else
{
auto fallbackTypeface = getFallbackTypeface();
if (fallbackTypeface != nullptr && fallbackTypeface.get() != this)
{
Array<int> subGlyphs;
Array<float> subOffsets;
fallbackTypeface->getGlyphPositions (String::charToString (c), subGlyphs, subOffsets);
if (subGlyphs.size() > 0)
{
glyphChar = subGlyphs.getFirst();
width = subOffsets[1];
}
}
}
x += width;
resultGlyphs.add (glyphChar);
xOffsets.add (x);
}
}
bool CustomTypeface::getOutlineForGlyph (int glyphNumber, Path& path)
{
if (auto* glyph = findGlyph ((juce_wchar) glyphNumber, true))
{
path = glyph->path;
return true;
}
if (auto fallbackTypeface = getFallbackTypeface())
if (fallbackTypeface.get() != this)
return fallbackTypeface->getOutlineForGlyph (glyphNumber, path);
return false;
}
EdgeTable* CustomTypeface::getEdgeTableForGlyph (int glyphNumber, const AffineTransform& transform, float fontHeight)
{
if (auto* glyph = findGlyph ((juce_wchar) glyphNumber, true))
{
if (! glyph->path.isEmpty())
return new EdgeTable (glyph->path.getBoundsTransformed (transform)
.getSmallestIntegerContainer().expanded (1, 0),
glyph->path, transform);
}
else
{
if (auto fallbackTypeface = getFallbackTypeface())
if (fallbackTypeface.get() != this)
return fallbackTypeface->getEdgeTableForGlyph (glyphNumber, transform, fontHeight);
}
return nullptr;
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
class CustomTypeface::GlyphInfo
{
public:
GlyphInfo (juce_wchar c, const Path& p, float w) noexcept
: character (c), path (p), width (w)
{
}
struct KerningPair
{
juce_wchar character2;
float kerningAmount;
};
void addKerningPair (juce_wchar subsequentCharacter, float extraKerningAmount) noexcept
{
kerningPairs.add ({ subsequentCharacter, extraKerningAmount });
}
float getHorizontalSpacing (juce_wchar subsequentCharacter) const noexcept
{
if (subsequentCharacter != 0)
for (auto& kp : kerningPairs)
if (kp.character2 == subsequentCharacter)
return width + kp.kerningAmount;
return width;
}
const juce_wchar character;
const Path path;
float width;
Array<KerningPair> kerningPairs;
private:
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (GlyphInfo)
};
//==============================================================================
namespace CustomTypefaceHelpers
{
static juce_wchar readChar (InputStream& in)
{
auto n = (uint32) (uint16) in.readShort();
if (n >= 0xd800 && n <= 0xdfff)
{
auto nextWord = (uint32) (uint16) in.readShort();
jassert (nextWord >= 0xdc00); // illegal unicode character!
n = 0x10000 + (((n - 0xd800) << 10) | (nextWord - 0xdc00));
}
return (juce_wchar) n;
}
static void writeChar (OutputStream& out, juce_wchar charToWrite)
{
if (charToWrite >= 0x10000)
{
charToWrite -= 0x10000;
out.writeShort ((short) (uint16) (0xd800 + (charToWrite >> 10)));
out.writeShort ((short) (uint16) (0xdc00 + (charToWrite & 0x3ff)));
}
else
{
out.writeShort ((short) (uint16) charToWrite);
}
}
}
//==============================================================================
CustomTypeface::CustomTypeface()
: Typeface (String(), String())
{
clear();
}
CustomTypeface::CustomTypeface (InputStream& serialisedTypefaceStream)
: Typeface (String(), String())
{
clear();
GZIPDecompressorInputStream gzin (serialisedTypefaceStream);
BufferedInputStream in (gzin, 32768);
name = in.readString();
const bool isBold = in.readBool();
const bool isItalic = in.readBool();
style = FontStyleHelpers::getStyleName (isBold, isItalic);
ascent = in.readFloat();
defaultCharacter = CustomTypefaceHelpers::readChar (in);
auto numChars = in.readInt();
for (int i = 0; i < numChars; ++i)
{
auto c = CustomTypefaceHelpers::readChar (in);
auto width = in.readFloat();
Path p;
p.loadPathFromStream (in);
addGlyph (c, p, width);
}
auto numKerningPairs = in.readInt();
for (int i = 0; i < numKerningPairs; ++i)
{
auto char1 = CustomTypefaceHelpers::readChar (in);
auto char2 = CustomTypefaceHelpers::readChar (in);
addKerningPair (char1, char2, in.readFloat());
}
}
CustomTypeface::~CustomTypeface()
{
}
//==============================================================================
void CustomTypeface::clear()
{
defaultCharacter = 0;
ascent = 1.0f;
style = "Regular";
zeromem (lookupTable, sizeof (lookupTable));
glyphs.clear();
}
void CustomTypeface::setCharacteristics (const String& newName, float newAscent, bool isBold,
bool isItalic, juce_wchar newDefaultCharacter) noexcept
{
name = newName;
defaultCharacter = newDefaultCharacter;
ascent = newAscent;
style = FontStyleHelpers::getStyleName (isBold, isItalic);
}
void CustomTypeface::setCharacteristics (const String& newName, const String& newStyle,
float newAscent, juce_wchar newDefaultCharacter) noexcept
{
name = newName;
style = newStyle;
defaultCharacter = newDefaultCharacter;
ascent = newAscent;
}
void CustomTypeface::addGlyph (juce_wchar character, const Path& path, float width) noexcept
{
// Check that you're not trying to add the same character twice..
jassert (findGlyph (character, false) == nullptr);
if (isPositiveAndBelow ((int) character, numElementsInArray (lookupTable)))
lookupTable [character] = (short) glyphs.size();
glyphs.add (new GlyphInfo (character, path, width));
}
void CustomTypeface::addKerningPair (juce_wchar char1, juce_wchar char2, float extraAmount) noexcept
{
if (extraAmount != 0.0f)
{
if (auto* g = findGlyph (char1, true))
g->addKerningPair (char2, extraAmount);
else
jassertfalse; // can only add kerning pairs for characters that exist!
}
}
CustomTypeface::GlyphInfo* CustomTypeface::findGlyph (juce_wchar character, bool loadIfNeeded) noexcept
{
if (isPositiveAndBelow ((int) character, numElementsInArray (lookupTable)) && lookupTable [character] > 0)
return glyphs [(int) lookupTable [(int) character]];
for (auto* g : glyphs)
if (g->character == character)
return g;
if (loadIfNeeded && loadGlyphIfPossible (character))
return findGlyph (character, false);
return nullptr;
}
bool CustomTypeface::loadGlyphIfPossible (juce_wchar)
{
return false;
}
void CustomTypeface::addGlyphsFromOtherTypeface (Typeface& typefaceToCopy, juce_wchar characterStartIndex, int numCharacters) noexcept
{
setCharacteristics (name, style, typefaceToCopy.getAscent(), defaultCharacter);
for (int i = 0; i < numCharacters; ++i)
{
auto c = (juce_wchar) (characterStartIndex + static_cast<juce_wchar> (i));
Array<int> glyphIndexes;
Array<float> offsets;
typefaceToCopy.getGlyphPositions (String::charToString (c), glyphIndexes, offsets);
const int glyphIndex = glyphIndexes.getFirst();
if (glyphIndex >= 0 && glyphIndexes.size() > 0)
{
auto glyphWidth = offsets[1];
Path p;
typefaceToCopy.getOutlineForGlyph (glyphIndex, p);
addGlyph (c, p, glyphWidth);
for (int j = glyphs.size() - 1; --j >= 0;)
{
auto char2 = glyphs.getUnchecked (j)->character;
glyphIndexes.clearQuick();
offsets.clearQuick();
typefaceToCopy.getGlyphPositions (String::charToString (c) + String::charToString (char2), glyphIndexes, offsets);
if (offsets.size() > 1)
addKerningPair (c, char2, offsets[1] - glyphWidth);
}
}
}
}
bool CustomTypeface::writeToStream (OutputStream& outputStream)
{
GZIPCompressorOutputStream out (outputStream);
out.writeString (name);
out.writeBool (FontStyleHelpers::isBold (style));
out.writeBool (FontStyleHelpers::isItalic (style));
out.writeFloat (ascent);
CustomTypefaceHelpers::writeChar (out, defaultCharacter);
out.writeInt (glyphs.size());
int numKerningPairs = 0;
for (auto* g : glyphs)
{
CustomTypefaceHelpers::writeChar (out, g->character);
out.writeFloat (g->width);
g->path.writePathToStream (out);
numKerningPairs += g->kerningPairs.size();
}
out.writeInt (numKerningPairs);
for (auto* g : glyphs)
{
for (auto& p : g->kerningPairs)
{
CustomTypefaceHelpers::writeChar (out, g->character);
CustomTypefaceHelpers::writeChar (out, p.character2);
out.writeFloat (p.kerningAmount);
}
}
return true;
}
//==============================================================================
float CustomTypeface::getAscent() const { return ascent; }
float CustomTypeface::getDescent() const { return 1.0f - ascent; }
float CustomTypeface::getHeightToPointsFactor() const { return ascent; }
float CustomTypeface::getStringWidth (const String& text)
{
float x = 0;
for (auto t = text.getCharPointer(); ! t.isEmpty();)
{
auto c = t.getAndAdvance();
if (auto* glyph = findGlyph (c, true))
{
x += glyph->getHorizontalSpacing (*t);
}
else
{
if (auto fallbackTypeface = Typeface::getFallbackTypeface())
if (fallbackTypeface.get() != this)
x += fallbackTypeface->getStringWidth (String::charToString (c));
}
}
return x;
}
void CustomTypeface::getGlyphPositions (const String& text, Array<int>& resultGlyphs, Array<float>& xOffsets)
{
xOffsets.add (0);
float x = 0;
for (auto t = text.getCharPointer(); ! t.isEmpty();)
{
float width = 0.0f;
int glyphChar = 0;
auto c = t.getAndAdvance();
if (auto* glyph = findGlyph (c, true))
{
width = glyph->getHorizontalSpacing (*t);
glyphChar = (int) glyph->character;
}
else
{
auto fallbackTypeface = getFallbackTypeface();
if (fallbackTypeface != nullptr && fallbackTypeface.get() != this)
{
Array<int> subGlyphs;
Array<float> subOffsets;
fallbackTypeface->getGlyphPositions (String::charToString (c), subGlyphs, subOffsets);
if (subGlyphs.size() > 0)
{
glyphChar = subGlyphs.getFirst();
width = subOffsets[1];
}
}
}
x += width;
resultGlyphs.add (glyphChar);
xOffsets.add (x);
}
}
bool CustomTypeface::getOutlineForGlyph (int glyphNumber, Path& path)
{
if (auto* glyph = findGlyph ((juce_wchar) glyphNumber, true))
{
path = glyph->path;
return true;
}
if (auto fallbackTypeface = getFallbackTypeface())
if (fallbackTypeface.get() != this)
return fallbackTypeface->getOutlineForGlyph (glyphNumber, path);
return false;
}
EdgeTable* CustomTypeface::getEdgeTableForGlyph (int glyphNumber, const AffineTransform& transform, float fontHeight)
{
if (auto* glyph = findGlyph ((juce_wchar) glyphNumber, true))
{
if (! glyph->path.isEmpty())
return new EdgeTable (glyph->path.getBoundsTransformed (transform)
.getSmallestIntegerContainer().expanded (1, 0),
glyph->path, transform);
}
else
{
if (auto fallbackTypeface = getFallbackTypeface())
if (fallbackTypeface.get() != this)
return fallbackTypeface->getEdgeTableForGlyph (glyphNumber, transform, fontHeight);
}
return nullptr;
}
} // namespace juce

View File

@ -1,165 +1,165 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A typeface that can be populated with custom glyphs.
You can create a CustomTypeface if you need one that contains your own glyphs,
or if you need to load a typeface from a Juce-formatted binary stream.
If you want to create a copy of a native face, you can use addGlyphsFromOtherTypeface()
to copy glyphs into this face.
NOTE! For most people this class is almost certainly NOT the right tool to use!
If what you want to do is to embed a font into your exe, then your best plan is
probably to embed your TTF/OTF font file into your binary using the Projucer,
and then call Typeface::createSystemTypefaceFor() to load it from memory.
@see Typeface, Font
@tags{Graphics}
*/
class JUCE_API CustomTypeface : public Typeface
{
public:
//==============================================================================
/** Creates a new, empty typeface. */
CustomTypeface();
/** Loads a typeface from a previously saved stream.
The stream must have been created by writeToStream().
NOTE! Since this class was written, support was added for loading real font files from
memory, so for most people, using Typeface::createSystemTypefaceFor() to load a real font
is more appropriate than using this class to store it in a proprietary format.
@see writeToStream
*/
explicit CustomTypeface (InputStream& serialisedTypefaceStream);
/** Destructor. */
~CustomTypeface() override;
//==============================================================================
/** Resets this typeface, deleting all its glyphs and settings. */
void clear();
/** Sets the vital statistics for the typeface.
@param fontFamily the typeface's font family
@param ascent the ascent - this is normalised to a height of 1.0 and this is
the value that will be returned by Typeface::getAscent(). The
descent is assumed to be (1.0 - ascent)
@param isBold should be true if the typeface is bold
@param isItalic should be true if the typeface is italic
@param defaultCharacter the character to be used as a replacement if there's
no glyph available for the character that's being drawn
*/
void setCharacteristics (const String& fontFamily, float ascent,
bool isBold, bool isItalic,
juce_wchar defaultCharacter) noexcept;
/** Sets the vital statistics for the typeface.
@param fontFamily the typeface's font family
@param fontStyle the typeface's font style
@param ascent the ascent - this is normalised to a height of 1.0 and this is
the value that will be returned by Typeface::getAscent(). The
descent is assumed to be (1.0 - ascent)
@param defaultCharacter the character to be used as a replacement if there's
no glyph available for the character that's being drawn
*/
void setCharacteristics (const String& fontFamily, const String& fontStyle,
float ascent, juce_wchar defaultCharacter) noexcept;
/** Adds a glyph to the typeface.
The path that is passed in is normalised so that the font height is 1.0, and its
origin is the anchor point of the character on its baseline.
The width is the nominal width of the character, and any extra kerning values that
are specified will be added to this width.
*/
void addGlyph (juce_wchar character, const Path& path, float width) noexcept;
/** Specifies an extra kerning amount to be used between a pair of characters.
The amount will be added to the nominal width of the first character when laying out a string.
*/
void addKerningPair (juce_wchar char1, juce_wchar char2, float extraAmount) noexcept;
/** Adds a range of glyphs from another typeface.
This will attempt to pull in the paths and kerning information from another typeface and
add it to this one.
*/
void addGlyphsFromOtherTypeface (Typeface& typefaceToCopy, juce_wchar characterStartIndex, int numCharacters) noexcept;
/** Saves this typeface as a Juce-formatted font file.
A CustomTypeface can be created to reload the data that is written - see the CustomTypeface
constructor.
NOTE! Since this class was written, support was added for loading real font files from
memory, so for most people, using Typeface::createSystemTypefaceFor() to load a real font
is more appropriate than using this class to store it in a proprietary format.
*/
bool writeToStream (OutputStream& outputStream);
//==============================================================================
// The following methods implement the basic Typeface behaviour.
float getAscent() const override;
float getDescent() const override;
float getHeightToPointsFactor() const override;
float getStringWidth (const String&) override;
void getGlyphPositions (const String&, Array<int>& glyphs, Array<float>& xOffsets) override;
bool getOutlineForGlyph (int glyphNumber, Path&) override;
EdgeTable* getEdgeTableForGlyph (int glyphNumber, const AffineTransform&, float fontHeight) override;
protected:
//==============================================================================
juce_wchar defaultCharacter;
float ascent;
//==============================================================================
/** If a subclass overrides this, it can load glyphs into the font on-demand.
When methods such as getGlyphPositions() or getOutlineForGlyph() are asked for a
particular character and there's no corresponding glyph, they'll call this
method so that a subclass can try to add that glyph, returning true if it
manages to do so.
*/
virtual bool loadGlyphIfPossible (juce_wchar characterNeeded);
private:
//==============================================================================
class GlyphInfo;
OwnedArray<GlyphInfo> glyphs;
short lookupTable[128];
GlyphInfo* findGlyph (const juce_wchar character, bool loadIfNeeded) noexcept;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (CustomTypeface)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A typeface that can be populated with custom glyphs.
You can create a CustomTypeface if you need one that contains your own glyphs,
or if you need to load a typeface from a Juce-formatted binary stream.
If you want to create a copy of a native face, you can use addGlyphsFromOtherTypeface()
to copy glyphs into this face.
NOTE! For most people this class is almost certainly NOT the right tool to use!
If what you want to do is to embed a font into your exe, then your best plan is
probably to embed your TTF/OTF font file into your binary using the Projucer,
and then call Typeface::createSystemTypefaceFor() to load it from memory.
@see Typeface, Font
@tags{Graphics}
*/
class JUCE_API CustomTypeface : public Typeface
{
public:
//==============================================================================
/** Creates a new, empty typeface. */
CustomTypeface();
/** Loads a typeface from a previously saved stream.
The stream must have been created by writeToStream().
NOTE! Since this class was written, support was added for loading real font files from
memory, so for most people, using Typeface::createSystemTypefaceFor() to load a real font
is more appropriate than using this class to store it in a proprietary format.
@see writeToStream
*/
explicit CustomTypeface (InputStream& serialisedTypefaceStream);
/** Destructor. */
~CustomTypeface() override;
//==============================================================================
/** Resets this typeface, deleting all its glyphs and settings. */
void clear();
/** Sets the vital statistics for the typeface.
@param fontFamily the typeface's font family
@param ascent the ascent - this is normalised to a height of 1.0 and this is
the value that will be returned by Typeface::getAscent(). The
descent is assumed to be (1.0 - ascent)
@param isBold should be true if the typeface is bold
@param isItalic should be true if the typeface is italic
@param defaultCharacter the character to be used as a replacement if there's
no glyph available for the character that's being drawn
*/
void setCharacteristics (const String& fontFamily, float ascent,
bool isBold, bool isItalic,
juce_wchar defaultCharacter) noexcept;
/** Sets the vital statistics for the typeface.
@param fontFamily the typeface's font family
@param fontStyle the typeface's font style
@param ascent the ascent - this is normalised to a height of 1.0 and this is
the value that will be returned by Typeface::getAscent(). The
descent is assumed to be (1.0 - ascent)
@param defaultCharacter the character to be used as a replacement if there's
no glyph available for the character that's being drawn
*/
void setCharacteristics (const String& fontFamily, const String& fontStyle,
float ascent, juce_wchar defaultCharacter) noexcept;
/** Adds a glyph to the typeface.
The path that is passed in is normalised so that the font height is 1.0, and its
origin is the anchor point of the character on its baseline.
The width is the nominal width of the character, and any extra kerning values that
are specified will be added to this width.
*/
void addGlyph (juce_wchar character, const Path& path, float width) noexcept;
/** Specifies an extra kerning amount to be used between a pair of characters.
The amount will be added to the nominal width of the first character when laying out a string.
*/
void addKerningPair (juce_wchar char1, juce_wchar char2, float extraAmount) noexcept;
/** Adds a range of glyphs from another typeface.
This will attempt to pull in the paths and kerning information from another typeface and
add it to this one.
*/
void addGlyphsFromOtherTypeface (Typeface& typefaceToCopy, juce_wchar characterStartIndex, int numCharacters) noexcept;
/** Saves this typeface as a Juce-formatted font file.
A CustomTypeface can be created to reload the data that is written - see the CustomTypeface
constructor.
NOTE! Since this class was written, support was added for loading real font files from
memory, so for most people, using Typeface::createSystemTypefaceFor() to load a real font
is more appropriate than using this class to store it in a proprietary format.
*/
bool writeToStream (OutputStream& outputStream);
//==============================================================================
// The following methods implement the basic Typeface behaviour.
float getAscent() const override;
float getDescent() const override;
float getHeightToPointsFactor() const override;
float getStringWidth (const String&) override;
void getGlyphPositions (const String&, Array<int>& glyphs, Array<float>& xOffsets) override;
bool getOutlineForGlyph (int glyphNumber, Path&) override;
EdgeTable* getEdgeTableForGlyph (int glyphNumber, const AffineTransform&, float fontHeight) override;
protected:
//==============================================================================
juce_wchar defaultCharacter;
float ascent;
//==============================================================================
/** If a subclass overrides this, it can load glyphs into the font on-demand.
When methods such as getGlyphPositions() or getOutlineForGlyph() are asked for a
particular character and there's no corresponding glyph, they'll call this
method so that a subclass can try to add that glyph, returning true if it
manages to do so.
*/
virtual bool loadGlyphIfPossible (juce_wchar characterNeeded);
private:
//==============================================================================
class GlyphInfo;
OwnedArray<GlyphInfo> glyphs;
short lookupTable[128];
GlyphInfo* findGlyph (const juce_wchar character, bool loadIfNeeded) noexcept;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (CustomTypeface)
};
} // namespace juce

File diff suppressed because it is too large Load Diff

View File

@ -1,483 +1,488 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a particular font, including its size, style, etc.
Apart from the typeface to be used, a Font object also dictates whether
the font is bold, italic, underlined, how big it is, and its kerning and
horizontal scale factor.
@see Typeface
@tags{Graphics}
*/
class JUCE_API Font final
{
public:
//==============================================================================
/** A combination of these values is used by the constructor to specify the
style of font to use.
*/
enum FontStyleFlags
{
plain = 0, /**< indicates a plain, non-bold, non-italic version of the font. @see setStyleFlags */
bold = 1, /**< boldens the font. @see setStyleFlags */
italic = 2, /**< finds an italic version of the font. @see setStyleFlags */
underlined = 4 /**< underlines the font. @see setStyleFlags */
};
//==============================================================================
/** Creates a sans-serif font in a given size.
@param fontHeight the height in pixels (can be fractional)
@param styleFlags the style to use - this can be a combination of the
Font::bold, Font::italic and Font::underlined, or
just Font::plain for the normal style.
@see FontStyleFlags, getDefaultSansSerifFontName
*/
Font (float fontHeight, int styleFlags = plain);
/** Creates a font with a given typeface and parameters.
@param typefaceName the font family of the typeface to use
@param fontHeight the height in pixels (can be fractional)
@param styleFlags the style to use - this can be a combination of the
Font::bold, Font::italic and Font::underlined, or
just Font::plain for the normal style.
@see FontStyleFlags, getDefaultSansSerifFontName
*/
Font (const String& typefaceName, float fontHeight, int styleFlags);
/** Creates a font with a given typeface and parameters.
@param typefaceName the font family of the typeface to use
@param typefaceStyle the font style of the typeface to use
@param fontHeight the height in pixels (can be fractional)
*/
Font (const String& typefaceName, const String& typefaceStyle, float fontHeight);
/** Creates a copy of another Font object. */
Font (const Font& other) noexcept;
/** Creates a font for a typeface. */
Font (const Typeface::Ptr& typeface);
/** Creates a basic sans-serif font at a default height.
You should use one of the other constructors for creating a font that you're planning
on drawing with - this constructor is here to help initialise objects before changing
the font's settings later.
*/
Font();
/** Move constructor */
Font (Font&& other) noexcept;
/** Move assignment operator */
Font& operator= (Font&& other) noexcept;
/** Copies this font from another one. */
Font& operator= (const Font& other) noexcept;
bool operator== (const Font& other) const noexcept;
bool operator!= (const Font& other) const noexcept;
/** Destructor. */
~Font() noexcept;
//==============================================================================
/** Changes the font family of the typeface.
e.g. "Arial", "Courier", etc.
This may also be set to Font::getDefaultSansSerifFontName(), Font::getDefaultSerifFontName(),
or Font::getDefaultMonospacedFontName(), which are not actual platform-specific font family names,
but are generic font family names that are used to represent the various default fonts.
If you need to know the exact typeface font family being used, you can call
Font::getTypefacePtr()->getName(), which will give you the platform-specific font family.
If a suitable font isn't found on the machine, it'll just use a default instead.
*/
void setTypefaceName (const String& faceName);
/** Returns the font family of the typeface that this font uses.
e.g. "Arial", "Courier", etc.
This may also be set to Font::getDefaultSansSerifFontName(), Font::getDefaultSerifFontName(),
or Font::getDefaultMonospacedFontName(), which are not actual platform-specific font family names,
but are generic font family names that are used to represent the various default fonts.
If you need to know the exact typeface font family being used, you can call
Font::getTypefacePtr()->getName(), which will give you the platform-specific font family.
*/
String getTypefaceName() const noexcept;
//==============================================================================
/** Returns the font style of the typeface that this font uses.
@see withTypefaceStyle, getAvailableStyles()
*/
String getTypefaceStyle() const noexcept;
/** Changes the font style of the typeface.
@see getAvailableStyles()
*/
void setTypefaceStyle (const String& newStyle);
/** Returns a copy of this font with a new typeface style.
@see getAvailableStyles()
*/
Font withTypefaceStyle (const String& newStyle) const;
/** Returns a list of the styles that this font can use. */
StringArray getAvailableStyles() const;
//==============================================================================
/** Returns a typeface font family that represents the default sans-serif font.
This is also the typeface that will be used when a font is created without
specifying any typeface details.
Note that this method just returns a generic placeholder string that means "the default
sans-serif font" - it's not the actual font family of this font.
@see setTypefaceName, getDefaultSerifFontName, getDefaultMonospacedFontName
*/
static const String& getDefaultSansSerifFontName();
/** Returns a typeface font family that represents the default serif font.
Note that this method just returns a generic placeholder string that means "the default
serif font" - it's not the actual font family of this font.
@see setTypefaceName, getDefaultSansSerifFontName, getDefaultMonospacedFontName
*/
static const String& getDefaultSerifFontName();
/** Returns a typeface font family that represents the default monospaced font.
Note that this method just returns a generic placeholder string that means "the default
monospaced font" - it's not the actual font family of this font.
@see setTypefaceName, getDefaultSansSerifFontName, getDefaultSerifFontName
*/
static const String& getDefaultMonospacedFontName();
/** Returns a font style name that represents the default style.
Note that this method just returns a generic placeholder string that means "the default
font style" - it's not the actual name of the font style of any particular font.
@see setTypefaceStyle
*/
static const String& getDefaultStyle();
/** Returns the default system typeface for the given font. */
static Typeface::Ptr getDefaultTypefaceForFont (const Font& font);
//==============================================================================
/** Returns a copy of this font with a new height. */
Font withHeight (float height) const;
/** Returns a copy of this font with a new height, specified in points. */
Font withPointHeight (float heightInPoints) const;
/** Changes the font's height.
@see getHeight, withHeight, setHeightWithoutChangingWidth
*/
void setHeight (float newHeight);
/** Changes the font's height without changing its width.
This alters the horizontal scale to compensate for the change in height.
*/
void setHeightWithoutChangingWidth (float newHeight);
/** Returns the total height of this font, in pixels.
This is the maximum height, from the top of the ascent to the bottom of the
descenders.
@see withHeight, setHeightWithoutChangingWidth, getAscent
*/
float getHeight() const noexcept;
/** Returns the total height of this font, in points.
This is the maximum height, from the top of the ascent to the bottom of the
descenders.
@see withPointHeight, getHeight
*/
float getHeightInPoints() const;
/** Returns the height of the font above its baseline, in pixels.
This is the maximum height from the baseline to the top.
@see getHeight, getDescent
*/
float getAscent() const;
/** Returns the height of the font above its baseline, in points.
This is the maximum height from the baseline to the top.
@see getHeight, getDescent
*/
float getAscentInPoints() const;
/** Returns the amount that the font descends below its baseline, in pixels.
This is calculated as (getHeight() - getAscent()).
@see getAscent, getHeight
*/
float getDescent() const;
/** Returns the amount that the font descends below its baseline, in points.
This is calculated as (getHeight() - getAscent()).
@see getAscent, getHeight
*/
float getDescentInPoints() const;
//==============================================================================
/** Returns the font's style flags.
This will return a bitwise-or'ed combination of values from the FontStyleFlags
enum, to describe whether the font is bold, italic, etc.
@see FontStyleFlags, withStyle
*/
int getStyleFlags() const noexcept;
/** Returns a copy of this font with the given set of style flags.
@param styleFlags a bitwise-or'ed combination of values from the FontStyleFlags enum.
@see FontStyleFlags, getStyleFlags
*/
Font withStyle (int styleFlags) const;
/** Changes the font's style.
@param newFlags a bitwise-or'ed combination of values from the FontStyleFlags enum.
@see FontStyleFlags, withStyle
*/
void setStyleFlags (int newFlags);
//==============================================================================
/** Makes the font bold or non-bold. */
void setBold (bool shouldBeBold);
/** Returns a copy of this font with the bold attribute set.
If the font does not have a bold version, this will return the default font.
*/
Font boldened() const;
/** Returns true if the font is bold. */
bool isBold() const noexcept;
/** Makes the font italic or non-italic. */
void setItalic (bool shouldBeItalic);
/** Returns a copy of this font with the italic attribute set. */
Font italicised() const;
/** Returns true if the font is italic. */
bool isItalic() const noexcept;
/** Makes the font underlined or non-underlined. */
void setUnderline (bool shouldBeUnderlined);
/** Returns true if the font is underlined. */
bool isUnderlined() const noexcept;
//==============================================================================
/** Returns the font's horizontal scale.
A value of 1.0 is the normal scale, less than this will be narrower, greater
than 1.0 will be stretched out.
@see withHorizontalScale
*/
float getHorizontalScale() const noexcept;
/** Returns a copy of this font with a new horizontal scale.
@param scaleFactor a value of 1.0 is the normal scale, less than this will be
narrower, greater than 1.0 will be stretched out.
@see getHorizontalScale
*/
Font withHorizontalScale (float scaleFactor) const;
/** Changes the font's horizontal scale factor.
@param scaleFactor a value of 1.0 is the normal scale, less than this will be
narrower, greater than 1.0 will be stretched out.
*/
void setHorizontalScale (float scaleFactor);
/** Returns the minimum horizontal scale to which fonts may be squashed when trying to
create a layout.
@see setDefaultMinimumHorizontalScaleFactor
*/
static float getDefaultMinimumHorizontalScaleFactor() noexcept;
/** Sets the minimum horizontal scale to which fonts may be squashed when trying to
create a text layout.
@see getDefaultMinimumHorizontalScaleFactor
*/
static void setDefaultMinimumHorizontalScaleFactor (float newMinimumScaleFactor) noexcept;
/** Returns the font's kerning.
This is the extra space added between adjacent characters, as a proportion
of the font's height.
A value of zero is normal spacing, positive values will spread the letters
out more, and negative values make them closer together.
*/
float getExtraKerningFactor() const noexcept;
/** Returns a copy of this font with a new kerning factor.
@param extraKerning a multiple of the font's height that will be added
to space between the characters. So a value of zero is
normal spacing, positive values spread the letters out,
negative values make them closer together.
*/
Font withExtraKerningFactor (float extraKerning) const;
/** Changes the font's kerning.
@param extraKerning a multiple of the font's height that will be added
to space between the characters. So a value of zero is
normal spacing, positive values spread the letters out,
negative values make them closer together.
*/
void setExtraKerningFactor (float extraKerning);
//==============================================================================
/** Changes all the font's characteristics with one call. */
void setSizeAndStyle (float newHeight,
int newStyleFlags,
float newHorizontalScale,
float newKerningAmount);
/** Changes all the font's characteristics with one call. */
void setSizeAndStyle (float newHeight,
const String& newStyle,
float newHorizontalScale,
float newKerningAmount);
//==============================================================================
/** Returns the total width of a string as it would be drawn using this font.
For a more accurate floating-point result, use getStringWidthFloat().
*/
int getStringWidth (const String& text) const;
/** Returns the total width of a string as it would be drawn using this font.
@see getStringWidth
*/
float getStringWidthFloat (const String& text) const;
/** Returns the series of glyph numbers and their x offsets needed to represent a string.
An extra x offset is added at the end of the run, to indicate where the right hand
edge of the last character is.
*/
void getGlyphPositions (const String& text, Array<int>& glyphs, Array<float>& xOffsets) const;
//==============================================================================
#ifndef DOXYGEN
/** Returns the typeface used by this font.
Note that the object returned may go out of scope if this font is deleted
or has its style changed.
*/
[[deprecated ("This method is unsafe, use getTypefacePtr() instead.")]]
Typeface* getTypeface() const;
#endif
/** Returns the typeface used by this font. */
Typeface::Ptr getTypefacePtr() const;
/** Creates an array of Font objects to represent all the fonts on the system.
If you just need the font family names of the typefaces, you can also use
findAllTypefaceNames() instead.
@param results the array to which new Font objects will be added.
*/
static void findFonts (Array<Font>& results);
/** Returns a list of all the available typeface font families.
The names returned can be passed into setTypefaceName().
You can use this instead of findFonts() if you only need their font family names,
and not font objects.
*/
static StringArray findAllTypefaceNames();
/** Returns a list of all the available typeface font styles.
The names returned can be passed into setTypefaceStyle().
You can use this instead of findFonts() if you only need their styles, and not
font objects.
*/
static StringArray findAllTypefaceStyles (const String& family);
//==============================================================================
/** Returns the font family of the typeface to be used for rendering glyphs that aren't
found in the requested typeface.
*/
static const String& getFallbackFontName();
/** Sets the (platform-specific) font family of the typeface to use to find glyphs that
aren't available in whatever font you're trying to use.
*/
static void setFallbackFontName (const String& name);
/** Returns the font style of the typeface to be used for rendering glyphs that aren't
found in the requested typeface.
*/
static const String& getFallbackFontStyle();
/** Sets the (platform-specific) font style of the typeface to use to find glyphs that
aren't available in whatever font you're trying to use.
*/
static void setFallbackFontStyle (const String& style);
//==============================================================================
/** Creates a string to describe this font.
The string will contain information to describe the font's typeface, size, and
style. To recreate the font from this string, use fromString().
*/
String toString() const;
/** Recreates a font from its stringified encoding.
This method takes a string that was created by toString(), and recreates the
original font.
*/
static Font fromString (const String& fontDescription);
private:
//==============================================================================
class SharedFontInternal;
ReferenceCountedObjectPtr<SharedFontInternal> font;
void dupeInternalIfShared();
void checkTypefaceSuitability();
float getHeightToPointsFactor() const;
JUCE_LEAK_DETECTOR (Font)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a particular font, including its size, style, etc.
Apart from the typeface to be used, a Font object also dictates whether
the font is bold, italic, underlined, how big it is, and its kerning and
horizontal scale factor.
@see Typeface
@tags{Graphics}
*/
class JUCE_API Font final
{
public:
//==============================================================================
/** A combination of these values is used by the constructor to specify the
style of font to use.
*/
enum FontStyleFlags
{
plain = 0, /**< indicates a plain, non-bold, non-italic version of the font. @see setStyleFlags */
bold = 1, /**< boldens the font. @see setStyleFlags */
italic = 2, /**< finds an italic version of the font. @see setStyleFlags */
underlined = 4 /**< underlines the font. @see setStyleFlags */
};
//==============================================================================
/** Creates a sans-serif font in a given size.
@param fontHeight the height in pixels (can be fractional)
@param styleFlags the style to use - this can be a combination of the
Font::bold, Font::italic and Font::underlined, or
just Font::plain for the normal style.
@see FontStyleFlags, getDefaultSansSerifFontName
*/
Font (float fontHeight, int styleFlags = plain);
/** Creates a font with a given typeface and parameters.
@param typefaceName the font family of the typeface to use
@param fontHeight the height in pixels (can be fractional)
@param styleFlags the style to use - this can be a combination of the
Font::bold, Font::italic and Font::underlined, or
just Font::plain for the normal style.
@see FontStyleFlags, getDefaultSansSerifFontName
*/
Font (const String& typefaceName, float fontHeight, int styleFlags);
/** Creates a font with a given typeface and parameters.
@param typefaceName the font family of the typeface to use
@param typefaceStyle the font style of the typeface to use
@param fontHeight the height in pixels (can be fractional)
*/
Font (const String& typefaceName, const String& typefaceStyle, float fontHeight);
/** Creates a copy of another Font object. */
Font (const Font& other) noexcept;
/** Creates a font for a typeface. */
Font (const Typeface::Ptr& typeface);
/** Creates a basic sans-serif font at a default height.
You should use one of the other constructors for creating a font that you're planning
on drawing with - this constructor is here to help initialise objects before changing
the font's settings later.
*/
Font();
/** Move constructor */
Font (Font&& other) noexcept;
/** Move assignment operator */
Font& operator= (Font&& other) noexcept;
/** Copies this font from another one. */
Font& operator= (const Font& other) noexcept;
bool operator== (const Font& other) const noexcept;
bool operator!= (const Font& other) const noexcept;
/** Destructor. */
~Font() noexcept;
//==============================================================================
/** Changes the font family of the typeface.
e.g. "Arial", "Courier", etc.
This may also be set to Font::getDefaultSansSerifFontName(), Font::getDefaultSerifFontName(),
or Font::getDefaultMonospacedFontName(), which are not actual platform-specific font family names,
but are generic font family names that are used to represent the various default fonts.
If you need to know the exact typeface font family being used, you can call
Font::getTypefacePtr()->getName(), which will give you the platform-specific font family.
If a suitable font isn't found on the machine, it'll just use a default instead.
*/
void setTypefaceName (const String& faceName);
/** Returns the font family of the typeface that this font uses.
e.g. "Arial", "Courier", etc.
This may also be set to Font::getDefaultSansSerifFontName(), Font::getDefaultSerifFontName(),
or Font::getDefaultMonospacedFontName(), which are not actual platform-specific font family names,
but are generic font family names that are used to represent the various default fonts.
If you need to know the exact typeface font family being used, you can call
Font::getTypefacePtr()->getName(), which will give you the platform-specific font family.
*/
String getTypefaceName() const noexcept;
//==============================================================================
/** Returns the font style of the typeface that this font uses.
@see withTypefaceStyle, getAvailableStyles()
*/
String getTypefaceStyle() const noexcept;
/** Changes the font style of the typeface.
@see getAvailableStyles()
*/
void setTypefaceStyle (const String& newStyle);
/** Returns a copy of this font with a new typeface style.
@see getAvailableStyles()
*/
JUCE_NODISCARD Font withTypefaceStyle (const String& newStyle) const;
/** Returns a list of the styles that this font can use. */
StringArray getAvailableStyles() const;
//==============================================================================
/** Returns a typeface font family that represents the default sans-serif font.
This is also the typeface that will be used when a font is created without
specifying any typeface details.
Note that this method just returns a generic placeholder string that means "the default
sans-serif font" - it's not the actual font family of this font.
@see setTypefaceName, getDefaultSerifFontName, getDefaultMonospacedFontName
*/
static const String& getDefaultSansSerifFontName();
/** Returns a typeface font family that represents the default serif font.
Note that this method just returns a generic placeholder string that means "the default
serif font" - it's not the actual font family of this font.
@see setTypefaceName, getDefaultSansSerifFontName, getDefaultMonospacedFontName
*/
static const String& getDefaultSerifFontName();
/** Returns a typeface font family that represents the default monospaced font.
Note that this method just returns a generic placeholder string that means "the default
monospaced font" - it's not the actual font family of this font.
@see setTypefaceName, getDefaultSansSerifFontName, getDefaultSerifFontName
*/
static const String& getDefaultMonospacedFontName();
/** Returns a font style name that represents the default style.
Note that this method just returns a generic placeholder string that means "the default
font style" - it's not the actual name of the font style of any particular font.
@see setTypefaceStyle
*/
static const String& getDefaultStyle();
/** Returns the default system typeface for the given font. */
static Typeface::Ptr getDefaultTypefaceForFont (const Font& font);
//==============================================================================
/** Returns a copy of this font with a new height. */
JUCE_NODISCARD Font withHeight (float height) const;
/** Returns a copy of this font with a new height, specified in points. */
JUCE_NODISCARD Font withPointHeight (float heightInPoints) const;
/** Changes the font's height.
@see getHeight, withHeight, setHeightWithoutChangingWidth
*/
void setHeight (float newHeight);
/** Changes the font's height without changing its width.
This alters the horizontal scale to compensate for the change in height.
*/
void setHeightWithoutChangingWidth (float newHeight);
/** Returns the total height of this font, in pixels.
This is the maximum height, from the top of the ascent to the bottom of the
descenders.
@see withHeight, setHeightWithoutChangingWidth, getAscent
*/
float getHeight() const noexcept;
/** Returns the total height of this font, in points.
This is the maximum height, from the top of the ascent to the bottom of the
descenders.
@see withPointHeight, getHeight
*/
float getHeightInPoints() const;
/** Returns the height of the font above its baseline, in pixels.
This is the maximum height from the baseline to the top.
@see getHeight, getDescent
*/
float getAscent() const;
/** Returns the height of the font above its baseline, in points.
This is the maximum height from the baseline to the top.
@see getHeight, getDescent
*/
float getAscentInPoints() const;
/** Returns the amount that the font descends below its baseline, in pixels.
This is calculated as (getHeight() - getAscent()).
@see getAscent, getHeight
*/
float getDescent() const;
/** Returns the amount that the font descends below its baseline, in points.
This is calculated as (getHeight() - getAscent()).
@see getAscent, getHeight
*/
float getDescentInPoints() const;
//==============================================================================
/** Returns the font's style flags.
This will return a bitwise-or'ed combination of values from the FontStyleFlags
enum, to describe whether the font is bold, italic, etc.
@see FontStyleFlags, withStyle
*/
int getStyleFlags() const noexcept;
/** Returns a copy of this font with the given set of style flags.
@param styleFlags a bitwise-or'ed combination of values from the FontStyleFlags enum.
@see FontStyleFlags, getStyleFlags
*/
JUCE_NODISCARD Font withStyle (int styleFlags) const;
/** Changes the font's style.
@param newFlags a bitwise-or'ed combination of values from the FontStyleFlags enum.
@see FontStyleFlags, withStyle
*/
void setStyleFlags (int newFlags);
//==============================================================================
/** Makes the font bold or non-bold. */
void setBold (bool shouldBeBold);
/** Returns a copy of this font with the bold attribute set.
If the font does not have a bold version, this will return the default font.
*/
JUCE_NODISCARD Font boldened() const;
/** Returns true if the font is bold. */
bool isBold() const noexcept;
/** Makes the font italic or non-italic. */
void setItalic (bool shouldBeItalic);
/** Returns a copy of this font with the italic attribute set. */
JUCE_NODISCARD Font italicised() const;
/** Returns true if the font is italic. */
bool isItalic() const noexcept;
/** Makes the font underlined or non-underlined. */
void setUnderline (bool shouldBeUnderlined);
/** Returns true if the font is underlined. */
bool isUnderlined() const noexcept;
//==============================================================================
/** Returns the font's horizontal scale.
A value of 1.0 is the normal scale, less than this will be narrower, greater
than 1.0 will be stretched out.
@see withHorizontalScale
*/
float getHorizontalScale() const noexcept;
/** Returns a copy of this font with a new horizontal scale.
@param scaleFactor a value of 1.0 is the normal scale, less than this will be
narrower, greater than 1.0 will be stretched out.
@see getHorizontalScale
*/
JUCE_NODISCARD Font withHorizontalScale (float scaleFactor) const;
/** Changes the font's horizontal scale factor.
@param scaleFactor a value of 1.0 is the normal scale, less than this will be
narrower, greater than 1.0 will be stretched out.
*/
void setHorizontalScale (float scaleFactor);
/** Returns the minimum horizontal scale to which fonts may be squashed when trying to
create a layout.
@see setDefaultMinimumHorizontalScaleFactor
*/
static float getDefaultMinimumHorizontalScaleFactor() noexcept;
/** Sets the minimum horizontal scale to which fonts may be squashed when trying to
create a text layout.
@see getDefaultMinimumHorizontalScaleFactor
*/
static void setDefaultMinimumHorizontalScaleFactor (float newMinimumScaleFactor) noexcept;
/** Returns the font's kerning.
This is the extra space added between adjacent characters, as a proportion
of the font's height.
A value of zero is normal spacing, positive values will spread the letters
out more, and negative values make them closer together.
*/
float getExtraKerningFactor() const noexcept;
/** Returns a copy of this font with a new kerning factor.
@param extraKerning a multiple of the font's height that will be added
to space between the characters. So a value of zero is
normal spacing, positive values spread the letters out,
negative values make them closer together.
*/
JUCE_NODISCARD Font withExtraKerningFactor (float extraKerning) const;
/** Changes the font's kerning.
@param extraKerning a multiple of the font's height that will be added
to space between the characters. So a value of zero is
normal spacing, positive values spread the letters out,
negative values make them closer together.
*/
void setExtraKerningFactor (float extraKerning);
//==============================================================================
/** Changes all the font's characteristics with one call. */
void setSizeAndStyle (float newHeight,
int newStyleFlags,
float newHorizontalScale,
float newKerningAmount);
/** Changes all the font's characteristics with one call. */
void setSizeAndStyle (float newHeight,
const String& newStyle,
float newHorizontalScale,
float newKerningAmount);
//==============================================================================
/** Returns the total width of a string as it would be drawn using this font.
For a more accurate floating-point result, use getStringWidthFloat().
*/
int getStringWidth (const String& text) const;
/** Returns the total width of a string as it would be drawn using this font.
@see getStringWidth
*/
float getStringWidthFloat (const String& text) const;
/** Returns the series of glyph numbers and their x offsets needed to represent a string.
An extra x offset is added at the end of the run, to indicate where the right hand
edge of the last character is.
*/
void getGlyphPositions (const String& text, Array<int>& glyphs, Array<float>& xOffsets) const;
//==============================================================================
#ifndef DOXYGEN
/** Returns the typeface used by this font.
Note that the object returned may go out of scope if this font is deleted
or has its style changed.
*/
[[deprecated ("This method is unsafe, use getTypefacePtr() instead.")]]
Typeface* getTypeface() const;
#endif
/** Returns the typeface used by this font. */
Typeface::Ptr getTypefacePtr() const;
/** Creates an array of Font objects to represent all the fonts on the system.
If you just need the font family names of the typefaces, you can also use
findAllTypefaceNames() instead.
@param results the array to which new Font objects will be added.
*/
static void findFonts (Array<Font>& results);
/** Returns a list of all the available typeface font families.
The names returned can be passed into setTypefaceName().
You can use this instead of findFonts() if you only need their font family names,
and not font objects.
*/
static StringArray findAllTypefaceNames();
/** Returns a list of all the available typeface font styles.
The names returned can be passed into setTypefaceStyle().
You can use this instead of findFonts() if you only need their styles, and not
font objects.
*/
static StringArray findAllTypefaceStyles (const String& family);
//==============================================================================
/** Returns the font family of the typeface to be used for rendering glyphs that aren't
found in the requested typeface.
*/
static const String& getFallbackFontName();
/** Sets the (platform-specific) font family of the typeface to use to find glyphs that
aren't available in whatever font you're trying to use.
*/
static void setFallbackFontName (const String& name);
/** Returns the font style of the typeface to be used for rendering glyphs that aren't
found in the requested typeface.
*/
static const String& getFallbackFontStyle();
/** Sets the (platform-specific) font style of the typeface to use to find glyphs that
aren't available in whatever font you're trying to use.
*/
static void setFallbackFontStyle (const String& style);
//==============================================================================
/** Creates a string to describe this font.
The string will contain information to describe the font's typeface, size, and
style. To recreate the font from this string, use fromString().
*/
String toString() const;
/** Recreates a font from its stringified encoding.
This method takes a string that was created by toString(), and recreates the
original font.
*/
static Font fromString (const String& fontDescription);
private:
//==============================================================================
static bool compare (const Font&, const Font&) noexcept;
void dupeInternalIfShared();
void checkTypefaceSuitability();
float getHeightToPointsFactor() const;
friend struct GraphicsFontHelpers;
class SharedFontInternal;
ReferenceCountedObjectPtr<SharedFontInternal> font;
JUCE_LEAK_DETECTOR (Font)
};
} // namespace juce

File diff suppressed because it is too large Load Diff

View File

@ -1,328 +1,321 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A glyph from a particular font, with a particular size, style,
typeface and position.
You should rarely need to use this class directly - for most purposes, the
GlyphArrangement class will do what you need for text layout.
@see GlyphArrangement, Font
@tags{Graphics}
*/
class JUCE_API PositionedGlyph final
{
public:
//==============================================================================
PositionedGlyph() noexcept;
PositionedGlyph (const Font& font, juce_wchar character, int glyphNumber,
float anchorX, float baselineY, float width, bool isWhitespace);
PositionedGlyph (const PositionedGlyph&) = default;
PositionedGlyph& operator= (const PositionedGlyph&) = default;
PositionedGlyph (PositionedGlyph&&) noexcept = default;
PositionedGlyph& operator= (PositionedGlyph&&) noexcept = default;
~PositionedGlyph();
/** Returns the character the glyph represents. */
juce_wchar getCharacter() const noexcept { return character; }
/** Checks whether the glyph is actually empty. */
bool isWhitespace() const noexcept { return whitespace; }
/** Returns the position of the glyph's left-hand edge. */
float getLeft() const noexcept { return x; }
/** Returns the position of the glyph's right-hand edge. */
float getRight() const noexcept { return x + w; }
/** Returns the y position of the glyph's baseline. */
float getBaselineY() const noexcept { return y; }
/** Returns the y position of the top of the glyph. */
float getTop() const { return y - font.getAscent(); }
/** Returns the y position of the bottom of the glyph. */
float getBottom() const { return y + font.getDescent(); }
/** Returns the bounds of the glyph. */
Rectangle<float> getBounds() const { return { x, getTop(), w, font.getHeight() }; }
//==============================================================================
/** Shifts the glyph's position by a relative amount. */
void moveBy (float deltaX, float deltaY);
//==============================================================================
/** Draws the glyph into a graphics context.
(Note that this may change the context's currently selected font).
*/
void draw (Graphics& g) const;
/** Draws the glyph into a graphics context, with an extra transform applied to it.
(Note that this may change the context's currently selected font).
*/
void draw (Graphics& g, AffineTransform transform) const;
/** Returns the path for this glyph.
@param path the glyph's outline will be appended to this path
*/
void createPath (Path& path) const;
/** Checks to see if a point lies within this glyph. */
bool hitTest (float x, float y) const;
private:
//==============================================================================
friend class GlyphArrangement;
Font font;
juce_wchar character;
int glyph;
float x, y, w;
bool whitespace;
JUCE_LEAK_DETECTOR (PositionedGlyph)
};
//==============================================================================
/**
A set of glyphs, each with a position.
You can create a GlyphArrangement, text to it and then draw it onto a
graphics context. It's used internally by the text methods in the
Graphics class, but can be used directly if more control is needed.
@see Font, PositionedGlyph
@tags{Graphics}
*/
class JUCE_API GlyphArrangement final
{
public:
//==============================================================================
/** Creates an empty arrangement. */
GlyphArrangement();
GlyphArrangement (const GlyphArrangement&) = default;
GlyphArrangement& operator= (const GlyphArrangement&) = default;
GlyphArrangement (GlyphArrangement&&) = default;
GlyphArrangement& operator= (GlyphArrangement&&) = default;
/** Destructor. */
~GlyphArrangement() = default;
//==============================================================================
/** Returns the total number of glyphs in the arrangement. */
int getNumGlyphs() const noexcept { return glyphs.size(); }
/** Returns one of the glyphs from the arrangement.
@param index the glyph's index, from 0 to (getNumGlyphs() - 1). Be
careful not to pass an out-of-range index here, as it
doesn't do any bounds-checking.
*/
PositionedGlyph& getGlyph (int index) noexcept;
const PositionedGlyph* begin() const { return glyphs.begin(); }
const PositionedGlyph* end() const { return glyphs.end(); }
//==============================================================================
/** Clears all text from the arrangement and resets it. */
void clear();
/** Appends a line of text to the arrangement.
This will add the text as a single line, where x is the left-hand edge of the
first character, and y is the position for the text's baseline.
If the text contains new-lines or carriage-returns, this will ignore them - use
addJustifiedText() to add multi-line arrangements.
*/
void addLineOfText (const Font& font,
const String& text,
float x, float y);
/** Adds a line of text, truncating it if it's wider than a specified size.
This is the same as addLineOfText(), but if the line's width exceeds the value
specified in maxWidthPixels, it will be truncated using either ellipsis (i.e. dots: "..."),
if useEllipsis is true, or if this is false, it will just drop any subsequent characters.
*/
void addCurtailedLineOfText (const Font& font,
const String& text,
float x, float y,
float maxWidthPixels,
bool useEllipsis);
/** Adds some multi-line text, breaking lines at word-boundaries if they are too wide.
This will add text to the arrangement, breaking it into new lines either where there
is a new-line or carriage-return character in the text, or where a line's width
exceeds the value set in maxLineWidth.
Each line that is added will be laid out using the flags set in horizontalLayout, so
the lines can be left- or right-justified, or centred horizontally in the space
between x and (x + maxLineWidth).
The y coordinate is the position of the baseline of the first line of text - subsequent
lines will be placed below it, separated by a distance of font.getHeight() + leading.
*/
void addJustifiedText (const Font& font,
const String& text,
float x, float y,
float maxLineWidth,
Justification horizontalLayout,
float leading = 0.0f);
/** Tries to fit some text within a given space.
This does its best to make the given text readable within the specified rectangle,
so it's useful for labelling things.
If the text is too big, it'll be squashed horizontally or broken over multiple lines
if the maximumLinesToUse value allows this. If the text just won't fit into the space,
it'll cram as much as possible in there, and put some ellipsis at the end to show that
it's been truncated.
A Justification parameter lets you specify how the text is laid out within the rectangle,
both horizontally and vertically.
The minimumHorizontalScale parameter specifies how much the text can be squashed horizontally
to try to squeeze it into the space. If you don't want any horizontal scaling to occur, you
can set this value to 1.0f. Pass 0 if you want it to use the default value.
@see Graphics::drawFittedText
*/
void addFittedText (const Font& font,
const String& text,
float x, float y, float width, float height,
Justification layout,
int maximumLinesToUse,
float minimumHorizontalScale = 0.0f);
/** Appends another glyph arrangement to this one. */
void addGlyphArrangement (const GlyphArrangement&);
/** Appends a custom glyph to the arrangement. */
void addGlyph (const PositionedGlyph&);
//==============================================================================
/** Draws this glyph arrangement to a graphics context.
This uses cached bitmaps so is much faster than the draw (Graphics&, AffineTransform)
method, which renders the glyphs as filled vectors.
*/
void draw (const Graphics&) const;
/** Draws this glyph arrangement to a graphics context.
This renders the paths as filled vectors, so is far slower than the draw (Graphics&)
method for non-transformed arrangements.
*/
void draw (const Graphics&, AffineTransform) const;
/** Converts the set of glyphs into a path.
@param path the glyphs' outlines will be appended to this path
*/
void createPath (Path& path) const;
/** Looks for a glyph that contains the given coordinate.
@returns the index of the glyph, or -1 if none were found.
*/
int findGlyphIndexAt (float x, float y) const;
//==============================================================================
/** Finds the smallest rectangle that will enclose a subset of the glyphs.
@param startIndex the first glyph to test
@param numGlyphs the number of glyphs to include; if this is < 0, all glyphs after
startIndex will be included
@param includeWhitespace if true, the extent of any whitespace characters will also
be taken into account
*/
Rectangle<float> getBoundingBox (int startIndex, int numGlyphs, bool includeWhitespace) const;
/** Shifts a set of glyphs by a given amount.
@param startIndex the first glyph to transform
@param numGlyphs the number of glyphs to move; if this is < 0, all glyphs after
startIndex will be used
@param deltaX the amount to add to their x-positions
@param deltaY the amount to add to their y-positions
*/
void moveRangeOfGlyphs (int startIndex, int numGlyphs,
float deltaX, float deltaY);
/** Removes a set of glyphs from the arrangement.
@param startIndex the first glyph to remove
@param numGlyphs the number of glyphs to remove; if this is < 0, all glyphs after
startIndex will be deleted
*/
void removeRangeOfGlyphs (int startIndex, int numGlyphs);
/** Expands or compresses a set of glyphs horizontally.
@param startIndex the first glyph to transform
@param numGlyphs the number of glyphs to stretch; if this is < 0, all glyphs after
startIndex will be used
@param horizontalScaleFactor how much to scale their horizontal width by
*/
void stretchRangeOfGlyphs (int startIndex, int numGlyphs,
float horizontalScaleFactor);
/** Justifies a set of glyphs within a given space.
This moves the glyphs as a block so that the whole thing is located within the
given rectangle with the specified layout.
If the Justification::horizontallyJustified flag is specified, each line will
be stretched out to fill the specified width.
*/
void justifyGlyphs (int startIndex, int numGlyphs,
float x, float y, float width, float height,
Justification justification);
private:
//==============================================================================
Array<PositionedGlyph> glyphs;
int insertEllipsis (const Font&, float maxXPos, int startIndex, int endIndex);
int fitLineIntoSpace (int start, int numGlyphs, float x, float y, float w, float h, const Font&,
Justification, float minimumHorizontalScale);
void spreadOutLine (int start, int numGlyphs, float targetWidth);
void splitLines (const String&, Font, int start, float x, float y, float w, float h, int maxLines,
float lineWidth, Justification, float minimumHorizontalScale);
void addLinesWithLineBreaks (const String&, const Font&, float x, float y, float width, float height, Justification);
void drawGlyphUnderline (const Graphics&, const PositionedGlyph&, int, AffineTransform) const;
JUCE_LEAK_DETECTOR (GlyphArrangement)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A glyph from a particular font, with a particular size, style,
typeface and position.
You should rarely need to use this class directly - for most purposes, the
GlyphArrangement class will do what you need for text layout.
@see GlyphArrangement, Font
@tags{Graphics}
*/
class JUCE_API PositionedGlyph final
{
public:
//==============================================================================
PositionedGlyph() noexcept;
PositionedGlyph (const Font& font, juce_wchar character, int glyphNumber,
float anchorX, float baselineY, float width, bool isWhitespace);
/** Returns the character the glyph represents. */
juce_wchar getCharacter() const noexcept { return character; }
/** Checks whether the glyph is actually empty. */
bool isWhitespace() const noexcept { return whitespace; }
/** Returns the position of the glyph's left-hand edge. */
float getLeft() const noexcept { return x; }
/** Returns the position of the glyph's right-hand edge. */
float getRight() const noexcept { return x + w; }
/** Returns the y position of the glyph's baseline. */
float getBaselineY() const noexcept { return y; }
/** Returns the y position of the top of the glyph. */
float getTop() const { return y - font.getAscent(); }
/** Returns the y position of the bottom of the glyph. */
float getBottom() const { return y + font.getDescent(); }
/** Returns the bounds of the glyph. */
Rectangle<float> getBounds() const { return { x, getTop(), w, font.getHeight() }; }
//==============================================================================
/** Shifts the glyph's position by a relative amount. */
void moveBy (float deltaX, float deltaY);
//==============================================================================
/** Draws the glyph into a graphics context.
(Note that this may change the context's currently selected font).
*/
void draw (Graphics& g) const;
/** Draws the glyph into a graphics context, with an extra transform applied to it.
(Note that this may change the context's currently selected font).
*/
void draw (Graphics& g, AffineTransform transform) const;
/** Returns the path for this glyph.
@param path the glyph's outline will be appended to this path
*/
void createPath (Path& path) const;
/** Checks to see if a point lies within this glyph. */
bool hitTest (float x, float y) const;
private:
//==============================================================================
friend class GlyphArrangement;
Font font;
juce_wchar character;
int glyph;
float x, y, w;
bool whitespace;
JUCE_LEAK_DETECTOR (PositionedGlyph)
};
//==============================================================================
/**
A set of glyphs, each with a position.
You can create a GlyphArrangement, text to it and then draw it onto a
graphics context. It's used internally by the text methods in the
Graphics class, but can be used directly if more control is needed.
@see Font, PositionedGlyph
@tags{Graphics}
*/
class JUCE_API GlyphArrangement final
{
public:
//==============================================================================
/** Creates an empty arrangement. */
GlyphArrangement();
GlyphArrangement (const GlyphArrangement&) = default;
GlyphArrangement& operator= (const GlyphArrangement&) = default;
GlyphArrangement (GlyphArrangement&&) = default;
GlyphArrangement& operator= (GlyphArrangement&&) = default;
/** Destructor. */
~GlyphArrangement() = default;
//==============================================================================
/** Returns the total number of glyphs in the arrangement. */
int getNumGlyphs() const noexcept { return glyphs.size(); }
/** Returns one of the glyphs from the arrangement.
@param index the glyph's index, from 0 to (getNumGlyphs() - 1). Be
careful not to pass an out-of-range index here, as it
doesn't do any bounds-checking.
*/
PositionedGlyph& getGlyph (int index) noexcept;
const PositionedGlyph* begin() const { return glyphs.begin(); }
const PositionedGlyph* end() const { return glyphs.end(); }
//==============================================================================
/** Clears all text from the arrangement and resets it. */
void clear();
/** Appends a line of text to the arrangement.
This will add the text as a single line, where x is the left-hand edge of the
first character, and y is the position for the text's baseline.
If the text contains new-lines or carriage-returns, this will ignore them - use
addJustifiedText() to add multi-line arrangements.
*/
void addLineOfText (const Font& font,
const String& text,
float x, float y);
/** Adds a line of text, truncating it if it's wider than a specified size.
This is the same as addLineOfText(), but if the line's width exceeds the value
specified in maxWidthPixels, it will be truncated using either ellipsis (i.e. dots: "..."),
if useEllipsis is true, or if this is false, it will just drop any subsequent characters.
*/
void addCurtailedLineOfText (const Font& font,
const String& text,
float x, float y,
float maxWidthPixels,
bool useEllipsis);
/** Adds some multi-line text, breaking lines at word-boundaries if they are too wide.
This will add text to the arrangement, breaking it into new lines either where there
is a new-line or carriage-return character in the text, or where a line's width
exceeds the value set in maxLineWidth.
Each line that is added will be laid out using the flags set in horizontalLayout, so
the lines can be left- or right-justified, or centred horizontally in the space
between x and (x + maxLineWidth).
The y coordinate is the position of the baseline of the first line of text - subsequent
lines will be placed below it, separated by a distance of font.getHeight() + leading.
*/
void addJustifiedText (const Font& font,
const String& text,
float x, float y,
float maxLineWidth,
Justification horizontalLayout,
float leading = 0.0f);
/** Tries to fit some text within a given space.
This does its best to make the given text readable within the specified rectangle,
so it's useful for labelling things.
If the text is too big, it'll be squashed horizontally or broken over multiple lines
if the maximumLinesToUse value allows this. If the text just won't fit into the space,
it'll cram as much as possible in there, and put some ellipsis at the end to show that
it's been truncated.
A Justification parameter lets you specify how the text is laid out within the rectangle,
both horizontally and vertically.
The minimumHorizontalScale parameter specifies how much the text can be squashed horizontally
to try to squeeze it into the space. If you don't want any horizontal scaling to occur, you
can set this value to 1.0f. Pass 0 if you want it to use the default value.
@see Graphics::drawFittedText
*/
void addFittedText (const Font& font,
const String& text,
float x, float y, float width, float height,
Justification layout,
int maximumLinesToUse,
float minimumHorizontalScale = 0.0f);
/** Appends another glyph arrangement to this one. */
void addGlyphArrangement (const GlyphArrangement&);
/** Appends a custom glyph to the arrangement. */
void addGlyph (const PositionedGlyph&);
//==============================================================================
/** Draws this glyph arrangement to a graphics context.
This uses cached bitmaps so is much faster than the draw (Graphics&, AffineTransform)
method, which renders the glyphs as filled vectors.
*/
void draw (const Graphics&) const;
/** Draws this glyph arrangement to a graphics context.
This renders the paths as filled vectors, so is far slower than the draw (Graphics&)
method for non-transformed arrangements.
*/
void draw (const Graphics&, AffineTransform) const;
/** Converts the set of glyphs into a path.
@param path the glyphs' outlines will be appended to this path
*/
void createPath (Path& path) const;
/** Looks for a glyph that contains the given coordinate.
@returns the index of the glyph, or -1 if none were found.
*/
int findGlyphIndexAt (float x, float y) const;
//==============================================================================
/** Finds the smallest rectangle that will enclose a subset of the glyphs.
@param startIndex the first glyph to test
@param numGlyphs the number of glyphs to include; if this is < 0, all glyphs after
startIndex will be included
@param includeWhitespace if true, the extent of any whitespace characters will also
be taken into account
*/
Rectangle<float> getBoundingBox (int startIndex, int numGlyphs, bool includeWhitespace) const;
/** Shifts a set of glyphs by a given amount.
@param startIndex the first glyph to transform
@param numGlyphs the number of glyphs to move; if this is < 0, all glyphs after
startIndex will be used
@param deltaX the amount to add to their x-positions
@param deltaY the amount to add to their y-positions
*/
void moveRangeOfGlyphs (int startIndex, int numGlyphs,
float deltaX, float deltaY);
/** Removes a set of glyphs from the arrangement.
@param startIndex the first glyph to remove
@param numGlyphs the number of glyphs to remove; if this is < 0, all glyphs after
startIndex will be deleted
*/
void removeRangeOfGlyphs (int startIndex, int numGlyphs);
/** Expands or compresses a set of glyphs horizontally.
@param startIndex the first glyph to transform
@param numGlyphs the number of glyphs to stretch; if this is < 0, all glyphs after
startIndex will be used
@param horizontalScaleFactor how much to scale their horizontal width by
*/
void stretchRangeOfGlyphs (int startIndex, int numGlyphs,
float horizontalScaleFactor);
/** Justifies a set of glyphs within a given space.
This moves the glyphs as a block so that the whole thing is located within the
given rectangle with the specified layout.
If the Justification::horizontallyJustified flag is specified, each line will
be stretched out to fill the specified width.
*/
void justifyGlyphs (int startIndex, int numGlyphs,
float x, float y, float width, float height,
Justification justification);
private:
//==============================================================================
Array<PositionedGlyph> glyphs;
int insertEllipsis (const Font&, float maxXPos, int startIndex, int endIndex);
int fitLineIntoSpace (int start, int numGlyphs, float x, float y, float w, float h, const Font&,
Justification, float minimumHorizontalScale);
void spreadOutLine (int start, int numGlyphs, float targetWidth);
void splitLines (const String&, Font, int start, float x, float y, float w, float h, int maxLines,
float lineWidth, Justification, float minimumHorizontalScale);
void addLinesWithLineBreaks (const String&, const Font&, float x, float y, float width, float height, Justification);
void drawGlyphUnderline (const Graphics&, const PositionedGlyph&, int, AffineTransform) const;
JUCE_LEAK_DETECTOR (GlyphArrangement)
};
} // namespace juce

File diff suppressed because it is too large Load Diff

View File

@ -1,270 +1,270 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A Pre-formatted piece of text, which may contain multiple fonts and colours.
A TextLayout is created from an AttributedString, and once created can be
quickly drawn into a Graphics context.
@see AttributedString
@tags{Graphics}
*/
class JUCE_API TextLayout final
{
private:
template <typename Iterator>
class DereferencingIterator
{
public:
using value_type = typename std::remove_reference<decltype(**std::declval<Iterator>())>::type;
using difference_type = typename std::iterator_traits<Iterator>::difference_type;
using pointer = value_type*;
using reference = value_type&;
using iterator_category = typename std::iterator_traits<Iterator>::iterator_category;
explicit DereferencingIterator (Iterator in) : iterator (std::move (in)) {}
DereferencingIterator& operator+= (difference_type distance)
{
iterator += distance;
return *this;
}
friend DereferencingIterator operator+ (DereferencingIterator i, difference_type d) { return i += d; }
friend DereferencingIterator operator+ (difference_type d, DereferencingIterator i) { return i += d; }
DereferencingIterator& operator-= (difference_type distance)
{
iterator -= distance;
return *this;
}
friend DereferencingIterator operator- (DereferencingIterator i, difference_type d) { return i -= d; }
friend difference_type operator- (DereferencingIterator a, DereferencingIterator b) { return a.iterator - b.iterator; }
reference operator[] (difference_type d) const { return *iterator[d]; }
friend bool operator< (DereferencingIterator a, DereferencingIterator b) { return a.iterator < b.iterator; }
friend bool operator<= (DereferencingIterator a, DereferencingIterator b) { return a.iterator <= b.iterator; }
friend bool operator> (DereferencingIterator a, DereferencingIterator b) { return a.iterator > b.iterator; }
friend bool operator>= (DereferencingIterator a, DereferencingIterator b) { return a.iterator >= b.iterator; }
friend bool operator== (DereferencingIterator a, DereferencingIterator b) { return a.iterator == b.iterator; }
friend bool operator!= (DereferencingIterator a, DereferencingIterator b) { return a.iterator != b.iterator; }
DereferencingIterator& operator++() { ++iterator; return *this; }
DereferencingIterator& operator--() { --iterator; return *this; }
DereferencingIterator operator++ (int) const { DereferencingIterator copy (*this); ++(*this); return copy; }
DereferencingIterator operator-- (int) const { DereferencingIterator copy (*this); --(*this); return copy; }
reference operator* () const { return **iterator; }
pointer operator->() const { return *iterator; }
private:
Iterator iterator;
};
public:
/** Creates an empty layout.
Having created a TextLayout, you can populate it using createLayout() or
createLayoutWithBalancedLineLengths().
*/
TextLayout();
TextLayout (const TextLayout&);
TextLayout& operator= (const TextLayout&);
TextLayout (TextLayout&&) noexcept;
TextLayout& operator= (TextLayout&&) noexcept;
/** Destructor. */
~TextLayout();
//==============================================================================
/** Creates a layout from the given attributed string.
This will replace any data that is currently stored in the layout.
*/
void createLayout (const AttributedString&, float maxWidth);
/** Creates a layout from the given attributed string, given some size constraints.
This will replace any data that is currently stored in the layout.
*/
void createLayout (const AttributedString&, float maxWidth, float maxHeight);
/** Creates a layout, attempting to choose a width which results in lines
of a similar length.
This will be slower than the normal createLayout method, but produces a
tidier result.
*/
void createLayoutWithBalancedLineLengths (const AttributedString&, float maxWidth);
/** Creates a layout, attempting to choose a width which results in lines
of a similar length.
This will be slower than the normal createLayout method, but produces a
tidier result.
*/
void createLayoutWithBalancedLineLengths (const AttributedString&, float maxWidth, float maxHeight);
/** Draws the layout within the specified area.
The position of the text within the rectangle is controlled by the justification
flags set in the original AttributedString that was used to create this layout.
*/
void draw (Graphics&, Rectangle<float> area) const;
//==============================================================================
/** A positioned glyph. */
class JUCE_API Glyph
{
public:
Glyph (int glyphCode, Point<float> anchor, float width) noexcept;
/** The code number of this glyph. */
int glyphCode;
/** The glyph's anchor point - this is relative to the line's origin.
@see TextLayout::Line::lineOrigin
*/
Point<float> anchor;
float width;
private:
JUCE_LEAK_DETECTOR (Glyph)
};
//==============================================================================
/** A sequence of glyphs with a common font and colour. */
class JUCE_API Run
{
public:
Run() = default;
Run (Range<int> stringRange, int numGlyphsToPreallocate);
/** Returns the X position range which contains all the glyphs in this run. */
Range<float> getRunBoundsX() const noexcept;
Font font; /**< The run's font. */
Colour colour { 0xff000000 }; /**< The run's colour. */
Array<Glyph> glyphs; /**< The glyphs in this run. */
Range<int> stringRange; /**< The character range that this run represents in the
original string that was used to create it. */
private:
JUCE_LEAK_DETECTOR (Run)
};
//==============================================================================
/** A line containing a sequence of glyph-runs. */
class JUCE_API Line
{
public:
Line() = default;
Line (Range<int> stringRange, Point<float> lineOrigin,
float ascent, float descent, float leading, int numRunsToPreallocate);
Line (const Line&);
Line& operator= (const Line&);
Line (Line&&) noexcept = default;
Line& operator= (Line&&) noexcept = default;
~Line() noexcept = default;
/** Returns the X position range which contains all the glyphs in this line. */
Range<float> getLineBoundsX() const noexcept;
/** Returns the Y position range which contains all the glyphs in this line. */
Range<float> getLineBoundsY() const noexcept;
/** Returns the smallest rectangle which contains all the glyphs in this line. */
Rectangle<float> getLineBounds() const noexcept;
void swap (Line& other) noexcept;
OwnedArray<Run> runs; /**< The glyph-runs in this line. */
Range<int> stringRange; /**< The character range that this line represents in the
original string that was used to create it. */
Point<float> lineOrigin; /**< The line's baseline origin. */
float ascent = 0.0f, descent = 0.0f, leading = 0.0f;
private:
JUCE_LEAK_DETECTOR (Line)
};
//==============================================================================
/** Returns the maximum width of the content. */
float getWidth() const noexcept { return width; }
/** Returns the maximum height of the content. */
float getHeight() const noexcept { return height; }
/** Returns the number of lines in the layout. */
int getNumLines() const noexcept { return lines.size(); }
/** Returns one of the lines. */
Line& getLine (int index) const noexcept;
/** Adds a line to the layout. The layout will take ownership of this line object
and will delete it when it is no longer needed. */
void addLine (std::unique_ptr<Line>);
/** Pre-allocates space for the specified number of lines. */
void ensureStorageAllocated (int numLinesNeeded);
using iterator = DereferencingIterator< Line* const*>;
using const_iterator = DereferencingIterator<const Line* const*>;
/** Returns an iterator over the lines of content */
iterator begin() { return iterator (lines.begin()); }
const_iterator begin() const { return const_iterator (lines.begin()); }
const_iterator cbegin() const { return const_iterator (lines.begin()); }
/** Returns an iterator over the lines of content */
iterator end() { return iterator (lines.end()); }
const_iterator end() const { return const_iterator (lines.end()); }
const_iterator cend() const { return const_iterator (lines.end()); }
/** If you modify the TextLayout after creating it, call this to compute
the new dimensions of the content.
*/
void recalculateSize();
private:
OwnedArray<Line> lines;
float width, height;
Justification justification;
void createStandardLayout (const AttributedString&);
bool createNativeLayout (const AttributedString&);
JUCE_LEAK_DETECTOR (TextLayout)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A Pre-formatted piece of text, which may contain multiple fonts and colours.
A TextLayout is created from an AttributedString, and once created can be
quickly drawn into a Graphics context.
@see AttributedString
@tags{Graphics}
*/
class JUCE_API TextLayout final
{
private:
template <typename Iterator>
class DereferencingIterator
{
public:
using value_type = typename std::remove_reference<decltype(**std::declval<Iterator>())>::type;
using difference_type = typename std::iterator_traits<Iterator>::difference_type;
using pointer = value_type*;
using reference = value_type&;
using iterator_category = typename std::iterator_traits<Iterator>::iterator_category;
explicit DereferencingIterator (Iterator in) : iterator (std::move (in)) {}
DereferencingIterator& operator+= (difference_type distance)
{
iterator += distance;
return *this;
}
friend DereferencingIterator operator+ (DereferencingIterator i, difference_type d) { return i += d; }
friend DereferencingIterator operator+ (difference_type d, DereferencingIterator i) { return i += d; }
DereferencingIterator& operator-= (difference_type distance)
{
iterator -= distance;
return *this;
}
friend DereferencingIterator operator- (DereferencingIterator i, difference_type d) { return i -= d; }
friend difference_type operator- (DereferencingIterator a, DereferencingIterator b) { return a.iterator - b.iterator; }
reference operator[] (difference_type d) const { return *iterator[d]; }
friend bool operator< (DereferencingIterator a, DereferencingIterator b) { return a.iterator < b.iterator; }
friend bool operator<= (DereferencingIterator a, DereferencingIterator b) { return a.iterator <= b.iterator; }
friend bool operator> (DereferencingIterator a, DereferencingIterator b) { return a.iterator > b.iterator; }
friend bool operator>= (DereferencingIterator a, DereferencingIterator b) { return a.iterator >= b.iterator; }
friend bool operator== (DereferencingIterator a, DereferencingIterator b) { return a.iterator == b.iterator; }
friend bool operator!= (DereferencingIterator a, DereferencingIterator b) { return a.iterator != b.iterator; }
DereferencingIterator& operator++() { ++iterator; return *this; }
DereferencingIterator& operator--() { --iterator; return *this; }
DereferencingIterator operator++ (int) const { DereferencingIterator copy (*this); ++(*this); return copy; }
DereferencingIterator operator-- (int) const { DereferencingIterator copy (*this); --(*this); return copy; }
reference operator* () const { return **iterator; }
pointer operator->() const { return *iterator; }
private:
Iterator iterator;
};
public:
/** Creates an empty layout.
Having created a TextLayout, you can populate it using createLayout() or
createLayoutWithBalancedLineLengths().
*/
TextLayout();
TextLayout (const TextLayout&);
TextLayout& operator= (const TextLayout&);
TextLayout (TextLayout&&) noexcept;
TextLayout& operator= (TextLayout&&) noexcept;
/** Destructor. */
~TextLayout();
//==============================================================================
/** Creates a layout from the given attributed string.
This will replace any data that is currently stored in the layout.
*/
void createLayout (const AttributedString&, float maxWidth);
/** Creates a layout from the given attributed string, given some size constraints.
This will replace any data that is currently stored in the layout.
*/
void createLayout (const AttributedString&, float maxWidth, float maxHeight);
/** Creates a layout, attempting to choose a width which results in lines
of a similar length.
This will be slower than the normal createLayout method, but produces a
tidier result.
*/
void createLayoutWithBalancedLineLengths (const AttributedString&, float maxWidth);
/** Creates a layout, attempting to choose a width which results in lines
of a similar length.
This will be slower than the normal createLayout method, but produces a
tidier result.
*/
void createLayoutWithBalancedLineLengths (const AttributedString&, float maxWidth, float maxHeight);
/** Draws the layout within the specified area.
The position of the text within the rectangle is controlled by the justification
flags set in the original AttributedString that was used to create this layout.
*/
void draw (Graphics&, Rectangle<float> area) const;
//==============================================================================
/** A positioned glyph. */
class JUCE_API Glyph
{
public:
Glyph (int glyphCode, Point<float> anchor, float width) noexcept;
/** The code number of this glyph. */
int glyphCode;
/** The glyph's anchor point - this is relative to the line's origin.
@see TextLayout::Line::lineOrigin
*/
Point<float> anchor;
float width;
private:
JUCE_LEAK_DETECTOR (Glyph)
};
//==============================================================================
/** A sequence of glyphs with a common font and colour. */
class JUCE_API Run
{
public:
Run() = default;
Run (Range<int> stringRange, int numGlyphsToPreallocate);
/** Returns the X position range which contains all the glyphs in this run. */
Range<float> getRunBoundsX() const noexcept;
Font font; /**< The run's font. */
Colour colour { 0xff000000 }; /**< The run's colour. */
Array<Glyph> glyphs; /**< The glyphs in this run. */
Range<int> stringRange; /**< The character range that this run represents in the
original string that was used to create it. */
private:
JUCE_LEAK_DETECTOR (Run)
};
//==============================================================================
/** A line containing a sequence of glyph-runs. */
class JUCE_API Line
{
public:
Line() = default;
Line (Range<int> stringRange, Point<float> lineOrigin,
float ascent, float descent, float leading, int numRunsToPreallocate);
Line (const Line&);
Line& operator= (const Line&);
Line (Line&&) noexcept = default;
Line& operator= (Line&&) noexcept = default;
~Line() noexcept = default;
/** Returns the X position range which contains all the glyphs in this line. */
Range<float> getLineBoundsX() const noexcept;
/** Returns the Y position range which contains all the glyphs in this line. */
Range<float> getLineBoundsY() const noexcept;
/** Returns the smallest rectangle which contains all the glyphs in this line. */
Rectangle<float> getLineBounds() const noexcept;
void swap (Line& other) noexcept;
OwnedArray<Run> runs; /**< The glyph-runs in this line. */
Range<int> stringRange; /**< The character range that this line represents in the
original string that was used to create it. */
Point<float> lineOrigin; /**< The line's baseline origin. */
float ascent = 0.0f, descent = 0.0f, leading = 0.0f;
private:
JUCE_LEAK_DETECTOR (Line)
};
//==============================================================================
/** Returns the maximum width of the content. */
float getWidth() const noexcept { return width; }
/** Returns the maximum height of the content. */
float getHeight() const noexcept { return height; }
/** Returns the number of lines in the layout. */
int getNumLines() const noexcept { return lines.size(); }
/** Returns one of the lines. */
Line& getLine (int index) const noexcept;
/** Adds a line to the layout. The layout will take ownership of this line object
and will delete it when it is no longer needed. */
void addLine (std::unique_ptr<Line>);
/** Pre-allocates space for the specified number of lines. */
void ensureStorageAllocated (int numLinesNeeded);
using iterator = DereferencingIterator< Line* const*>;
using const_iterator = DereferencingIterator<const Line* const*>;
/** Returns an iterator over the lines of content */
iterator begin() { return iterator (lines.begin()); }
const_iterator begin() const { return const_iterator (lines.begin()); }
const_iterator cbegin() const { return const_iterator (lines.begin()); }
/** Returns an iterator over the lines of content */
iterator end() { return iterator (lines.end()); }
const_iterator end() const { return const_iterator (lines.end()); }
const_iterator cend() const { return const_iterator (lines.end()); }
/** If you modify the TextLayout after creating it, call this to compute
the new dimensions of the content.
*/
void recalculateSize();
private:
OwnedArray<Line> lines;
float width, height;
Justification justification;
void createStandardLayout (const AttributedString&);
bool createNativeLayout (const AttributedString&);
JUCE_LEAK_DETECTOR (TextLayout)
};
} // namespace juce

View File

@ -1,263 +1,263 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
struct FontStyleHelpers
{
static const char* getStyleName (const bool bold,
const bool italic) noexcept
{
if (bold && italic) return "Bold Italic";
if (bold) return "Bold";
if (italic) return "Italic";
return "Regular";
}
static const char* getStyleName (const int styleFlags) noexcept
{
return getStyleName ((styleFlags & Font::bold) != 0,
(styleFlags & Font::italic) != 0);
}
static bool isBold (const String& style) noexcept
{
return style.containsWholeWordIgnoreCase ("Bold");
}
static bool isItalic (const String& style) noexcept
{
return style.containsWholeWordIgnoreCase ("Italic")
|| style.containsWholeWordIgnoreCase ("Oblique");
}
static bool isPlaceholderFamilyName (const String& family)
{
return family == Font::getDefaultSansSerifFontName()
|| family == Font::getDefaultSerifFontName()
|| family == Font::getDefaultMonospacedFontName();
}
struct ConcreteFamilyNames
{
ConcreteFamilyNames()
: sans (findName (Font::getDefaultSansSerifFontName())),
serif (findName (Font::getDefaultSerifFontName())),
mono (findName (Font::getDefaultMonospacedFontName()))
{
}
String lookUp (const String& placeholder)
{
if (placeholder == Font::getDefaultSansSerifFontName()) return sans;
if (placeholder == Font::getDefaultSerifFontName()) return serif;
if (placeholder == Font::getDefaultMonospacedFontName()) return mono;
return findName (placeholder);
}
private:
static String findName (const String& placeholder)
{
const Font f (placeholder, Font::getDefaultStyle(), 15.0f);
return Font::getDefaultTypefaceForFont (f)->getName();
}
String sans, serif, mono;
};
static String getConcreteFamilyNameFromPlaceholder (const String& placeholder)
{
static ConcreteFamilyNames names;
return names.lookUp (placeholder);
}
static String getConcreteFamilyName (const Font& font)
{
const String& family = font.getTypefaceName();
return isPlaceholderFamilyName (family) ? getConcreteFamilyNameFromPlaceholder (family)
: family;
}
};
//==============================================================================
Typeface::Typeface (const String& faceName, const String& styleName) noexcept
: name (faceName), style (styleName)
{
}
Typeface::~Typeface() = default;
Typeface::Ptr Typeface::getFallbackTypeface()
{
const Font fallbackFont (Font::getFallbackFontName(), Font::getFallbackFontStyle(), 10.0f);
return fallbackFont.getTypefacePtr();
}
EdgeTable* Typeface::getEdgeTableForGlyph (int glyphNumber, const AffineTransform& transform, float fontHeight)
{
Path path;
if (getOutlineForGlyph (glyphNumber, path) && ! path.isEmpty())
{
applyVerticalHintingTransform (fontHeight, path);
return new EdgeTable (path.getBoundsTransformed (transform).getSmallestIntegerContainer().expanded (1, 0),
path, transform);
}
return nullptr;
}
//==============================================================================
struct Typeface::HintingParams
{
HintingParams (Typeface& t)
{
Font font (t);
font = font.withHeight ((float) standardHeight);
top = getAverageY (font, "BDEFPRTZOQ", true);
middle = getAverageY (font, "acegmnopqrsuvwxy", true);
bottom = getAverageY (font, "BDELZOC", false);
}
void applyVerticalHintingTransform (float fontSize, Path& path)
{
if (cachedSize != fontSize)
{
cachedSize = fontSize;
cachedScale = Scaling (top, middle, bottom, fontSize);
}
if (bottom < top + 3.0f / fontSize)
return;
Path result;
for (Path::Iterator i (path); i.next();)
{
switch (i.elementType)
{
case Path::Iterator::startNewSubPath: result.startNewSubPath (i.x1, cachedScale.apply (i.y1)); break;
case Path::Iterator::lineTo: result.lineTo (i.x1, cachedScale.apply (i.y1)); break;
case Path::Iterator::quadraticTo: result.quadraticTo (i.x1, cachedScale.apply (i.y1),
i.x2, cachedScale.apply (i.y2)); break;
case Path::Iterator::cubicTo: result.cubicTo (i.x1, cachedScale.apply (i.y1),
i.x2, cachedScale.apply (i.y2),
i.x3, cachedScale.apply (i.y3)); break;
case Path::Iterator::closePath: result.closeSubPath(); break;
default: jassertfalse; break;
}
}
result.swapWithPath (path);
}
private:
struct Scaling
{
Scaling() noexcept : middle(), upperScale(), upperOffset(), lowerScale(), lowerOffset() {}
Scaling (float t, float m, float b, float fontSize) noexcept : middle (m)
{
const float newT = std::floor (fontSize * t + 0.5f) / fontSize;
const float newB = std::floor (fontSize * b + 0.5f) / fontSize;
const float newM = std::floor (fontSize * m + 0.3f) / fontSize; // this is slightly biased so that lower-case letters
// are more likely to become taller than shorter.
upperScale = jlimit (0.9f, 1.1f, (newM - newT) / (m - t));
lowerScale = jlimit (0.9f, 1.1f, (newB - newM) / (b - m));
upperOffset = newM - m * upperScale;
lowerOffset = newB - b * lowerScale;
}
float apply (float y) const noexcept
{
return y < middle ? (y * upperScale + upperOffset)
: (y * lowerScale + lowerOffset);
}
float middle, upperScale, upperOffset, lowerScale, lowerOffset;
};
float cachedSize = 0;
Scaling cachedScale;
static float getAverageY (const Font& font, const char* chars, bool getTop)
{
GlyphArrangement ga;
ga.addLineOfText (font, chars, 0, 0);
Array<float> yValues;
for (auto& glyph : ga)
{
Path p;
glyph.createPath (p);
auto bounds = p.getBounds();
if (! p.isEmpty())
yValues.add (getTop ? bounds.getY() : bounds.getBottom());
}
std::sort (yValues.begin(), yValues.end());
auto median = yValues[yValues.size() / 2];
float total = 0;
int num = 0;
for (auto y : yValues)
{
if (std::abs (median - y) < 0.05f * (float) standardHeight)
{
total += y;
++num;
}
}
return num < 4 ? 0.0f : total / ((float) num * (float) standardHeight);
}
enum { standardHeight = 100 };
float top = 0, middle = 0, bottom = 0;
};
void Typeface::applyVerticalHintingTransform (float fontSize, Path& path)
{
if (fontSize > 3.0f && fontSize < 25.0f)
{
ScopedLock sl (hintingLock);
if (hintingParams == nullptr)
hintingParams.reset (new HintingParams (*this));
return hintingParams->applyVerticalHintingTransform (fontSize, path);
}
}
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
struct FontStyleHelpers
{
static const char* getStyleName (const bool bold,
const bool italic) noexcept
{
if (bold && italic) return "Bold Italic";
if (bold) return "Bold";
if (italic) return "Italic";
return "Regular";
}
static const char* getStyleName (const int styleFlags) noexcept
{
return getStyleName ((styleFlags & Font::bold) != 0,
(styleFlags & Font::italic) != 0);
}
static bool isBold (const String& style) noexcept
{
return style.containsWholeWordIgnoreCase ("Bold");
}
static bool isItalic (const String& style) noexcept
{
return style.containsWholeWordIgnoreCase ("Italic")
|| style.containsWholeWordIgnoreCase ("Oblique");
}
static bool isPlaceholderFamilyName (const String& family)
{
return family == Font::getDefaultSansSerifFontName()
|| family == Font::getDefaultSerifFontName()
|| family == Font::getDefaultMonospacedFontName();
}
struct ConcreteFamilyNames
{
ConcreteFamilyNames()
: sans (findName (Font::getDefaultSansSerifFontName())),
serif (findName (Font::getDefaultSerifFontName())),
mono (findName (Font::getDefaultMonospacedFontName()))
{
}
String lookUp (const String& placeholder)
{
if (placeholder == Font::getDefaultSansSerifFontName()) return sans;
if (placeholder == Font::getDefaultSerifFontName()) return serif;
if (placeholder == Font::getDefaultMonospacedFontName()) return mono;
return findName (placeholder);
}
private:
static String findName (const String& placeholder)
{
const Font f (placeholder, Font::getDefaultStyle(), 15.0f);
return Font::getDefaultTypefaceForFont (f)->getName();
}
String sans, serif, mono;
};
static String getConcreteFamilyNameFromPlaceholder (const String& placeholder)
{
static ConcreteFamilyNames names;
return names.lookUp (placeholder);
}
static String getConcreteFamilyName (const Font& font)
{
const String& family = font.getTypefaceName();
return isPlaceholderFamilyName (family) ? getConcreteFamilyNameFromPlaceholder (family)
: family;
}
};
//==============================================================================
Typeface::Typeface (const String& faceName, const String& styleName) noexcept
: name (faceName), style (styleName)
{
}
Typeface::~Typeface() = default;
Typeface::Ptr Typeface::getFallbackTypeface()
{
const Font fallbackFont (Font::getFallbackFontName(), Font::getFallbackFontStyle(), 10.0f);
return fallbackFont.getTypefacePtr();
}
EdgeTable* Typeface::getEdgeTableForGlyph (int glyphNumber, const AffineTransform& transform, float fontHeight)
{
Path path;
if (getOutlineForGlyph (glyphNumber, path) && ! path.isEmpty())
{
applyVerticalHintingTransform (fontHeight, path);
return new EdgeTable (path.getBoundsTransformed (transform).getSmallestIntegerContainer().expanded (1, 0),
path, transform);
}
return nullptr;
}
//==============================================================================
struct Typeface::HintingParams
{
HintingParams (Typeface& t)
{
Font font (t);
font = font.withHeight ((float) standardHeight);
top = getAverageY (font, "BDEFPRTZOQ", true);
middle = getAverageY (font, "acegmnopqrsuvwxy", true);
bottom = getAverageY (font, "BDELZOC", false);
}
void applyVerticalHintingTransform (float fontSize, Path& path)
{
if (cachedSize != fontSize)
{
cachedSize = fontSize;
cachedScale = Scaling (top, middle, bottom, fontSize);
}
if (bottom < top + 3.0f / fontSize)
return;
Path result;
for (Path::Iterator i (path); i.next();)
{
switch (i.elementType)
{
case Path::Iterator::startNewSubPath: result.startNewSubPath (i.x1, cachedScale.apply (i.y1)); break;
case Path::Iterator::lineTo: result.lineTo (i.x1, cachedScale.apply (i.y1)); break;
case Path::Iterator::quadraticTo: result.quadraticTo (i.x1, cachedScale.apply (i.y1),
i.x2, cachedScale.apply (i.y2)); break;
case Path::Iterator::cubicTo: result.cubicTo (i.x1, cachedScale.apply (i.y1),
i.x2, cachedScale.apply (i.y2),
i.x3, cachedScale.apply (i.y3)); break;
case Path::Iterator::closePath: result.closeSubPath(); break;
default: jassertfalse; break;
}
}
result.swapWithPath (path);
}
private:
struct Scaling
{
Scaling() noexcept : middle(), upperScale(), upperOffset(), lowerScale(), lowerOffset() {}
Scaling (float t, float m, float b, float fontSize) noexcept : middle (m)
{
const float newT = std::floor (fontSize * t + 0.5f) / fontSize;
const float newB = std::floor (fontSize * b + 0.5f) / fontSize;
const float newM = std::floor (fontSize * m + 0.3f) / fontSize; // this is slightly biased so that lower-case letters
// are more likely to become taller than shorter.
upperScale = jlimit (0.9f, 1.1f, (newM - newT) / (m - t));
lowerScale = jlimit (0.9f, 1.1f, (newB - newM) / (b - m));
upperOffset = newM - m * upperScale;
lowerOffset = newB - b * lowerScale;
}
float apply (float y) const noexcept
{
return y < middle ? (y * upperScale + upperOffset)
: (y * lowerScale + lowerOffset);
}
float middle, upperScale, upperOffset, lowerScale, lowerOffset;
};
float cachedSize = 0;
Scaling cachedScale;
static float getAverageY (const Font& font, const char* chars, bool getTop)
{
GlyphArrangement ga;
ga.addLineOfText (font, chars, 0, 0);
Array<float> yValues;
for (auto& glyph : ga)
{
Path p;
glyph.createPath (p);
auto bounds = p.getBounds();
if (! p.isEmpty())
yValues.add (getTop ? bounds.getY() : bounds.getBottom());
}
std::sort (yValues.begin(), yValues.end());
auto median = yValues[yValues.size() / 2];
float total = 0;
int num = 0;
for (auto y : yValues)
{
if (std::abs (median - y) < 0.05f * (float) standardHeight)
{
total += y;
++num;
}
}
return num < 4 ? 0.0f : total / ((float) num * (float) standardHeight);
}
enum { standardHeight = 100 };
float top = 0, middle = 0, bottom = 0;
};
void Typeface::applyVerticalHintingTransform (float fontSize, Path& path)
{
if (fontSize > 3.0f && fontSize < 25.0f)
{
ScopedLock sl (hintingLock);
if (hintingParams == nullptr)
hintingParams.reset (new HintingParams (*this));
return hintingParams->applyVerticalHintingTransform (fontSize, path);
}
}
} // namespace juce

View File

@ -1,161 +1,161 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A typeface represents a size-independent font.
This base class is abstract, but calling createSystemTypefaceFor() will return
a platform-specific subclass that can be used.
The CustomTypeface subclass allow you to build your own typeface, and to
load and save it in the JUCE typeface format.
Normally you should never need to deal directly with Typeface objects - the Font
class does everything you typically need for rendering text.
@see CustomTypeface, Font
@tags{Graphics}
*/
class JUCE_API Typeface : public ReferenceCountedObject
{
public:
//==============================================================================
/** A handy typedef for a pointer to a typeface. */
using Ptr = ReferenceCountedObjectPtr<Typeface>;
//==============================================================================
/** Returns the font family of the typeface.
@see Font::getTypefaceName
*/
const String& getName() const noexcept { return name; }
//==============================================================================
/** Returns the font style of the typeface.
@see Font::getTypefaceStyle
*/
const String& getStyle() const noexcept { return style; }
//==============================================================================
/** Creates a new system typeface. */
static Ptr createSystemTypefaceFor (const Font& font);
/** Attempts to create a font from some raw font file data (e.g. a TTF or OTF file image).
The system will take its own internal copy of the data, so you can free the block once
this method has returned.
*/
static Ptr createSystemTypefaceFor (const void* fontFileData, size_t fontFileDataSize);
//==============================================================================
/** Destructor. */
~Typeface() override;
/** Returns true if this typeface can be used to render the specified font.
When called, the font will already have been checked to make sure that its name and
style flags match the typeface.
*/
virtual bool isSuitableForFont (const Font&) const { return true; }
/** Returns the ascent of the font, as a proportion of its height.
The height is considered to always be normalised as 1.0, so this will be a
value less that 1.0, indicating the proportion of the font that lies above
its baseline.
*/
virtual float getAscent() const = 0;
/** Returns the descent of the font, as a proportion of its height.
The height is considered to always be normalised as 1.0, so this will be a
value less that 1.0, indicating the proportion of the font that lies below
its baseline.
*/
virtual float getDescent() const = 0;
/** Returns the value by which you should multiply a JUCE font-height value to
convert it to the equivalent point-size.
*/
virtual float getHeightToPointsFactor() const = 0;
/** Measures the width of a line of text.
The distance returned is based on the font having an normalised height of 1.0.
You should never need to call this directly! Use Font::getStringWidth() instead!
*/
virtual float getStringWidth (const String& text) = 0;
/** Converts a line of text into its glyph numbers and their positions.
The distances returned are based on the font having an normalised height of 1.0.
You should never need to call this directly! Use Font::getGlyphPositions() instead!
*/
virtual void getGlyphPositions (const String& text, Array<int>& glyphs, Array<float>& xOffsets) = 0;
/** Returns the outline for a glyph.
The path returned will be normalised to a font height of 1.0.
*/
virtual bool getOutlineForGlyph (int glyphNumber, Path& path) = 0;
/** Returns a new EdgeTable that contains the path for the given glyph, with the specified transform applied. */
virtual EdgeTable* getEdgeTableForGlyph (int glyphNumber, const AffineTransform& transform, float fontHeight);
/** Returns true if the typeface uses hinting. */
virtual bool isHinted() const { return false; }
//==============================================================================
/** Changes the number of fonts that are cached in memory. */
static void setTypefaceCacheSize (int numFontsToCache);
/** Clears any fonts that are currently cached in memory. */
static void clearTypefaceCache();
/** On some platforms, this allows a specific path to be scanned.
On macOS you can load .ttf and .otf files, otherwise this is only available when using FreeType.
*/
static void scanFolderForFonts (const File& folder);
/** Makes an attempt at performing a good overall distortion that will scale a font of
the given size to align vertically with the pixel grid. The path should be an unscaled
(i.e. normalised to height of 1.0) path for a glyph.
*/
void applyVerticalHintingTransform (float fontHeight, Path& path);
protected:
//==============================================================================
String name, style;
Typeface (const String& name, const String& style) noexcept;
static Ptr getFallbackTypeface();
private:
struct HintingParams;
std::unique_ptr<HintingParams> hintingParams;
CriticalSection hintingLock;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Typeface)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A typeface represents a size-independent font.
This base class is abstract, but calling createSystemTypefaceFor() will return
a platform-specific subclass that can be used.
The CustomTypeface subclass allow you to build your own typeface, and to
load and save it in the JUCE typeface format.
Normally you should never need to deal directly with Typeface objects - the Font
class does everything you typically need for rendering text.
@see CustomTypeface, Font
@tags{Graphics}
*/
class JUCE_API Typeface : public ReferenceCountedObject
{
public:
//==============================================================================
/** A handy typedef for a pointer to a typeface. */
using Ptr = ReferenceCountedObjectPtr<Typeface>;
//==============================================================================
/** Returns the font family of the typeface.
@see Font::getTypefaceName
*/
const String& getName() const noexcept { return name; }
//==============================================================================
/** Returns the font style of the typeface.
@see Font::getTypefaceStyle
*/
const String& getStyle() const noexcept { return style; }
//==============================================================================
/** Creates a new system typeface. */
static Ptr createSystemTypefaceFor (const Font& font);
/** Attempts to create a font from some raw font file data (e.g. a TTF or OTF file image).
The system will take its own internal copy of the data, so you can free the block once
this method has returned.
*/
static Ptr createSystemTypefaceFor (const void* fontFileData, size_t fontFileDataSize);
//==============================================================================
/** Destructor. */
~Typeface() override;
/** Returns true if this typeface can be used to render the specified font.
When called, the font will already have been checked to make sure that its name and
style flags match the typeface.
*/
virtual bool isSuitableForFont (const Font&) const { return true; }
/** Returns the ascent of the font, as a proportion of its height.
The height is considered to always be normalised as 1.0, so this will be a
value less that 1.0, indicating the proportion of the font that lies above
its baseline.
*/
virtual float getAscent() const = 0;
/** Returns the descent of the font, as a proportion of its height.
The height is considered to always be normalised as 1.0, so this will be a
value less that 1.0, indicating the proportion of the font that lies below
its baseline.
*/
virtual float getDescent() const = 0;
/** Returns the value by which you should multiply a JUCE font-height value to
convert it to the equivalent point-size.
*/
virtual float getHeightToPointsFactor() const = 0;
/** Measures the width of a line of text.
The distance returned is based on the font having an normalised height of 1.0.
You should never need to call this directly! Use Font::getStringWidth() instead!
*/
virtual float getStringWidth (const String& text) = 0;
/** Converts a line of text into its glyph numbers and their positions.
The distances returned are based on the font having an normalised height of 1.0.
You should never need to call this directly! Use Font::getGlyphPositions() instead!
*/
virtual void getGlyphPositions (const String& text, Array<int>& glyphs, Array<float>& xOffsets) = 0;
/** Returns the outline for a glyph.
The path returned will be normalised to a font height of 1.0.
*/
virtual bool getOutlineForGlyph (int glyphNumber, Path& path) = 0;
/** Returns a new EdgeTable that contains the path for the given glyph, with the specified transform applied. */
virtual EdgeTable* getEdgeTableForGlyph (int glyphNumber, const AffineTransform& transform, float fontHeight);
/** Returns true if the typeface uses hinting. */
virtual bool isHinted() const { return false; }
//==============================================================================
/** Changes the number of fonts that are cached in memory. */
static void setTypefaceCacheSize (int numFontsToCache);
/** Clears any fonts that are currently cached in memory. */
static void clearTypefaceCache();
/** On some platforms, this allows a specific path to be scanned.
On macOS you can load .ttf and .otf files, otherwise this is only available when using FreeType.
*/
static void scanFolderForFonts (const File& folder);
/** Makes an attempt at performing a good overall distortion that will scale a font of
the given size to align vertically with the pixel grid. The path should be an unscaled
(i.e. normalised to height of 1.0) path for a glyph.
*/
void applyVerticalHintingTransform (float fontHeight, Path& path);
protected:
//==============================================================================
String name, style;
Typeface (const String& name, const String& style) noexcept;
static Ptr getFallbackTypeface();
private:
struct HintingParams;
std::unique_ptr<HintingParams> hintingParams;
CriticalSection hintingLock;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Typeface)
};
} // namespace juce

View File

@ -1,280 +1,280 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
AffineTransform::AffineTransform (float m00, float m01, float m02,
float m10, float m11, float m12) noexcept
: mat00 (m00), mat01 (m01), mat02 (m02),
mat10 (m10), mat11 (m11), mat12 (m12)
{
}
bool AffineTransform::operator== (const AffineTransform& other) const noexcept
{
return mat00 == other.mat00
&& mat01 == other.mat01
&& mat02 == other.mat02
&& mat10 == other.mat10
&& mat11 == other.mat11
&& mat12 == other.mat12;
}
bool AffineTransform::operator!= (const AffineTransform& other) const noexcept
{
return ! operator== (other);
}
//==============================================================================
bool AffineTransform::isIdentity() const noexcept
{
return mat01 == 0.0f
&& mat02 == 0.0f
&& mat10 == 0.0f
&& mat12 == 0.0f
&& mat00 == 1.0f
&& mat11 == 1.0f;
}
const AffineTransform AffineTransform::identity (1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
//==============================================================================
AffineTransform AffineTransform::followedBy (const AffineTransform& other) const noexcept
{
return { other.mat00 * mat00 + other.mat01 * mat10,
other.mat00 * mat01 + other.mat01 * mat11,
other.mat00 * mat02 + other.mat01 * mat12 + other.mat02,
other.mat10 * mat00 + other.mat11 * mat10,
other.mat10 * mat01 + other.mat11 * mat11,
other.mat10 * mat02 + other.mat11 * mat12 + other.mat12 };
}
AffineTransform AffineTransform::translated (float dx, float dy) const noexcept
{
return { mat00, mat01, mat02 + dx,
mat10, mat11, mat12 + dy };
}
AffineTransform AffineTransform::translation (float dx, float dy) noexcept
{
return { 1.0f, 0.0f, dx,
0.0f, 1.0f, dy };
}
AffineTransform AffineTransform::withAbsoluteTranslation (float tx, float ty) const noexcept
{
return { mat00, mat01, tx,
mat10, mat11, ty };
}
AffineTransform AffineTransform::rotated (float rad) const noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad * mat00 - sinRad * mat10,
cosRad * mat01 - sinRad * mat11,
cosRad * mat02 - sinRad * mat12,
sinRad * mat00 + cosRad * mat10,
sinRad * mat01 + cosRad * mat11,
sinRad * mat02 + cosRad * mat12 };
}
AffineTransform AffineTransform::rotation (float rad) noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad, -sinRad, 0,
sinRad, cosRad, 0 };
}
AffineTransform AffineTransform::rotation (float rad, float pivotX, float pivotY) noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad, -sinRad, -cosRad * pivotX + sinRad * pivotY + pivotX,
sinRad, cosRad, -sinRad * pivotX + -cosRad * pivotY + pivotY };
}
AffineTransform AffineTransform::rotated (float angle, float pivotX, float pivotY) const noexcept
{
return followedBy (rotation (angle, pivotX, pivotY));
}
AffineTransform AffineTransform::scaled (float factorX, float factorY) const noexcept
{
return { factorX * mat00, factorX * mat01, factorX * mat02,
factorY * mat10, factorY * mat11, factorY * mat12 };
}
AffineTransform AffineTransform::scaled (float factor) const noexcept
{
return { factor * mat00, factor * mat01, factor * mat02,
factor * mat10, factor * mat11, factor * mat12 };
}
AffineTransform AffineTransform::scale (float factorX, float factorY) noexcept
{
return { factorX, 0, 0, 0, factorY, 0 };
}
AffineTransform AffineTransform::scale (float factor) noexcept
{
return { factor, 0, 0, 0, factor, 0 };
}
AffineTransform AffineTransform::scaled (float factorX, float factorY,
float pivotX, float pivotY) const noexcept
{
return { factorX * mat00, factorX * mat01, factorX * mat02 + pivotX * (1.0f - factorX),
factorY * mat10, factorY * mat11, factorY * mat12 + pivotY * (1.0f - factorY) };
}
AffineTransform AffineTransform::scale (float factorX, float factorY,
float pivotX, float pivotY) noexcept
{
return { factorX, 0, pivotX * (1.0f - factorX),
0, factorY, pivotY * (1.0f - factorY) };
}
AffineTransform AffineTransform::shear (float shearX, float shearY) noexcept
{
return { 1.0f, shearX, 0,
shearY, 1.0f, 0 };
}
AffineTransform AffineTransform::sheared (float shearX, float shearY) const noexcept
{
return { mat00 + shearX * mat10,
mat01 + shearX * mat11,
mat02 + shearX * mat12,
mat10 + shearY * mat00,
mat11 + shearY * mat01,
mat12 + shearY * mat02 };
}
AffineTransform AffineTransform::verticalFlip (float height) noexcept
{
return { 1.0f, 0.0f, 0.0f,
0.0f, -1.0f, height };
}
AffineTransform AffineTransform::inverted() const noexcept
{
double determinant = getDeterminant();
if (! approximatelyEqual (determinant, 0.0))
{
determinant = 1.0 / determinant;
auto dst00 = (float) ( mat11 * determinant);
auto dst10 = (float) (-mat10 * determinant);
auto dst01 = (float) (-mat01 * determinant);
auto dst11 = (float) ( mat00 * determinant);
return { dst00, dst01, -mat02 * dst00 - mat12 * dst01,
dst10, dst11, -mat02 * dst10 - mat12 * dst11 };
}
// singularity..
return *this;
}
bool AffineTransform::isSingularity() const noexcept
{
return (mat00 * mat11 - mat10 * mat01) == 0.0f;
}
AffineTransform AffineTransform::fromTargetPoints (float x00, float y00,
float x10, float y10,
float x01, float y01) noexcept
{
return { x10 - x00, x01 - x00, x00,
y10 - y00, y01 - y00, y00 };
}
AffineTransform AffineTransform::fromTargetPoints (float sx1, float sy1, float tx1, float ty1,
float sx2, float sy2, float tx2, float ty2,
float sx3, float sy3, float tx3, float ty3) noexcept
{
return fromTargetPoints (sx1, sy1, sx2, sy2, sx3, sy3)
.inverted()
.followedBy (fromTargetPoints (tx1, ty1, tx2, ty2, tx3, ty3));
}
bool AffineTransform::isOnlyTranslation() const noexcept
{
return mat01 == 0.0f
&& mat10 == 0.0f
&& mat00 == 1.0f
&& mat11 == 1.0f;
}
float AffineTransform::getDeterminant() const noexcept
{
return (mat00 * mat11) - (mat01 * mat10);
}
float AffineTransform::getScaleFactor() const noexcept
{
return (std::abs (mat00) + std::abs (mat11)) / 2.0f;
}
//==============================================================================
//==============================================================================
#if JUCE_UNIT_TESTS
class AffineTransformTests : public UnitTest
{
public:
AffineTransformTests()
: UnitTest ("AffineTransform", UnitTestCategories::maths)
{}
void runTest() override
{
beginTest ("Determinant");
{
constexpr float scale1 = 1.5f, scale2 = 1.3f;
auto transform = AffineTransform::scale (scale1)
.followedBy (AffineTransform::rotation (degreesToRadians (72.0f)))
.followedBy (AffineTransform::translation (100.0f, 20.0f))
.followedBy (AffineTransform::scale (scale2));
expect (approximatelyEqual (std::sqrt (std::abs (transform.getDeterminant())), scale1 * scale2));
}
}
};
static AffineTransformTests timeTests;
#endif
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
AffineTransform::AffineTransform (float m00, float m01, float m02,
float m10, float m11, float m12) noexcept
: mat00 (m00), mat01 (m01), mat02 (m02),
mat10 (m10), mat11 (m11), mat12 (m12)
{
}
bool AffineTransform::operator== (const AffineTransform& other) const noexcept
{
return mat00 == other.mat00
&& mat01 == other.mat01
&& mat02 == other.mat02
&& mat10 == other.mat10
&& mat11 == other.mat11
&& mat12 == other.mat12;
}
bool AffineTransform::operator!= (const AffineTransform& other) const noexcept
{
return ! operator== (other);
}
//==============================================================================
bool AffineTransform::isIdentity() const noexcept
{
return mat01 == 0.0f
&& mat02 == 0.0f
&& mat10 == 0.0f
&& mat12 == 0.0f
&& mat00 == 1.0f
&& mat11 == 1.0f;
}
const AffineTransform AffineTransform::identity (1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
//==============================================================================
AffineTransform AffineTransform::followedBy (const AffineTransform& other) const noexcept
{
return { other.mat00 * mat00 + other.mat01 * mat10,
other.mat00 * mat01 + other.mat01 * mat11,
other.mat00 * mat02 + other.mat01 * mat12 + other.mat02,
other.mat10 * mat00 + other.mat11 * mat10,
other.mat10 * mat01 + other.mat11 * mat11,
other.mat10 * mat02 + other.mat11 * mat12 + other.mat12 };
}
AffineTransform AffineTransform::translated (float dx, float dy) const noexcept
{
return { mat00, mat01, mat02 + dx,
mat10, mat11, mat12 + dy };
}
AffineTransform AffineTransform::translation (float dx, float dy) noexcept
{
return { 1.0f, 0.0f, dx,
0.0f, 1.0f, dy };
}
AffineTransform AffineTransform::withAbsoluteTranslation (float tx, float ty) const noexcept
{
return { mat00, mat01, tx,
mat10, mat11, ty };
}
AffineTransform AffineTransform::rotated (float rad) const noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad * mat00 - sinRad * mat10,
cosRad * mat01 - sinRad * mat11,
cosRad * mat02 - sinRad * mat12,
sinRad * mat00 + cosRad * mat10,
sinRad * mat01 + cosRad * mat11,
sinRad * mat02 + cosRad * mat12 };
}
AffineTransform AffineTransform::rotation (float rad) noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad, -sinRad, 0,
sinRad, cosRad, 0 };
}
AffineTransform AffineTransform::rotation (float rad, float pivotX, float pivotY) noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad, -sinRad, -cosRad * pivotX + sinRad * pivotY + pivotX,
sinRad, cosRad, -sinRad * pivotX + -cosRad * pivotY + pivotY };
}
AffineTransform AffineTransform::rotated (float angle, float pivotX, float pivotY) const noexcept
{
return followedBy (rotation (angle, pivotX, pivotY));
}
AffineTransform AffineTransform::scaled (float factorX, float factorY) const noexcept
{
return { factorX * mat00, factorX * mat01, factorX * mat02,
factorY * mat10, factorY * mat11, factorY * mat12 };
}
AffineTransform AffineTransform::scaled (float factor) const noexcept
{
return { factor * mat00, factor * mat01, factor * mat02,
factor * mat10, factor * mat11, factor * mat12 };
}
AffineTransform AffineTransform::scale (float factorX, float factorY) noexcept
{
return { factorX, 0, 0, 0, factorY, 0 };
}
AffineTransform AffineTransform::scale (float factor) noexcept
{
return { factor, 0, 0, 0, factor, 0 };
}
AffineTransform AffineTransform::scaled (float factorX, float factorY,
float pivotX, float pivotY) const noexcept
{
return { factorX * mat00, factorX * mat01, factorX * mat02 + pivotX * (1.0f - factorX),
factorY * mat10, factorY * mat11, factorY * mat12 + pivotY * (1.0f - factorY) };
}
AffineTransform AffineTransform::scale (float factorX, float factorY,
float pivotX, float pivotY) noexcept
{
return { factorX, 0, pivotX * (1.0f - factorX),
0, factorY, pivotY * (1.0f - factorY) };
}
AffineTransform AffineTransform::shear (float shearX, float shearY) noexcept
{
return { 1.0f, shearX, 0,
shearY, 1.0f, 0 };
}
AffineTransform AffineTransform::sheared (float shearX, float shearY) const noexcept
{
return { mat00 + shearX * mat10,
mat01 + shearX * mat11,
mat02 + shearX * mat12,
mat10 + shearY * mat00,
mat11 + shearY * mat01,
mat12 + shearY * mat02 };
}
AffineTransform AffineTransform::verticalFlip (float height) noexcept
{
return { 1.0f, 0.0f, 0.0f,
0.0f, -1.0f, height };
}
AffineTransform AffineTransform::inverted() const noexcept
{
double determinant = getDeterminant();
if (! approximatelyEqual (determinant, 0.0))
{
determinant = 1.0 / determinant;
auto dst00 = (float) ( mat11 * determinant);
auto dst10 = (float) (-mat10 * determinant);
auto dst01 = (float) (-mat01 * determinant);
auto dst11 = (float) ( mat00 * determinant);
return { dst00, dst01, -mat02 * dst00 - mat12 * dst01,
dst10, dst11, -mat02 * dst10 - mat12 * dst11 };
}
// singularity..
return *this;
}
bool AffineTransform::isSingularity() const noexcept
{
return (mat00 * mat11 - mat10 * mat01) == 0.0f;
}
AffineTransform AffineTransform::fromTargetPoints (float x00, float y00,
float x10, float y10,
float x01, float y01) noexcept
{
return { x10 - x00, x01 - x00, x00,
y10 - y00, y01 - y00, y00 };
}
AffineTransform AffineTransform::fromTargetPoints (float sx1, float sy1, float tx1, float ty1,
float sx2, float sy2, float tx2, float ty2,
float sx3, float sy3, float tx3, float ty3) noexcept
{
return fromTargetPoints (sx1, sy1, sx2, sy2, sx3, sy3)
.inverted()
.followedBy (fromTargetPoints (tx1, ty1, tx2, ty2, tx3, ty3));
}
bool AffineTransform::isOnlyTranslation() const noexcept
{
return mat01 == 0.0f
&& mat10 == 0.0f
&& mat00 == 1.0f
&& mat11 == 1.0f;
}
float AffineTransform::getDeterminant() const noexcept
{
return (mat00 * mat11) - (mat01 * mat10);
}
float AffineTransform::getScaleFactor() const noexcept
{
return (std::abs (mat00) + std::abs (mat11)) / 2.0f;
}
//==============================================================================
//==============================================================================
#if JUCE_UNIT_TESTS
class AffineTransformTests : public UnitTest
{
public:
AffineTransformTests()
: UnitTest ("AffineTransform", UnitTestCategories::maths)
{}
void runTest() override
{
beginTest ("Determinant");
{
constexpr float scale1 = 1.5f, scale2 = 1.3f;
auto transform = AffineTransform::scale (scale1)
.followedBy (AffineTransform::rotation (degreesToRadians (72.0f)))
.followedBy (AffineTransform::translation (100.0f, 20.0f))
.followedBy (AffineTransform::scale (scale2));
expect (approximatelyEqual (std::sqrt (std::abs (transform.getDeterminant())), scale1 * scale2));
}
}
};
static AffineTransformTests timeTests;
#endif
} // namespace juce

View File

@ -1,303 +1,303 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a 2D affine-transformation matrix.
An affine transformation is a transformation such as a rotation, scale, shear,
resize or translation.
These are used for various 2D transformation tasks, e.g. with Path objects.
@see Path, Point, Line
@tags{Graphics}
*/
class JUCE_API AffineTransform final
{
public:
//==============================================================================
/** Creates an identity transform. */
AffineTransform() = default;
/** Creates a copy of another transform. */
AffineTransform (const AffineTransform&) = default;
/** Creates a transform from a set of raw matrix values.
The resulting matrix is:
(mat00 mat01 mat02)
(mat10 mat11 mat12)
( 0 0 1 )
*/
AffineTransform (float mat00, float mat01, float mat02,
float mat10, float mat11, float mat12) noexcept;
/** Copies from another AffineTransform object */
AffineTransform& operator= (const AffineTransform&) = default;
/** Compares two transforms. */
bool operator== (const AffineTransform& other) const noexcept;
/** Compares two transforms. */
bool operator!= (const AffineTransform& other) const noexcept;
//==============================================================================
/** Transforms a 2D coordinate using this matrix. */
template <typename ValueType>
void transformPoint (ValueType& x, ValueType& y) const noexcept
{
auto oldX = x;
x = static_cast<ValueType> (mat00 * oldX + mat01 * y + mat02);
y = static_cast<ValueType> (mat10 * oldX + mat11 * y + mat12);
}
/** Transforms two 2D coordinates using this matrix.
This is just a shortcut for calling transformPoint() on each of these pairs of
coordinates in turn. (And putting all the calculations into one function hopefully
also gives the compiler a bit more scope for pipelining it).
*/
template <typename ValueType>
void transformPoints (ValueType& x1, ValueType& y1,
ValueType& x2, ValueType& y2) const noexcept
{
auto oldX1 = x1, oldX2 = x2;
x1 = static_cast<ValueType> (mat00 * oldX1 + mat01 * y1 + mat02);
y1 = static_cast<ValueType> (mat10 * oldX1 + mat11 * y1 + mat12);
x2 = static_cast<ValueType> (mat00 * oldX2 + mat01 * y2 + mat02);
y2 = static_cast<ValueType> (mat10 * oldX2 + mat11 * y2 + mat12);
}
/** Transforms three 2D coordinates using this matrix.
This is just a shortcut for calling transformPoint() on each of these pairs of
coordinates in turn. (And putting all the calculations into one function hopefully
also gives the compiler a bit more scope for pipelining it).
*/
template <typename ValueType>
void transformPoints (ValueType& x1, ValueType& y1,
ValueType& x2, ValueType& y2,
ValueType& x3, ValueType& y3) const noexcept
{
auto oldX1 = x1, oldX2 = x2, oldX3 = x3;
x1 = static_cast<ValueType> (mat00 * oldX1 + mat01 * y1 + mat02);
y1 = static_cast<ValueType> (mat10 * oldX1 + mat11 * y1 + mat12);
x2 = static_cast<ValueType> (mat00 * oldX2 + mat01 * y2 + mat02);
y2 = static_cast<ValueType> (mat10 * oldX2 + mat11 * y2 + mat12);
x3 = static_cast<ValueType> (mat00 * oldX3 + mat01 * y3 + mat02);
y3 = static_cast<ValueType> (mat10 * oldX3 + mat11 * y3 + mat12);
}
//==============================================================================
/** Returns a new transform which is the same as this one followed by a translation. */
AffineTransform translated (float deltaX,
float deltaY) const noexcept;
/** Returns a new transform which is the same as this one followed by a translation. */
template <typename PointType>
AffineTransform translated (PointType delta) const noexcept
{
return translated ((float) delta.x, (float) delta.y);
}
/** Returns a new transform which is a translation. */
static AffineTransform translation (float deltaX,
float deltaY) noexcept;
/** Returns a new transform which is a translation. */
template <typename PointType>
static AffineTransform translation (PointType delta) noexcept
{
return translation ((float) delta.x, (float) delta.y);
}
/** Returns a copy of this transform with the specified translation matrix values. */
AffineTransform withAbsoluteTranslation (float translationX,
float translationY) const noexcept;
/** Returns a transform which is the same as this one followed by a rotation.
The rotation is specified by a number of radians to rotate clockwise, centred around
the origin (0, 0).
*/
AffineTransform rotated (float angleInRadians) const noexcept;
/** Returns a transform which is the same as this one followed by a rotation about a given point.
The rotation is specified by a number of radians to rotate clockwise, centred around
the coordinates passed in.
*/
AffineTransform rotated (float angleInRadians,
float pivotX,
float pivotY) const noexcept;
/** Returns a new transform which is a rotation about (0, 0). */
static AffineTransform rotation (float angleInRadians) noexcept;
/** Returns a new transform which is a rotation about a given point. */
static AffineTransform rotation (float angleInRadians,
float pivotX,
float pivotY) noexcept;
/** Returns a transform which is the same as this one followed by a re-scaling.
The scaling is centred around the origin (0, 0).
*/
AffineTransform scaled (float factorX,
float factorY) const noexcept;
/** Returns a transform which is the same as this one followed by a re-scaling.
The scaling is centred around the origin (0, 0).
*/
AffineTransform scaled (float factor) const noexcept;
/** Returns a transform which is the same as this one followed by a re-scaling.
The scaling is centred around the origin provided.
*/
AffineTransform scaled (float factorX, float factorY,
float pivotX, float pivotY) const noexcept;
/** Returns a new transform which is a re-scale about the origin. */
static AffineTransform scale (float factorX,
float factorY) noexcept;
/** Returns a new transform which is a re-scale about the origin. */
static AffineTransform scale (float factor) noexcept;
/** Returns a new transform which is a re-scale centred around the point provided. */
static AffineTransform scale (float factorX, float factorY,
float pivotX, float pivotY) noexcept;
/** Returns a transform which is the same as this one followed by a shear.
The shear is centred around the origin (0, 0).
*/
AffineTransform sheared (float shearX, float shearY) const noexcept;
/** Returns a shear transform, centred around the origin (0, 0). */
static AffineTransform shear (float shearX, float shearY) noexcept;
/** Returns a transform that will flip coordinates vertically within a window of the given height.
This is handy for converting between upside-down coordinate systems such as OpenGL or CoreGraphics.
*/
static AffineTransform verticalFlip (float height) noexcept;
/** Returns a matrix which is the inverse operation of this one.
Some matrices don't have an inverse - in this case, the method will just return
an identity transform.
*/
AffineTransform inverted() const noexcept;
/** Returns the transform that will map three known points onto three coordinates
that are supplied.
This returns the transform that will transform (0, 0) into (x00, y00),
(1, 0) to (x10, y10), and (0, 1) to (x01, y01).
*/
static AffineTransform fromTargetPoints (float x00, float y00,
float x10, float y10,
float x01, float y01) noexcept;
/** Returns the transform that will map three specified points onto three target points. */
static AffineTransform fromTargetPoints (float sourceX1, float sourceY1, float targetX1, float targetY1,
float sourceX2, float sourceY2, float targetX2, float targetY2,
float sourceX3, float sourceY3, float targetX3, float targetY3) noexcept;
/** Returns the transform that will map three specified points onto three target points. */
template <typename PointType>
static AffineTransform fromTargetPoints (PointType source1, PointType target1,
PointType source2, PointType target2,
PointType source3, PointType target3) noexcept
{
return fromTargetPoints (source1.x, source1.y, target1.x, target1.y,
source2.x, source2.y, target2.x, target2.y,
source3.x, source3.y, target3.x, target3.y);
}
//==============================================================================
/** Returns the result of concatenating another transformation after this one. */
AffineTransform followedBy (const AffineTransform& other) const noexcept;
/** Returns true if this transform has no effect on points. */
bool isIdentity() const noexcept;
/** Returns true if this transform maps to a singularity - i.e. if it has no inverse. */
bool isSingularity() const noexcept;
/** Returns true if the transform only translates, and doesn't scale or rotate the
points. */
bool isOnlyTranslation() const noexcept;
/** If this transform is only a translation, this returns the X offset.
@see isOnlyTranslation
*/
float getTranslationX() const noexcept { return mat02; }
/** If this transform is only a translation, this returns the X offset.
@see isOnlyTranslation
*/
float getTranslationY() const noexcept { return mat12; }
/** Returns the determinant of the transform. */
float getDeterminant() const noexcept;
//==============================================================================
#ifndef DOXYGEN
/** This method has been deprecated.
You can calculate the scale factor using:
@code
std::sqrt (std::abs (AffineTransform::getDeterminant()))
@endcode
This method produces incorrect values for transforms containing rotations.
Returns the approximate scale factor by which lengths will be transformed.
Obviously a length may be scaled by entirely different amounts depending on its
direction, so this is only appropriate as a rough guide.
*/
[[deprecated ("This method produces incorrect values for transforms containing rotations. "
"See the method docs for a code example on how to calculate the correct scale factor.")]]
float getScaleFactor() const noexcept;
[[deprecated ("If you need an identity transform, just use AffineTransform() or {}.")]]
static const AffineTransform identity;
#endif
//==============================================================================
/* The transform matrix is:
(mat00 mat01 mat02)
(mat10 mat11 mat12)
( 0 0 1 )
*/
float mat00 { 1.0f }, mat01 { 0.0f }, mat02 { 0.0f };
float mat10 { 0.0f }, mat11 { 1.0f }, mat12 { 0.0f };
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a 2D affine-transformation matrix.
An affine transformation is a transformation such as a rotation, scale, shear,
resize or translation.
These are used for various 2D transformation tasks, e.g. with Path objects.
@see Path, Point, Line
@tags{Graphics}
*/
class JUCE_API AffineTransform final
{
public:
//==============================================================================
/** Creates an identity transform. */
AffineTransform() = default;
/** Creates a copy of another transform. */
AffineTransform (const AffineTransform&) = default;
/** Creates a transform from a set of raw matrix values.
The resulting matrix is:
(mat00 mat01 mat02)
(mat10 mat11 mat12)
( 0 0 1 )
*/
AffineTransform (float mat00, float mat01, float mat02,
float mat10, float mat11, float mat12) noexcept;
/** Copies from another AffineTransform object */
AffineTransform& operator= (const AffineTransform&) = default;
/** Compares two transforms. */
bool operator== (const AffineTransform& other) const noexcept;
/** Compares two transforms. */
bool operator!= (const AffineTransform& other) const noexcept;
//==============================================================================
/** Transforms a 2D coordinate using this matrix. */
template <typename ValueType>
void transformPoint (ValueType& x, ValueType& y) const noexcept
{
auto oldX = x;
x = static_cast<ValueType> (mat00 * oldX + mat01 * y + mat02);
y = static_cast<ValueType> (mat10 * oldX + mat11 * y + mat12);
}
/** Transforms two 2D coordinates using this matrix.
This is just a shortcut for calling transformPoint() on each of these pairs of
coordinates in turn. (And putting all the calculations into one function hopefully
also gives the compiler a bit more scope for pipelining it).
*/
template <typename ValueType>
void transformPoints (ValueType& x1, ValueType& y1,
ValueType& x2, ValueType& y2) const noexcept
{
auto oldX1 = x1, oldX2 = x2;
x1 = static_cast<ValueType> (mat00 * oldX1 + mat01 * y1 + mat02);
y1 = static_cast<ValueType> (mat10 * oldX1 + mat11 * y1 + mat12);
x2 = static_cast<ValueType> (mat00 * oldX2 + mat01 * y2 + mat02);
y2 = static_cast<ValueType> (mat10 * oldX2 + mat11 * y2 + mat12);
}
/** Transforms three 2D coordinates using this matrix.
This is just a shortcut for calling transformPoint() on each of these pairs of
coordinates in turn. (And putting all the calculations into one function hopefully
also gives the compiler a bit more scope for pipelining it).
*/
template <typename ValueType>
void transformPoints (ValueType& x1, ValueType& y1,
ValueType& x2, ValueType& y2,
ValueType& x3, ValueType& y3) const noexcept
{
auto oldX1 = x1, oldX2 = x2, oldX3 = x3;
x1 = static_cast<ValueType> (mat00 * oldX1 + mat01 * y1 + mat02);
y1 = static_cast<ValueType> (mat10 * oldX1 + mat11 * y1 + mat12);
x2 = static_cast<ValueType> (mat00 * oldX2 + mat01 * y2 + mat02);
y2 = static_cast<ValueType> (mat10 * oldX2 + mat11 * y2 + mat12);
x3 = static_cast<ValueType> (mat00 * oldX3 + mat01 * y3 + mat02);
y3 = static_cast<ValueType> (mat10 * oldX3 + mat11 * y3 + mat12);
}
//==============================================================================
/** Returns a new transform which is the same as this one followed by a translation. */
AffineTransform translated (float deltaX,
float deltaY) const noexcept;
/** Returns a new transform which is the same as this one followed by a translation. */
template <typename PointType>
AffineTransform translated (PointType delta) const noexcept
{
return translated ((float) delta.x, (float) delta.y);
}
/** Returns a new transform which is a translation. */
static AffineTransform translation (float deltaX,
float deltaY) noexcept;
/** Returns a new transform which is a translation. */
template <typename PointType>
static AffineTransform translation (PointType delta) noexcept
{
return translation ((float) delta.x, (float) delta.y);
}
/** Returns a copy of this transform with the specified translation matrix values. */
AffineTransform withAbsoluteTranslation (float translationX,
float translationY) const noexcept;
/** Returns a transform which is the same as this one followed by a rotation.
The rotation is specified by a number of radians to rotate clockwise, centred around
the origin (0, 0).
*/
AffineTransform rotated (float angleInRadians) const noexcept;
/** Returns a transform which is the same as this one followed by a rotation about a given point.
The rotation is specified by a number of radians to rotate clockwise, centred around
the coordinates passed in.
*/
AffineTransform rotated (float angleInRadians,
float pivotX,
float pivotY) const noexcept;
/** Returns a new transform which is a rotation about (0, 0). */
static AffineTransform rotation (float angleInRadians) noexcept;
/** Returns a new transform which is a rotation about a given point. */
static AffineTransform rotation (float angleInRadians,
float pivotX,
float pivotY) noexcept;
/** Returns a transform which is the same as this one followed by a re-scaling.
The scaling is centred around the origin (0, 0).
*/
AffineTransform scaled (float factorX,
float factorY) const noexcept;
/** Returns a transform which is the same as this one followed by a re-scaling.
The scaling is centred around the origin (0, 0).
*/
AffineTransform scaled (float factor) const noexcept;
/** Returns a transform which is the same as this one followed by a re-scaling.
The scaling is centred around the origin provided.
*/
AffineTransform scaled (float factorX, float factorY,
float pivotX, float pivotY) const noexcept;
/** Returns a new transform which is a re-scale about the origin. */
static AffineTransform scale (float factorX,
float factorY) noexcept;
/** Returns a new transform which is a re-scale about the origin. */
static AffineTransform scale (float factor) noexcept;
/** Returns a new transform which is a re-scale centred around the point provided. */
static AffineTransform scale (float factorX, float factorY,
float pivotX, float pivotY) noexcept;
/** Returns a transform which is the same as this one followed by a shear.
The shear is centred around the origin (0, 0).
*/
AffineTransform sheared (float shearX, float shearY) const noexcept;
/** Returns a shear transform, centred around the origin (0, 0). */
static AffineTransform shear (float shearX, float shearY) noexcept;
/** Returns a transform that will flip coordinates vertically within a window of the given height.
This is handy for converting between upside-down coordinate systems such as OpenGL or CoreGraphics.
*/
static AffineTransform verticalFlip (float height) noexcept;
/** Returns a matrix which is the inverse operation of this one.
Some matrices don't have an inverse - in this case, the method will just return
an identity transform.
*/
AffineTransform inverted() const noexcept;
/** Returns the transform that will map three known points onto three coordinates
that are supplied.
This returns the transform that will transform (0, 0) into (x00, y00),
(1, 0) to (x10, y10), and (0, 1) to (x01, y01).
*/
static AffineTransform fromTargetPoints (float x00, float y00,
float x10, float y10,
float x01, float y01) noexcept;
/** Returns the transform that will map three specified points onto three target points. */
static AffineTransform fromTargetPoints (float sourceX1, float sourceY1, float targetX1, float targetY1,
float sourceX2, float sourceY2, float targetX2, float targetY2,
float sourceX3, float sourceY3, float targetX3, float targetY3) noexcept;
/** Returns the transform that will map three specified points onto three target points. */
template <typename PointType>
static AffineTransform fromTargetPoints (PointType source1, PointType target1,
PointType source2, PointType target2,
PointType source3, PointType target3) noexcept
{
return fromTargetPoints (source1.x, source1.y, target1.x, target1.y,
source2.x, source2.y, target2.x, target2.y,
source3.x, source3.y, target3.x, target3.y);
}
//==============================================================================
/** Returns the result of concatenating another transformation after this one. */
AffineTransform followedBy (const AffineTransform& other) const noexcept;
/** Returns true if this transform has no effect on points. */
bool isIdentity() const noexcept;
/** Returns true if this transform maps to a singularity - i.e. if it has no inverse. */
bool isSingularity() const noexcept;
/** Returns true if the transform only translates, and doesn't scale or rotate the
points. */
bool isOnlyTranslation() const noexcept;
/** If this transform is only a translation, this returns the X offset.
@see isOnlyTranslation
*/
float getTranslationX() const noexcept { return mat02; }
/** If this transform is only a translation, this returns the X offset.
@see isOnlyTranslation
*/
float getTranslationY() const noexcept { return mat12; }
/** Returns the determinant of the transform. */
float getDeterminant() const noexcept;
//==============================================================================
#ifndef DOXYGEN
/** This method has been deprecated.
You can calculate the scale factor using:
@code
std::sqrt (std::abs (AffineTransform::getDeterminant()))
@endcode
This method produces incorrect values for transforms containing rotations.
Returns the approximate scale factor by which lengths will be transformed.
Obviously a length may be scaled by entirely different amounts depending on its
direction, so this is only appropriate as a rough guide.
*/
[[deprecated ("This method produces incorrect values for transforms containing rotations. "
"See the method docs for a code example on how to calculate the correct scale factor.")]]
float getScaleFactor() const noexcept;
[[deprecated ("If you need an identity transform, just use AffineTransform() or {}.")]]
static const AffineTransform identity;
#endif
//==============================================================================
/* The transform matrix is:
(mat00 mat01 mat02)
(mat10 mat11 mat12)
( 0 0 1 )
*/
float mat00 { 1.0f }, mat01 { 0.0f }, mat02 { 0.0f };
float mat10 { 0.0f }, mat11 { 1.0f }, mat12 { 0.0f };
};
} // namespace juce

View File

@ -1,148 +1,167 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Specifies a set of gaps to be left around the sides of a rectangle.
This is basically the size of the spaces at the top, bottom, left and right of
a rectangle. It's used by various component classes to specify borders.
@see Rectangle
@tags{Graphics}
*/
template <typename ValueType>
class BorderSize
{
public:
//==============================================================================
/** Creates a null border.
All sizes are left as 0.
*/
BorderSize() = default;
/** Creates a copy of another border. */
BorderSize (const BorderSize&) = default;
/** Creates a border with the given gaps. */
BorderSize (ValueType topGap, ValueType leftGap, ValueType bottomGap, ValueType rightGap) noexcept
: top (topGap), left (leftGap), bottom (bottomGap), right (rightGap)
{
}
/** Creates a border with the given gap on all sides. */
explicit BorderSize (ValueType allGaps) noexcept
: top (allGaps), left (allGaps), bottom (allGaps), right (allGaps)
{
}
//==============================================================================
/** Returns the gap that should be left at the top of the region. */
ValueType getTop() const noexcept { return top; }
/** Returns the gap that should be left at the left of the region. */
ValueType getLeft() const noexcept { return left; }
/** Returns the gap that should be left at the bottom of the region. */
ValueType getBottom() const noexcept { return bottom; }
/** Returns the gap that should be left at the right of the region. */
ValueType getRight() const noexcept { return right; }
/** Returns the sum of the top and bottom gaps. */
ValueType getTopAndBottom() const noexcept { return top + bottom; }
/** Returns the sum of the left and right gaps. */
ValueType getLeftAndRight() const noexcept { return left + right; }
/** Returns true if this border has no thickness along any edge. */
bool isEmpty() const noexcept { return left + right + top + bottom == ValueType(); }
//==============================================================================
/** Changes the top gap. */
void setTop (ValueType newTopGap) noexcept { top = newTopGap; }
/** Changes the left gap. */
void setLeft (ValueType newLeftGap) noexcept { left = newLeftGap; }
/** Changes the bottom gap. */
void setBottom (ValueType newBottomGap) noexcept { bottom = newBottomGap; }
/** Changes the right gap. */
void setRight (ValueType newRightGap) noexcept { right = newRightGap; }
//==============================================================================
/** Returns a rectangle with these borders removed from it. */
Rectangle<ValueType> subtractedFrom (const Rectangle<ValueType>& original) const noexcept
{
return Rectangle<ValueType> (original.getX() + left,
original.getY() + top,
original.getWidth() - (left + right),
original.getHeight() - (top + bottom));
}
/** Removes this border from a given rectangle. */
void subtractFrom (Rectangle<ValueType>& rectangle) const noexcept
{
rectangle = subtractedFrom (rectangle);
}
/** Returns a rectangle with these borders added around it. */
Rectangle<ValueType> addedTo (const Rectangle<ValueType>& original) const noexcept
{
return Rectangle<ValueType> (original.getX() - left,
original.getY() - top,
original.getWidth() + (left + right),
original.getHeight() + (top + bottom));
}
/** Adds this border around a given rectangle. */
void addTo (Rectangle<ValueType>& rectangle) const noexcept
{
rectangle = addedTo (rectangle);
}
//==============================================================================
bool operator== (const BorderSize& other) const noexcept
{
return top == other.top && left == other.left && bottom == other.bottom && right == other.right;
}
bool operator!= (const BorderSize& other) const noexcept
{
return ! operator== (other);
}
private:
//==============================================================================
ValueType top{}, left{}, bottom{}, right{};
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Specifies a set of gaps to be left around the sides of a rectangle.
This is basically the size of the spaces at the top, bottom, left and right of
a rectangle. It's used by various component classes to specify borders.
@see Rectangle
@tags{Graphics}
*/
template <typename ValueType>
class BorderSize
{
auto tie() const { return std::tie (top, left, bottom, right); }
public:
//==============================================================================
/** Creates a null border.
All sizes are left as 0.
*/
BorderSize() = default;
/** Creates a border with the given gaps. */
BorderSize (ValueType topGap, ValueType leftGap, ValueType bottomGap, ValueType rightGap) noexcept
: top (topGap), left (leftGap), bottom (bottomGap), right (rightGap)
{
}
/** Creates a border with the given gap on all sides. */
explicit BorderSize (ValueType allGaps) noexcept
: top (allGaps), left (allGaps), bottom (allGaps), right (allGaps)
{
}
//==============================================================================
/** Returns the gap that should be left at the top of the region. */
ValueType getTop() const noexcept { return top; }
/** Returns the gap that should be left at the left of the region. */
ValueType getLeft() const noexcept { return left; }
/** Returns the gap that should be left at the bottom of the region. */
ValueType getBottom() const noexcept { return bottom; }
/** Returns the gap that should be left at the right of the region. */
ValueType getRight() const noexcept { return right; }
/** Returns the sum of the top and bottom gaps. */
ValueType getTopAndBottom() const noexcept { return top + bottom; }
/** Returns the sum of the left and right gaps. */
ValueType getLeftAndRight() const noexcept { return left + right; }
/** Returns true if this border has no thickness along any edge. */
bool isEmpty() const noexcept { return left + right + top + bottom == ValueType(); }
//==============================================================================
/** Changes the top gap. */
void setTop (ValueType newTopGap) noexcept { top = newTopGap; }
/** Changes the left gap. */
void setLeft (ValueType newLeftGap) noexcept { left = newLeftGap; }
/** Changes the bottom gap. */
void setBottom (ValueType newBottomGap) noexcept { bottom = newBottomGap; }
/** Changes the right gap. */
void setRight (ValueType newRightGap) noexcept { right = newRightGap; }
//==============================================================================
/** Returns a rectangle with these borders removed from it. */
Rectangle<ValueType> subtractedFrom (const Rectangle<ValueType>& original) const noexcept
{
return { original.getX() + left,
original.getY() + top,
original.getWidth() - (left + right),
original.getHeight() - (top + bottom) };
}
/** Removes this border from a given rectangle. */
void subtractFrom (Rectangle<ValueType>& rectangle) const noexcept
{
rectangle = subtractedFrom (rectangle);
}
/** Returns a rectangle with these borders added around it. */
Rectangle<ValueType> addedTo (const Rectangle<ValueType>& original) const noexcept
{
return { original.getX() - left,
original.getY() - top,
original.getWidth() + (left + right),
original.getHeight() + (top + bottom) };
}
/** Adds this border around a given rectangle. */
void addTo (Rectangle<ValueType>& rectangle) const noexcept
{
rectangle = addedTo (rectangle);
}
/** Removes this border from another border. */
BorderSize<ValueType> subtractedFrom (const BorderSize<ValueType>& other) const noexcept
{
return { other.top - top,
other.left - left,
other.bottom - bottom,
other.right - right };
}
/** Adds this border to another border. */
BorderSize<ValueType> addedTo (const BorderSize<ValueType>& other) const noexcept
{
return { other.top + top,
other.left + left,
other.bottom + bottom,
other.right + right };
}
/** Multiplies each member of the border by a scalar. */
template <typename ScalarType>
BorderSize<ValueType> multipliedBy (ScalarType scalar) const noexcept
{
return { static_cast<ValueType> (scalar * top),
static_cast<ValueType> (scalar * left),
static_cast<ValueType> (scalar * bottom),
static_cast<ValueType> (scalar * right) };
}
//==============================================================================
bool operator== (const BorderSize& other) const noexcept { return tie() == other.tie(); }
bool operator!= (const BorderSize& other) const noexcept { return tie() != other.tie(); }
private:
//==============================================================================
ValueType top{}, left{}, bottom{}, right{};
};
} // namespace juce

File diff suppressed because it is too large Load Diff

View File

@ -1,226 +1,226 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A table of horizontal scan-line segments - used for rasterising Paths.
@see Path, Graphics
@tags{Graphics}
*/
class JUCE_API EdgeTable
{
public:
//==============================================================================
/** Creates an edge table containing a path.
A table is created with a fixed vertical range, and only sections of the path
which lie within this range will be added to the table.
@param clipLimits only the region of the path that lies within this area will be added
@param pathToAdd the path to add to the table
@param transform a transform to apply to the path being added
*/
EdgeTable (Rectangle<int> clipLimits,
const Path& pathToAdd,
const AffineTransform& transform);
/** Creates an edge table containing a rectangle. */
explicit EdgeTable (Rectangle<int> rectangleToAdd);
/** Creates an edge table containing a rectangle. */
explicit EdgeTable (Rectangle<float> rectangleToAdd);
/** Creates an edge table containing a rectangle list. */
explicit EdgeTable (const RectangleList<int>& rectanglesToAdd);
/** Creates an edge table containing a rectangle list. */
explicit EdgeTable (const RectangleList<float>& rectanglesToAdd);
/** Creates a copy of another edge table. */
EdgeTable (const EdgeTable&);
/** Copies from another edge table. */
EdgeTable& operator= (const EdgeTable&);
/** Destructor. */
~EdgeTable();
//==============================================================================
void clipToRectangle (Rectangle<int> r);
void excludeRectangle (Rectangle<int> r);
void clipToEdgeTable (const EdgeTable&);
void clipLineToMask (int x, int y, const uint8* mask, int maskStride, int numPixels);
bool isEmpty() noexcept;
const Rectangle<int>& getMaximumBounds() const noexcept { return bounds; }
void translate (float dx, int dy) noexcept;
/** Scales all the alpha-levels in the table by the given multiplier. */
void multiplyLevels (float factor);
/** Reduces the amount of space the table has allocated.
This will shrink the table down to use as little memory as possible - useful for
read-only tables that get stored and re-used for rendering.
*/
void optimiseTable();
//==============================================================================
/** Iterates the lines in the table, for rendering.
This function will iterate each line in the table, and call a user-defined class
to render each pixel or continuous line of pixels that the table contains.
@param iterationCallback this templated class must contain the following methods:
@code
inline void setEdgeTableYPos (int y);
inline void handleEdgeTablePixel (int x, int alphaLevel) const;
inline void handleEdgeTablePixelFull (int x) const;
inline void handleEdgeTableLine (int x, int width, int alphaLevel) const;
inline void handleEdgeTableLineFull (int x, int width) const;
@endcode
(these don't necessarily have to be 'const', but it might help it go faster)
*/
template <class EdgeTableIterationCallback>
void iterate (EdgeTableIterationCallback& iterationCallback) const noexcept
{
const int* lineStart = table;
for (int y = 0; y < bounds.getHeight(); ++y)
{
const int* line = lineStart;
lineStart += lineStrideElements;
int numPoints = line[0];
if (--numPoints > 0)
{
int x = *++line;
jassert ((x / scale) >= bounds.getX() && (x / scale) < bounds.getRight());
int levelAccumulator = 0;
iterationCallback.setEdgeTableYPos (bounds.getY() + y);
while (--numPoints >= 0)
{
const int level = *++line;
jassert (isPositiveAndBelow (level, scale));
const int endX = *++line;
jassert (endX >= x);
const int endOfRun = (endX / scale);
if (endOfRun == (x / scale))
{
// small segment within the same pixel, so just save it for the next
// time round..
levelAccumulator += (endX - x) * level;
}
else
{
// plot the fist pixel of this segment, including any accumulated
// levels from smaller segments that haven't been drawn yet
levelAccumulator += (0x100 - (x & 0xff)) * level;
levelAccumulator /= scale;
x /= scale;
if (levelAccumulator > 0)
{
if (levelAccumulator >= 255)
iterationCallback.handleEdgeTablePixelFull (x);
else
iterationCallback.handleEdgeTablePixel (x, levelAccumulator);
}
// if there's a run of similar pixels, do it all in one go..
if (level > 0)
{
jassert (endOfRun <= bounds.getRight());
const int numPix = endOfRun - ++x;
if (numPix > 0)
iterationCallback.handleEdgeTableLine (x, numPix, level);
}
// save the bit at the end to be drawn next time round the loop.
levelAccumulator = (endX & 0xff) * level;
}
x = endX;
}
levelAccumulator /= scale;
if (levelAccumulator > 0)
{
x /= scale;
jassert (x >= bounds.getX() && x < bounds.getRight());
if (levelAccumulator >= 255)
iterationCallback.handleEdgeTablePixelFull (x);
else
iterationCallback.handleEdgeTablePixel (x, levelAccumulator);
}
}
}
}
private:
//==============================================================================
static constexpr auto defaultEdgesPerLine = 32;
static constexpr auto scale = 256;
//==============================================================================
// table line format: number of points; point0 x, point0 levelDelta, point1 x, point1 levelDelta, etc
struct LineItem
{
int x, level;
bool operator< (const LineItem& other) const noexcept { return x < other.x; }
};
HeapBlock<int> table;
Rectangle<int> bounds;
int maxEdgesPerLine, lineStrideElements;
bool needToCheckEmptiness = true;
void allocate();
void clearLineSizes() noexcept;
void addEdgePoint (int x, int y, int winding);
void addEdgePointPair (int x1, int x2, int y, int winding);
void remapTableForNumEdges (int newNumEdgesPerLine);
void remapWithExtraSpace (int numPointsNeeded);
void intersectWithEdgeTableLine (int y, const int* otherLine);
void clipEdgeTableLineToRange (int* line, int x1, int x2) noexcept;
void sanitiseLevels (bool useNonZeroWinding) noexcept;
static void copyEdgeTableData (int* dest, int destLineStride, const int* src, int srcLineStride, int numLines) noexcept;
JUCE_LEAK_DETECTOR (EdgeTable)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A table of horizontal scan-line segments - used for rasterising Paths.
@see Path, Graphics
@tags{Graphics}
*/
class JUCE_API EdgeTable
{
public:
//==============================================================================
/** Creates an edge table containing a path.
A table is created with a fixed vertical range, and only sections of the path
which lie within this range will be added to the table.
@param clipLimits only the region of the path that lies within this area will be added
@param pathToAdd the path to add to the table
@param transform a transform to apply to the path being added
*/
EdgeTable (Rectangle<int> clipLimits,
const Path& pathToAdd,
const AffineTransform& transform);
/** Creates an edge table containing a rectangle. */
explicit EdgeTable (Rectangle<int> rectangleToAdd);
/** Creates an edge table containing a rectangle. */
explicit EdgeTable (Rectangle<float> rectangleToAdd);
/** Creates an edge table containing a rectangle list. */
explicit EdgeTable (const RectangleList<int>& rectanglesToAdd);
/** Creates an edge table containing a rectangle list. */
explicit EdgeTable (const RectangleList<float>& rectanglesToAdd);
/** Creates a copy of another edge table. */
EdgeTable (const EdgeTable&);
/** Copies from another edge table. */
EdgeTable& operator= (const EdgeTable&);
/** Destructor. */
~EdgeTable();
//==============================================================================
void clipToRectangle (Rectangle<int> r);
void excludeRectangle (Rectangle<int> r);
void clipToEdgeTable (const EdgeTable&);
void clipLineToMask (int x, int y, const uint8* mask, int maskStride, int numPixels);
bool isEmpty() noexcept;
const Rectangle<int>& getMaximumBounds() const noexcept { return bounds; }
void translate (float dx, int dy) noexcept;
/** Scales all the alpha-levels in the table by the given multiplier. */
void multiplyLevels (float factor);
/** Reduces the amount of space the table has allocated.
This will shrink the table down to use as little memory as possible - useful for
read-only tables that get stored and re-used for rendering.
*/
void optimiseTable();
//==============================================================================
/** Iterates the lines in the table, for rendering.
This function will iterate each line in the table, and call a user-defined class
to render each pixel or continuous line of pixels that the table contains.
@param iterationCallback this templated class must contain the following methods:
@code
inline void setEdgeTableYPos (int y);
inline void handleEdgeTablePixel (int x, int alphaLevel) const;
inline void handleEdgeTablePixelFull (int x) const;
inline void handleEdgeTableLine (int x, int width, int alphaLevel) const;
inline void handleEdgeTableLineFull (int x, int width) const;
@endcode
(these don't necessarily have to be 'const', but it might help it go faster)
*/
template <class EdgeTableIterationCallback>
void iterate (EdgeTableIterationCallback& iterationCallback) const noexcept
{
const int* lineStart = table;
for (int y = 0; y < bounds.getHeight(); ++y)
{
const int* line = lineStart;
lineStart += lineStrideElements;
int numPoints = line[0];
if (--numPoints > 0)
{
int x = *++line;
jassert ((x / scale) >= bounds.getX() && (x / scale) < bounds.getRight());
int levelAccumulator = 0;
iterationCallback.setEdgeTableYPos (bounds.getY() + y);
while (--numPoints >= 0)
{
const int level = *++line;
jassert (isPositiveAndBelow (level, scale));
const int endX = *++line;
jassert (endX >= x);
const int endOfRun = (endX / scale);
if (endOfRun == (x / scale))
{
// small segment within the same pixel, so just save it for the next
// time round..
levelAccumulator += (endX - x) * level;
}
else
{
// plot the fist pixel of this segment, including any accumulated
// levels from smaller segments that haven't been drawn yet
levelAccumulator += (0x100 - (x & 0xff)) * level;
levelAccumulator /= scale;
x /= scale;
if (levelAccumulator > 0)
{
if (levelAccumulator >= 255)
iterationCallback.handleEdgeTablePixelFull (x);
else
iterationCallback.handleEdgeTablePixel (x, levelAccumulator);
}
// if there's a run of similar pixels, do it all in one go..
if (level > 0)
{
jassert (endOfRun <= bounds.getRight());
const int numPix = endOfRun - ++x;
if (numPix > 0)
iterationCallback.handleEdgeTableLine (x, numPix, level);
}
// save the bit at the end to be drawn next time round the loop.
levelAccumulator = (endX & 0xff) * level;
}
x = endX;
}
levelAccumulator /= scale;
if (levelAccumulator > 0)
{
x /= scale;
jassert (x >= bounds.getX() && x < bounds.getRight());
if (levelAccumulator >= 255)
iterationCallback.handleEdgeTablePixelFull (x);
else
iterationCallback.handleEdgeTablePixel (x, levelAccumulator);
}
}
}
}
private:
//==============================================================================
static constexpr auto defaultEdgesPerLine = 32;
static constexpr auto scale = 256;
//==============================================================================
// table line format: number of points; point0 x, point0 levelDelta, point1 x, point1 levelDelta, etc
struct LineItem
{
int x, level;
bool operator< (const LineItem& other) const noexcept { return x < other.x; }
};
HeapBlock<int> table;
Rectangle<int> bounds;
int maxEdgesPerLine, lineStrideElements;
bool needToCheckEmptiness = true;
void allocate();
void clearLineSizes() noexcept;
void addEdgePoint (int x, int y, int winding);
void addEdgePointPair (int x1, int x2, int y, int winding);
void remapTableForNumEdges (int newNumEdgesPerLine);
void remapWithExtraSpace (int numPointsNeeded);
void intersectWithEdgeTableLine (int y, const int* otherLine);
void clipEdgeTableLineToRange (int* line, int x1, int x2) noexcept;
void sanitiseLevels (bool useNonZeroWinding) noexcept;
static void copyEdgeTableData (int* dest, int destLineStride, const int* src, int srcLineStride, int numLines) noexcept;
JUCE_LEAK_DETECTOR (EdgeTable)
};
} // namespace juce

View File

@ -1,421 +1,442 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a line.
This class contains a bunch of useful methods for various geometric
tasks.
The ValueType template parameter should be a primitive type - float or double
are what it's designed for. Integer types will work in a basic way, but some methods
that perform mathematical operations may not compile, or they may not produce
sensible results.
@see Point, Rectangle, Path, Graphics::drawLine
@tags{Graphics}
*/
template <typename ValueType>
class Line
{
public:
//==============================================================================
/** Creates a line, using (0, 0) as its start and end points. */
Line() = default;
/** Creates a copy of another line. */
Line (const Line&) = default;
/** Creates a line based on the coordinates of its start and end points. */
Line (ValueType startX, ValueType startY, ValueType endX, ValueType endY) noexcept
: start (startX, startY), end (endX, endY)
{
}
/** Creates a line from its start and end points. */
Line (Point<ValueType> startPoint, Point<ValueType> endPoint) noexcept
: start (startPoint), end (endPoint)
{
}
/** Copies a line from another one. */
Line& operator= (const Line&) = default;
/** Destructor. */
~Line() = default;
//==============================================================================
/** Returns the x coordinate of the line's start point. */
inline ValueType getStartX() const noexcept { return start.x; }
/** Returns the y coordinate of the line's start point. */
inline ValueType getStartY() const noexcept { return start.y; }
/** Returns the x coordinate of the line's end point. */
inline ValueType getEndX() const noexcept { return end.x; }
/** Returns the y coordinate of the line's end point. */
inline ValueType getEndY() const noexcept { return end.y; }
/** Returns the line's start point. */
inline Point<ValueType> getStart() const noexcept { return start; }
/** Returns the line's end point. */
inline Point<ValueType> getEnd() const noexcept { return end; }
/** Changes this line's start point */
void setStart (ValueType newStartX, ValueType newStartY) noexcept { start.setXY (newStartX, newStartY); }
/** Changes this line's end point */
void setEnd (ValueType newEndX, ValueType newEndY) noexcept { end.setXY (newEndX, newEndY); }
/** Changes this line's start point */
void setStart (const Point<ValueType> newStart) noexcept { start = newStart; }
/** Changes this line's end point */
void setEnd (const Point<ValueType> newEnd) noexcept { end = newEnd; }
/** Returns a line that is the same as this one, but with the start and end reversed, */
Line reversed() const noexcept { return { end, start }; }
/** Applies an affine transform to the line's start and end points. */
void applyTransform (const AffineTransform& transform) noexcept
{
start.applyTransform (transform);
end.applyTransform (transform);
}
//==============================================================================
/** Returns the length of the line. */
ValueType getLength() const noexcept { return start.getDistanceFrom (end); }
/** Returns the length of the line. */
ValueType getLengthSquared() const noexcept { return start.getDistanceSquaredFrom (end); }
/** Returns true if the line's start and end x coordinates are the same. */
bool isVertical() const noexcept { return start.x == end.x; }
/** Returns true if the line's start and end y coordinates are the same. */
bool isHorizontal() const noexcept { return start.y == end.y; }
/** Returns the line's angle.
This value is the number of radians clockwise from the 12 o'clock direction,
where the line's start point is considered to be at the centre.
*/
typename Point<ValueType>::FloatType getAngle() const noexcept { return start.getAngleToPoint (end); }
/** Creates a line from a start point, length and angle.
This angle is the number of radians clockwise from the 12 o'clock direction,
where the line's start point is considered to be at the centre.
*/
static Line fromStartAndAngle (Point<ValueType> startPoint, ValueType length, ValueType angle) noexcept
{
return { startPoint, startPoint.getPointOnCircumference (length, angle) };
}
//==============================================================================
/** Casts this line to float coordinates. */
Line<float> toFloat() const noexcept { return { start.toFloat(), end.toFloat() }; }
/** Casts this line to double coordinates. */
Line<double> toDouble() const noexcept { return { start.toDouble(), end.toDouble() }; }
//==============================================================================
/** Compares two lines. */
bool operator== (Line other) const noexcept { return start == other.start && end == other.end; }
/** Compares two lines. */
bool operator!= (Line other) const noexcept { return start != other.start || end != other.end; }
//==============================================================================
/** Finds the intersection between two lines.
@param line the line to intersect with
@returns the point at which the lines intersect, even if this lies beyond the end of the lines
*/
Point<ValueType> getIntersection (Line line) const noexcept
{
Point<ValueType> p;
findIntersection (start, end, line.start, line.end, p);
return p;
}
/** Finds the intersection between two lines.
@param line the other line
@param intersection the position of the point where the lines meet (or
where they would meet if they were infinitely long)
the intersection (if the lines intersect). If the lines
are parallel, this will just be set to the position
of one of the line's endpoints.
@returns true if the line segments intersect; false if they don't. Even if they
don't intersect, the intersection coordinates returned will still
be valid
*/
bool intersects (Line line, Point<ValueType>& intersection) const noexcept
{
return findIntersection (start, end, line.start, line.end, intersection);
}
/** Returns true if this line intersects another. */
bool intersects (Line other) const noexcept
{
Point<ValueType> ignored;
return findIntersection (start, end, other.start, other.end, ignored);
}
//==============================================================================
/** Returns the location of the point which is a given distance along this line.
@param distanceFromStart the distance to move along the line from its
start point. This value can be negative or longer
than the line itself
@see getPointAlongLineProportionally
*/
Point<ValueType> getPointAlongLine (ValueType distanceFromStart) const noexcept
{
return start + (end - start) * (distanceFromStart / getLength());
}
/** Returns a point which is a certain distance along and to the side of this line.
This effectively moves a given distance along the line, then another distance
perpendicularly to this, and returns the resulting position.
@param distanceFromStart the distance to move along the line from its
start point. This value can be negative or longer
than the line itself
@param perpendicularDistance how far to move sideways from the line. If you're
looking along the line from its start towards its
end, then a positive value here will move to the
right, negative value move to the left.
*/
Point<ValueType> getPointAlongLine (ValueType distanceFromStart,
ValueType perpendicularDistance) const noexcept
{
auto delta = end - start;
auto length = juce_hypot ((double) delta.x,
(double) delta.y);
if (length <= 0)
return start;
return { start.x + static_cast<ValueType> ((delta.x * distanceFromStart - delta.y * perpendicularDistance) / length),
start.y + static_cast<ValueType> ((delta.y * distanceFromStart + delta.x * perpendicularDistance) / length) };
}
/** Returns the location of the point which is a given distance along this line
proportional to the line's length.
@param proportionOfLength the distance to move along the line from its
start point, in multiples of the line's length.
So a value of 0.0 will return the line's start point
and a value of 1.0 will return its end point. (This value
can be negative or greater than 1.0).
@see getPointAlongLine
*/
Point<ValueType> getPointAlongLineProportionally (typename Point<ValueType>::FloatType proportionOfLength) const noexcept
{
return start + (end - start) * proportionOfLength;
}
/** Returns the smallest distance between this line segment and a given point.
So if the point is close to the line, this will return the perpendicular
distance from the line; if the point is a long way beyond one of the line's
end-point's, it'll return the straight-line distance to the nearest end-point.
pointOnLine receives the position of the point that is found.
@returns the point's distance from the line
@see getPositionAlongLineOfNearestPoint
*/
ValueType getDistanceFromPoint (Point<ValueType> targetPoint,
Point<ValueType>& pointOnLine) const noexcept
{
auto delta = end - start;
auto length = delta.x * delta.x + delta.y * delta.y;
if (length > 0)
{
auto prop = ((targetPoint.x - start.x) * delta.x
+ (targetPoint.y - start.y) * delta.y) / (double) length;
if (prop >= 0 && prop <= 1.0)
{
pointOnLine = start + delta * prop;
return targetPoint.getDistanceFrom (pointOnLine);
}
}
auto fromStart = targetPoint.getDistanceFrom (start);
auto fromEnd = targetPoint.getDistanceFrom (end);
if (fromStart < fromEnd)
{
pointOnLine = start;
return fromStart;
}
pointOnLine = end;
return fromEnd;
}
/** Finds the point on this line which is nearest to a given point, and
returns its position as a proportional position along the line.
@returns a value 0 to 1.0 which is the distance along this line from the
line's start to the point which is nearest to the point passed-in. To
turn this number into a position, use getPointAlongLineProportionally().
@see getDistanceFromPoint, getPointAlongLineProportionally
*/
ValueType findNearestProportionalPositionTo (Point<ValueType> point) const noexcept
{
auto delta = end - start;
auto length = delta.x * delta.x + delta.y * delta.y;
return length <= 0 ? 0
: jlimit (ValueType(), static_cast<ValueType> (1),
static_cast<ValueType> ((((point.x - start.x) * delta.x
+ (point.y - start.y) * delta.y) / length)));
}
/** Finds the point on this line which is nearest to a given point.
@see getDistanceFromPoint, findNearestProportionalPositionTo
*/
Point<ValueType> findNearestPointTo (Point<ValueType> point) const noexcept
{
return getPointAlongLineProportionally (findNearestProportionalPositionTo (point));
}
/** Returns true if the given point lies above this line.
The return value is true if the point's y coordinate is less than the y
coordinate of this line at the given x (assuming the line extends infinitely
in both directions).
*/
bool isPointAbove (Point<ValueType> point) const noexcept
{
return start.x != end.x
&& point.y < ((end.y - start.y) * (point.x - start.x)) / (end.x - start.x) + start.y;
}
//==============================================================================
/** Returns a shortened copy of this line.
This will chop off part of the start of this line by a certain amount, (leaving the
end-point the same), and return the new line.
*/
Line withShortenedStart (ValueType distanceToShortenBy) const noexcept
{
return { getPointAlongLine (jmin (distanceToShortenBy, getLength())), end };
}
/** Returns a shortened copy of this line.
This will chop off part of the end of this line by a certain amount, (leaving the
start-point the same), and return the new line.
*/
Line withShortenedEnd (ValueType distanceToShortenBy) const noexcept
{
auto length = getLength();
return { start, getPointAlongLine (length - jmin (distanceToShortenBy, length)) };
}
private:
//==============================================================================
Point<ValueType> start, end;
static bool isZeroToOne (ValueType v) noexcept { return v >= 0 && v <= static_cast<ValueType> (1); }
static bool findIntersection (const Point<ValueType> p1, const Point<ValueType> p2,
const Point<ValueType> p3, const Point<ValueType> p4,
Point<ValueType>& intersection) noexcept
{
if (p2 == p3)
{
intersection = p2;
return true;
}
auto d1 = p2 - p1;
auto d2 = p4 - p3;
auto divisor = d1.x * d2.y - d2.x * d1.y;
if (divisor == 0)
{
if (! (d1.isOrigin() || d2.isOrigin()))
{
if (d1.y == 0 && d2.y != 0)
{
auto along = (p1.y - p3.y) / d2.y;
intersection = p1.withX (p3.x + along * d2.x);
return isZeroToOne (along);
}
if (d2.y == 0 && d1.y != 0)
{
auto along = (p3.y - p1.y) / d1.y;
intersection = p3.withX (p1.x + along * d1.x);
return isZeroToOne (along);
}
if (d1.x == 0 && d2.x != 0)
{
auto along = (p1.x - p3.x) / d2.x;
intersection = p1.withY (p3.y + along * d2.y);
return isZeroToOne (along);
}
if (d2.x == 0 && d1.x != 0)
{
auto along = (p3.x - p1.x) / d1.x;
intersection = p3.withY (p1.y + along * d1.y);
return isZeroToOne (along);
}
}
intersection = (p2 + p3) / static_cast<ValueType> (2);
return false;
}
auto along1 = ((p1.y - p3.y) * d2.x - (p1.x - p3.x) * d2.y) / divisor;
intersection = p1 + d1 * along1;
if (! isZeroToOne (along1))
return false;
auto along2 = ((p1.y - p3.y) * d1.x - (p1.x - p3.x) * d1.y) / divisor;
return isZeroToOne (along2);
}
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a line.
This class contains a bunch of useful methods for various geometric
tasks.
The ValueType template parameter should be a primitive type - float or double
are what it's designed for. Integer types will work in a basic way, but some methods
that perform mathematical operations may not compile, or they may not produce
sensible results.
@see Point, Rectangle, Path, Graphics::drawLine
@tags{Graphics}
*/
template <typename ValueType>
class Line
{
public:
//==============================================================================
/** Creates a line, using (0, 0) as its start and end points. */
Line() = default;
/** Creates a copy of another line. */
Line (const Line&) = default;
/** Creates a line based on the coordinates of its start and end points. */
Line (ValueType startX, ValueType startY, ValueType endX, ValueType endY) noexcept
: start (startX, startY), end (endX, endY)
{
}
/** Creates a line from its start and end points. */
Line (Point<ValueType> startPoint, Point<ValueType> endPoint) noexcept
: start (startPoint), end (endPoint)
{
}
/** Copies a line from another one. */
Line& operator= (const Line&) = default;
/** Destructor. */
~Line() = default;
//==============================================================================
/** Returns the x coordinate of the line's start point. */
inline ValueType getStartX() const noexcept { return start.x; }
/** Returns the y coordinate of the line's start point. */
inline ValueType getStartY() const noexcept { return start.y; }
/** Returns the x coordinate of the line's end point. */
inline ValueType getEndX() const noexcept { return end.x; }
/** Returns the y coordinate of the line's end point. */
inline ValueType getEndY() const noexcept { return end.y; }
/** Returns the line's start point. */
inline Point<ValueType> getStart() const noexcept { return start; }
/** Returns the line's end point. */
inline Point<ValueType> getEnd() const noexcept { return end; }
/** Changes this line's start point */
void setStart (ValueType newStartX, ValueType newStartY) noexcept { start.setXY (newStartX, newStartY); }
/** Changes this line's end point */
void setEnd (ValueType newEndX, ValueType newEndY) noexcept { end.setXY (newEndX, newEndY); }
/** Changes this line's start point */
void setStart (const Point<ValueType> newStart) noexcept { start = newStart; }
/** Changes this line's end point */
void setEnd (const Point<ValueType> newEnd) noexcept { end = newEnd; }
/** Returns a line that is the same as this one, but with the start and end reversed, */
Line reversed() const noexcept { return { end, start }; }
/** Applies an affine transform to the line's start and end points. */
void applyTransform (const AffineTransform& transform) noexcept
{
start.applyTransform (transform);
end.applyTransform (transform);
}
//==============================================================================
/** Returns the length of the line. */
ValueType getLength() const noexcept { return start.getDistanceFrom (end); }
/** Returns the length of the line. */
ValueType getLengthSquared() const noexcept { return start.getDistanceSquaredFrom (end); }
/** Returns true if the line's start and end x coordinates are the same. */
bool isVertical() const noexcept { return start.x == end.x; }
/** Returns true if the line's start and end y coordinates are the same. */
bool isHorizontal() const noexcept { return start.y == end.y; }
/** Returns the line's angle.
This value is the number of radians clockwise from the 12 o'clock direction,
where the line's start point is considered to be at the centre.
*/
typename Point<ValueType>::FloatType getAngle() const noexcept { return start.getAngleToPoint (end); }
/** Creates a line from a start point, length and angle.
This angle is the number of radians clockwise from the 12 o'clock direction,
where the line's start point is considered to be at the centre.
*/
static Line fromStartAndAngle (Point<ValueType> startPoint, ValueType length, ValueType angle) noexcept
{
return { startPoint, startPoint.getPointOnCircumference (length, angle) };
}
//==============================================================================
/** Casts this line to float coordinates. */
Line<float> toFloat() const noexcept { return { start.toFloat(), end.toFloat() }; }
/** Casts this line to double coordinates. */
Line<double> toDouble() const noexcept { return { start.toDouble(), end.toDouble() }; }
//==============================================================================
/** Compares two lines. */
bool operator== (Line other) const noexcept { return start == other.start && end == other.end; }
/** Compares two lines. */
bool operator!= (Line other) const noexcept { return start != other.start || end != other.end; }
//==============================================================================
/** Finds the intersection between two lines.
@param line the line to intersect with
@returns the point at which the lines intersect, even if this lies beyond the end of the lines
*/
Point<ValueType> getIntersection (Line line) const noexcept
{
Point<ValueType> p;
findIntersection (start, end, line.start, line.end, p);
return p;
}
/** Finds the intersection between two lines.
@param line the other line
@param intersection the position of the point where the lines meet (or
where they would meet if they were infinitely long)
the intersection (if the lines intersect). If the lines
are parallel, this will just be set to the position
of one of the line's endpoints.
@returns true if the line segments intersect; false if they don't. Even if they
don't intersect, the intersection coordinates returned will still
be valid
*/
bool intersects (Line line, Point<ValueType>& intersection) const noexcept
{
return findIntersection (start, end, line.start, line.end, intersection);
}
/** Returns true if this line intersects another. */
bool intersects (Line other) const noexcept
{
Point<ValueType> ignored;
return findIntersection (start, end, other.start, other.end, ignored);
}
//==============================================================================
/** Returns the location of the point which is a given distance along this line.
@param distanceFromStart the distance to move along the line from its
start point. This value can be negative or longer
than the line itself
@see getPointAlongLineProportionally
*/
Point<ValueType> getPointAlongLine (ValueType distanceFromStart) const noexcept
{
const auto length = getLength();
return length == 0 ? start : start + (end - start) * (distanceFromStart / length);
}
/** Returns a point which is a certain distance along and to the side of this line.
This effectively moves a given distance along the line, then another distance
perpendicularly to this, and returns the resulting position.
@param distanceFromStart the distance to move along the line from its
start point. This value can be negative or longer
than the line itself
@param perpendicularDistance how far to move sideways from the line. If you're
looking along the line from its start towards its
end, then a positive value here will move to the
right, negative value move to the left.
*/
Point<ValueType> getPointAlongLine (ValueType distanceFromStart,
ValueType perpendicularDistance) const noexcept
{
auto delta = end - start;
auto length = juce_hypot ((double) delta.x,
(double) delta.y);
if (length <= 0)
return start;
return { start.x + static_cast<ValueType> ((delta.x * distanceFromStart - delta.y * perpendicularDistance) / length),
start.y + static_cast<ValueType> ((delta.y * distanceFromStart + delta.x * perpendicularDistance) / length) };
}
/** Returns the location of the point which is a given distance along this line
proportional to the line's length.
@param proportionOfLength the distance to move along the line from its
start point, in multiples of the line's length.
So a value of 0.0 will return the line's start point
and a value of 1.0 will return its end point. (This value
can be negative or greater than 1.0).
@see getPointAlongLine
*/
Point<ValueType> getPointAlongLineProportionally (typename Point<ValueType>::FloatType proportionOfLength) const noexcept
{
return start + (end - start) * proportionOfLength;
}
/** Returns the smallest distance between this line segment and a given point.
So if the point is close to the line, this will return the perpendicular
distance from the line; if the point is a long way beyond one of the line's
end-point's, it'll return the straight-line distance to the nearest end-point.
pointOnLine receives the position of the point that is found.
@returns the point's distance from the line
@see getPositionAlongLineOfNearestPoint
*/
ValueType getDistanceFromPoint (Point<ValueType> targetPoint,
Point<ValueType>& pointOnLine) const noexcept
{
auto delta = end - start;
auto length = delta.x * delta.x + delta.y * delta.y;
if (length > 0)
{
auto prop = ((targetPoint.x - start.x) * delta.x
+ (targetPoint.y - start.y) * delta.y) / (double) length;
if (prop >= 0 && prop <= 1.0)
{
pointOnLine = start + delta * prop;
return targetPoint.getDistanceFrom (pointOnLine);
}
}
auto fromStart = targetPoint.getDistanceFrom (start);
auto fromEnd = targetPoint.getDistanceFrom (end);
if (fromStart < fromEnd)
{
pointOnLine = start;
return fromStart;
}
pointOnLine = end;
return fromEnd;
}
/** Finds the point on this line which is nearest to a given point, and
returns its position as a proportional position along the line.
@returns a value 0 to 1.0 which is the distance along this line from the
line's start to the point which is nearest to the point passed-in. To
turn this number into a position, use getPointAlongLineProportionally().
@see getDistanceFromPoint, getPointAlongLineProportionally
*/
ValueType findNearestProportionalPositionTo (Point<ValueType> point) const noexcept
{
auto delta = end - start;
auto length = delta.x * delta.x + delta.y * delta.y;
return length <= 0 ? 0
: jlimit (ValueType(), static_cast<ValueType> (1),
static_cast<ValueType> ((((point.x - start.x) * delta.x
+ (point.y - start.y) * delta.y) / length)));
}
/** Finds the point on this line which is nearest to a given point.
@see getDistanceFromPoint, findNearestProportionalPositionTo
*/
Point<ValueType> findNearestPointTo (Point<ValueType> point) const noexcept
{
return getPointAlongLineProportionally (findNearestProportionalPositionTo (point));
}
/** Returns true if the given point lies above this line.
The return value is true if the point's y coordinate is less than the y
coordinate of this line at the given x (assuming the line extends infinitely
in both directions).
*/
bool isPointAbove (Point<ValueType> point) const noexcept
{
return start.x != end.x
&& point.y < ((end.y - start.y) * (point.x - start.x)) / (end.x - start.x) + start.y;
}
/** Returns a lengthened copy of this line.
This will extend the line by a certain amount by moving the start away from the end
(leaving the end-point the same), and return the new line.
*/
Line withLengthenedStart (ValueType distanceToLengthenBy) const noexcept
{
return withShortenedStart (-distanceToLengthenBy);
}
//==============================================================================
/** Returns a shortened copy of this line.
This will chop off part of the start of this line by a certain amount, (leaving the
end-point the same), and return the new line.
*/
Line withShortenedStart (ValueType distanceToShortenBy) const noexcept
{
return { getPointAlongLine (jmin (distanceToShortenBy, getLength())), end };
}
/** Returns a lengthened copy of this line.
This will extend the line by a certain amount by moving the end away from the start
(leaving the start-point the same), and return the new line.
*/
Line withLengthenedEnd (ValueType distanceToLengthenBy) const noexcept
{
return withShortenedEnd (-distanceToLengthenBy);
}
/** Returns a shortened copy of this line.
This will chop off part of the end of this line by a certain amount, (leaving the
start-point the same), and return the new line.
*/
Line withShortenedEnd (ValueType distanceToShortenBy) const noexcept
{
auto length = getLength();
return { start, getPointAlongLine (length - jmin (distanceToShortenBy, length)) };
}
private:
//==============================================================================
Point<ValueType> start, end;
static bool isZeroToOne (ValueType v) noexcept { return v >= 0 && v <= static_cast<ValueType> (1); }
static bool findIntersection (const Point<ValueType> p1, const Point<ValueType> p2,
const Point<ValueType> p3, const Point<ValueType> p4,
Point<ValueType>& intersection) noexcept
{
if (p2 == p3)
{
intersection = p2;
return true;
}
auto d1 = p2 - p1;
auto d2 = p4 - p3;
auto divisor = d1.x * d2.y - d2.x * d1.y;
if (divisor == 0)
{
if (! (d1.isOrigin() || d2.isOrigin()))
{
if (d1.y == 0 && d2.y != 0)
{
auto along = (p1.y - p3.y) / d2.y;
intersection = p1.withX (p3.x + along * d2.x);
return isZeroToOne (along);
}
if (d2.y == 0 && d1.y != 0)
{
auto along = (p3.y - p1.y) / d1.y;
intersection = p3.withX (p1.x + along * d1.x);
return isZeroToOne (along);
}
if (d1.x == 0 && d2.x != 0)
{
auto along = (p1.x - p3.x) / d2.x;
intersection = p1.withY (p3.y + along * d2.y);
return isZeroToOne (along);
}
if (d2.x == 0 && d1.x != 0)
{
auto along = (p3.x - p1.x) / d1.x;
intersection = p3.withY (p1.y + along * d1.y);
return isZeroToOne (along);
}
}
intersection = (p2 + p3) / static_cast<ValueType> (2);
return false;
}
auto along1 = ((p1.y - p3.y) * d2.x - (p1.x - p3.x) * d2.y) / divisor;
intersection = p1 + d1 * along1;
if (! isZeroToOne (along1))
return false;
auto along2 = ((p1.y - p3.y) * d1.x - (p1.x - p3.x) * d1.y) / divisor;
return isZeroToOne (along2);
}
};
} // namespace juce

View File

@ -1,185 +1,185 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a parallelogram that is defined by 3 points.
@see Rectangle, Point, Line
@tags{Graphics}
*/
template <typename ValueType>
class Parallelogram
{
public:
//==============================================================================
/** Creates a parallelogram with zero size at the origin.
*/
Parallelogram() = default;
/** Creates a copy of another parallelogram. */
Parallelogram (const Parallelogram&) = default;
/** Creates a parallelogram based on 3 points. */
Parallelogram (Point<ValueType> topLeftPosition,
Point<ValueType> topRightPosition,
Point<ValueType> bottomLeftPosition) noexcept
: topLeft (topLeftPosition), topRight (topRightPosition), bottomLeft (bottomLeftPosition)
{
}
/** Creates a parallelogram from a rectangle. */
Parallelogram (Rectangle<ValueType> rectangle) noexcept
: topLeft (rectangle.getTopLeft()),
topRight (rectangle.getTopRight()),
bottomLeft (rectangle.getBottomLeft())
{
}
Parallelogram& operator= (const Parallelogram&) = default;
/** Destructor. */
~Parallelogram() = default;
//==============================================================================
/** Returns true if the parallelogram has a width or height of more than zero. */
bool isEmpty() const noexcept { return topLeft != topRight || topLeft != bottomLeft; }
/** Returns true if the parallelogram's coordinates are all finite numbers, i.e. not NaN or infinity. */
inline bool isFinite() const noexcept { return topLeft.isFinite() && topRight.isFinite() && bottomLeft.isFinite(); }
/** Returns the width of the parallelogram (i.e. the straight-line distance between the top-left and top-right. */
inline ValueType getWidth() const noexcept { return Line<ValueType> (topLeft, topRight).getLength(); }
/** Returns the height of the parallelogram (i.e. the straight-line distance between the top-left and bottom-left. */
inline ValueType getHeight() const noexcept { return Line<ValueType> (topLeft, bottomLeft).getLength(); }
//==============================================================================
/** Returns the parallelogram's top-left position as a Point. */
Point<ValueType> getTopLeft() const noexcept { return topLeft; }
/** Returns the parallelogram's top-right position as a Point. */
Point<ValueType> getTopRight() const noexcept { return topRight; }
/** Returns the parallelogram's bottom-left position as a Point. */
Point<ValueType> getBottomLeft() const noexcept { return bottomLeft; }
/** Returns the parallelogram's bottom-right position as a Point. */
Point<ValueType> getBottomRight() const noexcept { return topRight + (bottomLeft - topLeft); }
//==============================================================================
/** Returns true if the two parallelograms are identical. */
bool operator== (const Parallelogram& other) const noexcept { return topLeft == other.topLeft && topRight == other.topRight && bottomLeft == other.bottomLeft; }
/** Returns true if the two parallelograms are not identical. */
bool operator!= (const Parallelogram& other) const noexcept { return ! operator== (other); }
//==============================================================================
/** Returns a parallelogram which is the same as this one moved by a given amount. */
Parallelogram operator+ (Point<ValueType> deltaPosition) const noexcept
{
auto p = *this;
p += deltaPosition;
return p;
}
/** Moves this parallelogram by a given amount. */
Parallelogram& operator+= (Point<ValueType> deltaPosition) noexcept
{
topLeft += deltaPosition;
topRight += deltaPosition;
bottomLeft += deltaPosition;
return *this;
}
/** Returns a parallelogram which is the same as this one moved by a given amount. */
Parallelogram operator- (Point<ValueType> deltaPosition) const noexcept
{
return operator+ (-deltaPosition);
}
/** Moves this parallelogram by a given amount. */
Parallelogram& operator-= (Point<ValueType> deltaPosition) noexcept
{
return operator-= (-deltaPosition);
}
/** Returns a parallelogram that has been scaled by the given amount, centred around the origin. */
template <typename PointOrScalarType>
Parallelogram operator* (PointOrScalarType scaleFactor) const noexcept
{
auto p = *this;
p *= scaleFactor;
return p;
}
/** Scales this parallelogram by the given amount, centred around the origin. */
template <typename PointOrScalarType>
Parallelogram operator*= (PointOrScalarType scaleFactor) noexcept
{
topLeft *= scaleFactor;
topRight *= scaleFactor;
bottomLeft *= scaleFactor;
return *this;
}
//==============================================================================
/** Returns a point within this parallelogram, specified as proportional coordinates.
The relative X and Y values should be between 0 and 1, where 0 is the left or
top of this parallelogram, and 1 is the right or bottom. (Out-of-bounds values
will return a point outside the parallelogram).
*/
Point<ValueType> getRelativePoint (Point<ValueType> relativePosition) const noexcept
{
return topLeft
+ (topRight - topLeft) * relativePosition.x
+ (bottomLeft - topLeft) * relativePosition.y;
}
/** Returns a transformed version of the parallelogram. */
Parallelogram transformedBy (const AffineTransform& transform) const noexcept
{
auto p = *this;
transform.transformPoints (p.topLeft.x, p.topLeft.y,
p.topRight.x, p.topRight.y,
p.bottomLeft.x, p.bottomLeft.y);
return p;
}
/** Returns the smallest rectangle that encloses this parallelogram. */
Rectangle<ValueType> getBoundingBox() const noexcept
{
const Point<ValueType> points[] = { topLeft, topRight, bottomLeft, getBottomRight() };
return Rectangle<ValueType>::findAreaContainingPoints (points, 4);
}
Point<ValueType> topLeft, topRight, bottomLeft;
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Represents a parallelogram that is defined by 3 points.
@see Rectangle, Point, Line
@tags{Graphics}
*/
template <typename ValueType>
class Parallelogram
{
public:
//==============================================================================
/** Creates a parallelogram with zero size at the origin.
*/
Parallelogram() = default;
/** Creates a copy of another parallelogram. */
Parallelogram (const Parallelogram&) = default;
/** Creates a parallelogram based on 3 points. */
Parallelogram (Point<ValueType> topLeftPosition,
Point<ValueType> topRightPosition,
Point<ValueType> bottomLeftPosition) noexcept
: topLeft (topLeftPosition), topRight (topRightPosition), bottomLeft (bottomLeftPosition)
{
}
/** Creates a parallelogram from a rectangle. */
Parallelogram (Rectangle<ValueType> rectangle) noexcept
: topLeft (rectangle.getTopLeft()),
topRight (rectangle.getTopRight()),
bottomLeft (rectangle.getBottomLeft())
{
}
Parallelogram& operator= (const Parallelogram&) = default;
/** Destructor. */
~Parallelogram() = default;
//==============================================================================
/** Returns true if the parallelogram has a width or height of more than zero. */
bool isEmpty() const noexcept { return topLeft != topRight || topLeft != bottomLeft; }
/** Returns true if the parallelogram's coordinates are all finite numbers, i.e. not NaN or infinity. */
inline bool isFinite() const noexcept { return topLeft.isFinite() && topRight.isFinite() && bottomLeft.isFinite(); }
/** Returns the width of the parallelogram (i.e. the straight-line distance between the top-left and top-right. */
inline ValueType getWidth() const noexcept { return Line<ValueType> (topLeft, topRight).getLength(); }
/** Returns the height of the parallelogram (i.e. the straight-line distance between the top-left and bottom-left. */
inline ValueType getHeight() const noexcept { return Line<ValueType> (topLeft, bottomLeft).getLength(); }
//==============================================================================
/** Returns the parallelogram's top-left position as a Point. */
Point<ValueType> getTopLeft() const noexcept { return topLeft; }
/** Returns the parallelogram's top-right position as a Point. */
Point<ValueType> getTopRight() const noexcept { return topRight; }
/** Returns the parallelogram's bottom-left position as a Point. */
Point<ValueType> getBottomLeft() const noexcept { return bottomLeft; }
/** Returns the parallelogram's bottom-right position as a Point. */
Point<ValueType> getBottomRight() const noexcept { return topRight + (bottomLeft - topLeft); }
//==============================================================================
/** Returns true if the two parallelograms are identical. */
bool operator== (const Parallelogram& other) const noexcept { return topLeft == other.topLeft && topRight == other.topRight && bottomLeft == other.bottomLeft; }
/** Returns true if the two parallelograms are not identical. */
bool operator!= (const Parallelogram& other) const noexcept { return ! operator== (other); }
//==============================================================================
/** Returns a parallelogram which is the same as this one moved by a given amount. */
Parallelogram operator+ (Point<ValueType> deltaPosition) const noexcept
{
auto p = *this;
p += deltaPosition;
return p;
}
/** Moves this parallelogram by a given amount. */
Parallelogram& operator+= (Point<ValueType> deltaPosition) noexcept
{
topLeft += deltaPosition;
topRight += deltaPosition;
bottomLeft += deltaPosition;
return *this;
}
/** Returns a parallelogram which is the same as this one moved by a given amount. */
Parallelogram operator- (Point<ValueType> deltaPosition) const noexcept
{
return operator+ (-deltaPosition);
}
/** Moves this parallelogram by a given amount. */
Parallelogram& operator-= (Point<ValueType> deltaPosition) noexcept
{
return operator-= (-deltaPosition);
}
/** Returns a parallelogram that has been scaled by the given amount, centred around the origin. */
template <typename PointOrScalarType>
Parallelogram operator* (PointOrScalarType scaleFactor) const noexcept
{
auto p = *this;
p *= scaleFactor;
return p;
}
/** Scales this parallelogram by the given amount, centred around the origin. */
template <typename PointOrScalarType>
Parallelogram operator*= (PointOrScalarType scaleFactor) noexcept
{
topLeft *= scaleFactor;
topRight *= scaleFactor;
bottomLeft *= scaleFactor;
return *this;
}
//==============================================================================
/** Returns a point within this parallelogram, specified as proportional coordinates.
The relative X and Y values should be between 0 and 1, where 0 is the left or
top of this parallelogram, and 1 is the right or bottom. (Out-of-bounds values
will return a point outside the parallelogram).
*/
Point<ValueType> getRelativePoint (Point<ValueType> relativePosition) const noexcept
{
return topLeft
+ (topRight - topLeft) * relativePosition.x
+ (bottomLeft - topLeft) * relativePosition.y;
}
/** Returns a transformed version of the parallelogram. */
Parallelogram transformedBy (const AffineTransform& transform) const noexcept
{
auto p = *this;
transform.transformPoints (p.topLeft.x, p.topLeft.y,
p.topRight.x, p.topRight.y,
p.bottomLeft.x, p.bottomLeft.y);
return p;
}
/** Returns the smallest rectangle that encloses this parallelogram. */
Rectangle<ValueType> getBoundingBox() const noexcept
{
const Point<ValueType> points[] = { topLeft, topRight, bottomLeft, getBottomRight() };
return Rectangle<ValueType>::findAreaContainingPoints (points, 4);
}
Point<ValueType> topLeft, topRight, bottomLeft;
};
} // namespace juce

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,295 +1,295 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
#if JUCE_MSVC && JUCE_DEBUG
#pragma optimize ("t", on)
#endif
//==============================================================================
PathFlatteningIterator::PathFlatteningIterator (const Path& pathToUse,
const AffineTransform& t,
float tolerance)
: x2 (0),
y2 (0),
closesSubPath (false),
subPathIndex (-1),
path (pathToUse),
transform (t),
source (path.data.begin()),
toleranceSquared (tolerance * tolerance),
isIdentityTransform (t.isIdentity())
{
stackPos = stackBase;
}
PathFlatteningIterator::~PathFlatteningIterator()
{
}
bool PathFlatteningIterator::isLastInSubpath() const noexcept
{
return stackPos == stackBase.get()
&& (source == path.data.end() || isMarker (*source, Path::moveMarker));
}
bool PathFlatteningIterator::next()
{
x1 = x2;
y1 = y2;
float x3 = 0;
float y3 = 0;
float x4 = 0;
float y4 = 0;
for (;;)
{
float type;
if (stackPos == stackBase.get())
{
if (source == path.data.end())
return false;
type = *source++;
if (! isMarker (type, Path::closeSubPathMarker))
{
x2 = *source++;
y2 = *source++;
if (isMarker (type, Path::quadMarker))
{
x3 = *source++;
y3 = *source++;
if (! isIdentityTransform)
transform.transformPoints (x2, y2, x3, y3);
}
else if (isMarker (type, Path::cubicMarker))
{
x3 = *source++;
y3 = *source++;
x4 = *source++;
y4 = *source++;
if (! isIdentityTransform)
transform.transformPoints (x2, y2, x3, y3, x4, y4);
}
else
{
if (! isIdentityTransform)
transform.transformPoint (x2, y2);
}
}
}
else
{
type = *--stackPos;
if (! isMarker (type, Path::closeSubPathMarker))
{
x2 = *--stackPos;
y2 = *--stackPos;
if (isMarker (type, Path::quadMarker))
{
x3 = *--stackPos;
y3 = *--stackPos;
}
else if (isMarker (type, Path::cubicMarker))
{
x3 = *--stackPos;
y3 = *--stackPos;
x4 = *--stackPos;
y4 = *--stackPos;
}
}
}
if (isMarker (type, Path::lineMarker))
{
++subPathIndex;
closesSubPath = stackPos == stackBase.get()
&& source != path.data.end()
&& *source == Path::closeSubPathMarker
&& x2 == subPathCloseX
&& y2 == subPathCloseY;
return true;
}
if (isMarker (type, Path::quadMarker))
{
const size_t offset = (size_t) (stackPos - stackBase);
if (offset >= stackSize - 10)
{
stackSize <<= 1;
stackBase.realloc (stackSize);
stackPos = stackBase + offset;
}
auto m1x = (x1 + x2) * 0.5f;
auto m1y = (y1 + y2) * 0.5f;
auto m2x = (x2 + x3) * 0.5f;
auto m2y = (y2 + y3) * 0.5f;
auto m3x = (m1x + m2x) * 0.5f;
auto m3y = (m1y + m2y) * 0.5f;
auto errorX = m3x - x2;
auto errorY = m3y - y2;
auto outsideTolerance = errorX * errorX + errorY * errorY > toleranceSquared;
auto canBeSubdivided = (m3x != m1x && m3x != m2x)
|| (m3y != m1y && m3y != m2y);
if (outsideTolerance && canBeSubdivided)
{
*stackPos++ = y3;
*stackPos++ = x3;
*stackPos++ = m2y;
*stackPos++ = m2x;
*stackPos++ = Path::quadMarker;
*stackPos++ = m3y;
*stackPos++ = m3x;
*stackPos++ = m1y;
*stackPos++ = m1x;
*stackPos++ = Path::quadMarker;
}
else
{
*stackPos++ = y3;
*stackPos++ = x3;
*stackPos++ = Path::lineMarker;
*stackPos++ = m3y;
*stackPos++ = m3x;
*stackPos++ = Path::lineMarker;
}
jassert (stackPos < stackBase + stackSize);
}
else if (isMarker (type, Path::cubicMarker))
{
const size_t offset = (size_t) (stackPos - stackBase);
if (offset >= stackSize - 16)
{
stackSize <<= 1;
stackBase.realloc (stackSize);
stackPos = stackBase + offset;
}
auto m1x = (x1 + x2) * 0.5f;
auto m1y = (y1 + y2) * 0.5f;
auto m2x = (x3 + x2) * 0.5f;
auto m2y = (y3 + y2) * 0.5f;
auto m3x = (x3 + x4) * 0.5f;
auto m3y = (y3 + y4) * 0.5f;
auto m4x = (m1x + m2x) * 0.5f;
auto m4y = (m1y + m2y) * 0.5f;
auto m5x = (m3x + m2x) * 0.5f;
auto m5y = (m3y + m2y) * 0.5f;
auto error1X = m4x - x2;
auto error1Y = m4y - y2;
auto error2X = m5x - x3;
auto error2Y = m5y - y3;
auto outsideTolerance = error1X * error1X + error1Y * error1Y > toleranceSquared
|| error2X * error2X + error2Y * error2Y > toleranceSquared;
auto canBeSubdivided = (m4x != m1x && m4x != m2x)
|| (m4y != m1y && m4y != m2y)
|| (m5x != m3x && m5x != m2x)
|| (m5y != m3y && m5y != m2y);
if (outsideTolerance && canBeSubdivided)
{
*stackPos++ = y4;
*stackPos++ = x4;
*stackPos++ = m3y;
*stackPos++ = m3x;
*stackPos++ = m5y;
*stackPos++ = m5x;
*stackPos++ = Path::cubicMarker;
*stackPos++ = (m4y + m5y) * 0.5f;
*stackPos++ = (m4x + m5x) * 0.5f;
*stackPos++ = m4y;
*stackPos++ = m4x;
*stackPos++ = m1y;
*stackPos++ = m1x;
*stackPos++ = Path::cubicMarker;
}
else
{
*stackPos++ = y4;
*stackPos++ = x4;
*stackPos++ = Path::lineMarker;
*stackPos++ = m5y;
*stackPos++ = m5x;
*stackPos++ = Path::lineMarker;
*stackPos++ = m4y;
*stackPos++ = m4x;
*stackPos++ = Path::lineMarker;
}
}
else if (isMarker (type, Path::closeSubPathMarker))
{
if (x2 != subPathCloseX || y2 != subPathCloseY)
{
x1 = x2;
y1 = y2;
x2 = subPathCloseX;
y2 = subPathCloseY;
closesSubPath = true;
return true;
}
}
else
{
jassert (isMarker (type, Path::moveMarker));
subPathIndex = -1;
subPathCloseX = x1 = x2;
subPathCloseY = y1 = y2;
}
}
}
#if JUCE_MSVC && JUCE_DEBUG
#pragma optimize ("", on) // resets optimisations to the project defaults
#endif
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
#if JUCE_MSVC && JUCE_DEBUG
#pragma optimize ("t", on)
#endif
//==============================================================================
PathFlatteningIterator::PathFlatteningIterator (const Path& pathToUse,
const AffineTransform& t,
float tolerance)
: x2 (0),
y2 (0),
closesSubPath (false),
subPathIndex (-1),
path (pathToUse),
transform (t),
source (path.data.begin()),
toleranceSquared (tolerance * tolerance),
isIdentityTransform (t.isIdentity())
{
stackPos = stackBase;
}
PathFlatteningIterator::~PathFlatteningIterator()
{
}
bool PathFlatteningIterator::isLastInSubpath() const noexcept
{
return stackPos == stackBase.get()
&& (source == path.data.end() || isMarker (*source, Path::moveMarker));
}
bool PathFlatteningIterator::next()
{
x1 = x2;
y1 = y2;
float x3 = 0;
float y3 = 0;
float x4 = 0;
float y4 = 0;
for (;;)
{
float type;
if (stackPos == stackBase.get())
{
if (source == path.data.end())
return false;
type = *source++;
if (! isMarker (type, Path::closeSubPathMarker))
{
x2 = *source++;
y2 = *source++;
if (isMarker (type, Path::quadMarker))
{
x3 = *source++;
y3 = *source++;
if (! isIdentityTransform)
transform.transformPoints (x2, y2, x3, y3);
}
else if (isMarker (type, Path::cubicMarker))
{
x3 = *source++;
y3 = *source++;
x4 = *source++;
y4 = *source++;
if (! isIdentityTransform)
transform.transformPoints (x2, y2, x3, y3, x4, y4);
}
else
{
if (! isIdentityTransform)
transform.transformPoint (x2, y2);
}
}
}
else
{
type = *--stackPos;
if (! isMarker (type, Path::closeSubPathMarker))
{
x2 = *--stackPos;
y2 = *--stackPos;
if (isMarker (type, Path::quadMarker))
{
x3 = *--stackPos;
y3 = *--stackPos;
}
else if (isMarker (type, Path::cubicMarker))
{
x3 = *--stackPos;
y3 = *--stackPos;
x4 = *--stackPos;
y4 = *--stackPos;
}
}
}
if (isMarker (type, Path::lineMarker))
{
++subPathIndex;
closesSubPath = stackPos == stackBase.get()
&& source != path.data.end()
&& *source == Path::closeSubPathMarker
&& x2 == subPathCloseX
&& y2 == subPathCloseY;
return true;
}
if (isMarker (type, Path::quadMarker))
{
const size_t offset = (size_t) (stackPos - stackBase);
if (offset >= stackSize - 10)
{
stackSize <<= 1;
stackBase.realloc (stackSize);
stackPos = stackBase + offset;
}
auto m1x = (x1 + x2) * 0.5f;
auto m1y = (y1 + y2) * 0.5f;
auto m2x = (x2 + x3) * 0.5f;
auto m2y = (y2 + y3) * 0.5f;
auto m3x = (m1x + m2x) * 0.5f;
auto m3y = (m1y + m2y) * 0.5f;
auto errorX = m3x - x2;
auto errorY = m3y - y2;
auto outsideTolerance = errorX * errorX + errorY * errorY > toleranceSquared;
auto canBeSubdivided = (m3x != m1x && m3x != m2x)
|| (m3y != m1y && m3y != m2y);
if (outsideTolerance && canBeSubdivided)
{
*stackPos++ = y3;
*stackPos++ = x3;
*stackPos++ = m2y;
*stackPos++ = m2x;
*stackPos++ = Path::quadMarker;
*stackPos++ = m3y;
*stackPos++ = m3x;
*stackPos++ = m1y;
*stackPos++ = m1x;
*stackPos++ = Path::quadMarker;
}
else
{
*stackPos++ = y3;
*stackPos++ = x3;
*stackPos++ = Path::lineMarker;
*stackPos++ = m3y;
*stackPos++ = m3x;
*stackPos++ = Path::lineMarker;
}
jassert (stackPos < stackBase + stackSize);
}
else if (isMarker (type, Path::cubicMarker))
{
const size_t offset = (size_t) (stackPos - stackBase);
if (offset >= stackSize - 16)
{
stackSize <<= 1;
stackBase.realloc (stackSize);
stackPos = stackBase + offset;
}
auto m1x = (x1 + x2) * 0.5f;
auto m1y = (y1 + y2) * 0.5f;
auto m2x = (x3 + x2) * 0.5f;
auto m2y = (y3 + y2) * 0.5f;
auto m3x = (x3 + x4) * 0.5f;
auto m3y = (y3 + y4) * 0.5f;
auto m4x = (m1x + m2x) * 0.5f;
auto m4y = (m1y + m2y) * 0.5f;
auto m5x = (m3x + m2x) * 0.5f;
auto m5y = (m3y + m2y) * 0.5f;
auto error1X = m4x - x2;
auto error1Y = m4y - y2;
auto error2X = m5x - x3;
auto error2Y = m5y - y3;
auto outsideTolerance = error1X * error1X + error1Y * error1Y > toleranceSquared
|| error2X * error2X + error2Y * error2Y > toleranceSquared;
auto canBeSubdivided = (m4x != m1x && m4x != m2x)
|| (m4y != m1y && m4y != m2y)
|| (m5x != m3x && m5x != m2x)
|| (m5y != m3y && m5y != m2y);
if (outsideTolerance && canBeSubdivided)
{
*stackPos++ = y4;
*stackPos++ = x4;
*stackPos++ = m3y;
*stackPos++ = m3x;
*stackPos++ = m5y;
*stackPos++ = m5x;
*stackPos++ = Path::cubicMarker;
*stackPos++ = (m4y + m5y) * 0.5f;
*stackPos++ = (m4x + m5x) * 0.5f;
*stackPos++ = m4y;
*stackPos++ = m4x;
*stackPos++ = m1y;
*stackPos++ = m1x;
*stackPos++ = Path::cubicMarker;
}
else
{
*stackPos++ = y4;
*stackPos++ = x4;
*stackPos++ = Path::lineMarker;
*stackPos++ = m5y;
*stackPos++ = m5x;
*stackPos++ = Path::lineMarker;
*stackPos++ = m4y;
*stackPos++ = m4x;
*stackPos++ = Path::lineMarker;
}
}
else if (isMarker (type, Path::closeSubPathMarker))
{
if (x2 != subPathCloseX || y2 != subPathCloseY)
{
x1 = x2;
y1 = y2;
x2 = subPathCloseX;
y2 = subPathCloseY;
closesSubPath = true;
return true;
}
}
else
{
jassert (isMarker (type, Path::moveMarker));
subPathIndex = -1;
subPathCloseX = x1 = x2;
subPathCloseY = y1 = y2;
}
}
}
#if JUCE_MSVC && JUCE_DEBUG
#pragma optimize ("", on) // resets optimisations to the project defaults
#endif
} // namespace juce

View File

@ -1,111 +1,111 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Flattens a Path object into a series of straight-line sections.
Use one of these to iterate through a Path object, and it will convert
all the curves into line sections so it's easy to render or perform
geometric operations on.
@see Path
@tags{Graphics}
*/
class JUCE_API PathFlatteningIterator final
{
public:
//==============================================================================
/** Creates a PathFlatteningIterator.
After creation, use the next() method to initialise the fields in the
object with the first line's position.
@param path the path to iterate along
@param transform a transform to apply to each point in the path being iterated
@param tolerance the amount by which the curves are allowed to deviate from the lines
into which they are being broken down - a higher tolerance contains
less lines, so can be generated faster, but will be less smooth.
*/
PathFlatteningIterator (const Path& path,
const AffineTransform& transform = AffineTransform(),
float tolerance = Path::defaultToleranceForMeasurement);
/** Destructor. */
~PathFlatteningIterator();
//==============================================================================
/** Fetches the next line segment from the path.
This will update the member variables x1, y1, x2, y2, subPathIndex and closesSubPath
so that they describe the new line segment.
@returns false when there are no more lines to fetch.
*/
bool next();
float x1; /**< The x position of the start of the current line segment. */
float y1; /**< The y position of the start of the current line segment. */
float x2; /**< The x position of the end of the current line segment. */
float y2; /**< The y position of the end of the current line segment. */
/** Indicates whether the current line segment is closing a sub-path.
If the current line is the one that connects the end of a sub-path
back to the start again, this will be true.
*/
bool closesSubPath;
/** The index of the current line within the current sub-path.
E.g. you can use this to see whether the line is the first one in the
subpath by seeing if it's 0.
*/
int subPathIndex;
/** Returns true if the current segment is the last in the current sub-path. */
bool isLastInSubpath() const noexcept;
private:
//==============================================================================
const Path& path;
const AffineTransform transform;
const float* source;
const float toleranceSquared;
float subPathCloseX = 0, subPathCloseY = 0;
const bool isIdentityTransform;
HeapBlock<float> stackBase { 32 };
float* stackPos;
size_t stackSize = 32;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (PathFlatteningIterator)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Flattens a Path object into a series of straight-line sections.
Use one of these to iterate through a Path object, and it will convert
all the curves into line sections so it's easy to render or perform
geometric operations on.
@see Path
@tags{Graphics}
*/
class JUCE_API PathFlatteningIterator final
{
public:
//==============================================================================
/** Creates a PathFlatteningIterator.
After creation, use the next() method to initialise the fields in the
object with the first line's position.
@param path the path to iterate along
@param transform a transform to apply to each point in the path being iterated
@param tolerance the amount by which the curves are allowed to deviate from the lines
into which they are being broken down - a higher tolerance contains
less lines, so can be generated faster, but will be less smooth.
*/
PathFlatteningIterator (const Path& path,
const AffineTransform& transform = AffineTransform(),
float tolerance = Path::defaultToleranceForMeasurement);
/** Destructor. */
~PathFlatteningIterator();
//==============================================================================
/** Fetches the next line segment from the path.
This will update the member variables x1, y1, x2, y2, subPathIndex and closesSubPath
so that they describe the new line segment.
@returns false when there are no more lines to fetch.
*/
bool next();
float x1; /**< The x position of the start of the current line segment. */
float y1; /**< The y position of the start of the current line segment. */
float x2; /**< The x position of the end of the current line segment. */
float y2; /**< The y position of the end of the current line segment. */
/** Indicates whether the current line segment is closing a sub-path.
If the current line is the one that connects the end of a sub-path
back to the start again, this will be true.
*/
bool closesSubPath;
/** The index of the current line within the current sub-path.
E.g. you can use this to see whether the line is the first one in the
subpath by seeing if it's 0.
*/
int subPathIndex;
/** Returns true if the current segment is the last in the current sub-path. */
bool isLastInSubpath() const noexcept;
private:
//==============================================================================
const Path& path;
const AffineTransform transform;
const float* source;
const float toleranceSquared;
float subPathCloseX = 0, subPathCloseY = 0;
const bool isIdentityTransform;
HeapBlock<float> stackBase { 32 };
float* stackPos;
size_t stackSize = 32;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (PathFlatteningIterator)
};
} // namespace juce

File diff suppressed because it is too large Load Diff

View File

@ -1,206 +1,206 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Describes a type of stroke used to render a solid outline along a path.
A PathStrokeType object can be used directly to create the shape of an outline
around a path, and is used by Graphics::strokePath to specify the type of
stroke to draw.
@see Path, Graphics::strokePath
@tags{Graphics}
*/
class JUCE_API PathStrokeType
{
public:
//==============================================================================
/** The type of shape to use for the corners between two adjacent line segments. */
enum JointStyle
{
mitered, /**< Indicates that corners should be drawn with sharp joints.
Note that for angles that curve back on themselves, drawing a
mitre could require extending the point too far away from the
path, so a mitre limit is imposed and any corners that exceed it
are drawn as bevelled instead. */
curved, /**< Indicates that corners should be drawn as rounded-off. */
beveled /**< Indicates that corners should be drawn with a line flattening their
outside edge. */
};
/** The type shape to use for the ends of lines. */
enum EndCapStyle
{
butt, /**< Ends of lines are flat and don't extend beyond the end point. */
square, /**< Ends of lines are flat, but stick out beyond the end point for half
the thickness of the stroke. */
rounded /**< Ends of lines are rounded-off with a circular shape. */
};
//==============================================================================
/** Creates a stroke type with a given line-width, and default joint/end styles. */
explicit PathStrokeType (float strokeThickness) noexcept;
/** Creates a stroke type.
@param strokeThickness the width of the line to use
@param jointStyle the type of joints to use for corners
@param endStyle the type of end-caps to use for the ends of open paths.
*/
PathStrokeType (float strokeThickness,
JointStyle jointStyle,
EndCapStyle endStyle = butt) noexcept;
/** Creates a copy of another stroke type. */
PathStrokeType (const PathStrokeType&) noexcept;
/** Copies another stroke onto this one. */
PathStrokeType& operator= (const PathStrokeType&) noexcept;
/** Destructor. */
~PathStrokeType() noexcept;
//==============================================================================
/** Applies this stroke type to a path and returns the resultant stroke as another Path.
@param destPath the resultant stroked outline shape will be copied into this path.
Note that it's ok for the source and destination Paths to be
the same object, so you can easily turn a path into a stroked version
of itself.
@param sourcePath the path to use as the source
@param transform an optional transform to apply to the points from the source path
as they are being used
@param extraAccuracy if this is greater than 1.0, it will subdivide the path to
a higher resolution, which improves the quality if you'll later want
to enlarge the stroked path. So for example, if you're planning on drawing
the stroke at 3x the size that you're creating it, you should set this to 3.
@see createDashedStroke
*/
void createStrokedPath (Path& destPath,
const Path& sourcePath,
const AffineTransform& transform = AffineTransform(),
float extraAccuracy = 1.0f) const;
//==============================================================================
/** Applies this stroke type to a path, creating a dashed line.
This is similar to createStrokedPath, but uses the array passed in to
break the stroke up into a series of dashes.
@param destPath the resultant stroked outline shape will be copied into this path.
Note that it's ok for the source and destination Paths to be
the same object, so you can easily turn a path into a stroked version
of itself.
@param sourcePath the path to use as the source
@param dashLengths An array of alternating on/off lengths. E.g. { 2, 3, 4, 5 } will create
a line of length 2, then skip a length of 3, then add a line of length 4,
skip 5, and keep repeating this pattern.
@param numDashLengths The number of lengths in the dashLengths array. This should really be
an even number, otherwise the pattern will get out of step as it
repeats.
@param transform an optional transform to apply to the points from the source path
as they are being used
@param extraAccuracy if this is greater than 1.0, it will subdivide the path to
a higher resolution, which improves the quality if you'll later want
to enlarge the stroked path. So for example, if you're planning on drawing
the stroke at 3x the size that you're creating it, you should set this to 3.
*/
void createDashedStroke (Path& destPath,
const Path& sourcePath,
const float* dashLengths,
int numDashLengths,
const AffineTransform& transform = AffineTransform(),
float extraAccuracy = 1.0f) const;
//==============================================================================
/** Applies this stroke type to a path and returns the resultant stroke as another Path.
@param destPath the resultant stroked outline shape will be copied into this path.
Note that it's ok for the source and destination Paths to be
the same object, so you can easily turn a path into a stroked version
of itself.
@param sourcePath the path to use as the source
@param arrowheadStartWidth the width of the arrowhead at the start of the path
@param arrowheadStartLength the length of the arrowhead at the start of the path
@param arrowheadEndWidth the width of the arrowhead at the end of the path
@param arrowheadEndLength the length of the arrowhead at the end of the path
@param transform an optional transform to apply to the points from the source path
as they are being used
@param extraAccuracy if this is greater than 1.0, it will subdivide the path to
a higher resolution, which improves the quality if you'll later want
to enlarge the stroked path. So for example, if you're planning on drawing
the stroke at 3x the size that you're creating it, you should set this to 3.
@see createDashedStroke
*/
void createStrokeWithArrowheads (Path& destPath,
const Path& sourcePath,
float arrowheadStartWidth, float arrowheadStartLength,
float arrowheadEndWidth, float arrowheadEndLength,
const AffineTransform& transform = AffineTransform(),
float extraAccuracy = 1.0f) const;
//==============================================================================
/** Returns the stroke thickness. */
float getStrokeThickness() const noexcept { return thickness; }
/** Sets the stroke thickness. */
void setStrokeThickness (float newThickness) noexcept { thickness = newThickness; }
/** Returns the joint style. */
JointStyle getJointStyle() const noexcept { return jointStyle; }
/** Sets the joint style. */
void setJointStyle (JointStyle newStyle) noexcept { jointStyle = newStyle; }
/** Returns the end-cap style. */
EndCapStyle getEndStyle() const noexcept { return endStyle; }
/** Sets the end-cap style. */
void setEndStyle (EndCapStyle newStyle) noexcept { endStyle = newStyle; }
//==============================================================================
/** Compares the stroke thickness, joint and end styles of two stroke types. */
bool operator== (const PathStrokeType&) const noexcept;
/** Compares the stroke thickness, joint and end styles of two stroke types. */
bool operator!= (const PathStrokeType&) const noexcept;
private:
//==============================================================================
float thickness;
JointStyle jointStyle;
EndCapStyle endStyle;
JUCE_LEAK_DETECTOR (PathStrokeType)
};
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
Describes a type of stroke used to render a solid outline along a path.
A PathStrokeType object can be used directly to create the shape of an outline
around a path, and is used by Graphics::strokePath to specify the type of
stroke to draw.
@see Path, Graphics::strokePath
@tags{Graphics}
*/
class JUCE_API PathStrokeType
{
public:
//==============================================================================
/** The type of shape to use for the corners between two adjacent line segments. */
enum JointStyle
{
mitered, /**< Indicates that corners should be drawn with sharp joints.
Note that for angles that curve back on themselves, drawing a
mitre could require extending the point too far away from the
path, so a mitre limit is imposed and any corners that exceed it
are drawn as bevelled instead. */
curved, /**< Indicates that corners should be drawn as rounded-off. */
beveled /**< Indicates that corners should be drawn with a line flattening their
outside edge. */
};
/** The type shape to use for the ends of lines. */
enum EndCapStyle
{
butt, /**< Ends of lines are flat and don't extend beyond the end point. */
square, /**< Ends of lines are flat, but stick out beyond the end point for half
the thickness of the stroke. */
rounded /**< Ends of lines are rounded-off with a circular shape. */
};
//==============================================================================
/** Creates a stroke type with a given line-width, and default joint/end styles. */
explicit PathStrokeType (float strokeThickness) noexcept;
/** Creates a stroke type.
@param strokeThickness the width of the line to use
@param jointStyle the type of joints to use for corners
@param endStyle the type of end-caps to use for the ends of open paths.
*/
PathStrokeType (float strokeThickness,
JointStyle jointStyle,
EndCapStyle endStyle = butt) noexcept;
/** Creates a copy of another stroke type. */
PathStrokeType (const PathStrokeType&) noexcept;
/** Copies another stroke onto this one. */
PathStrokeType& operator= (const PathStrokeType&) noexcept;
/** Destructor. */
~PathStrokeType() noexcept;
//==============================================================================
/** Applies this stroke type to a path and returns the resultant stroke as another Path.
@param destPath the resultant stroked outline shape will be copied into this path.
Note that it's ok for the source and destination Paths to be
the same object, so you can easily turn a path into a stroked version
of itself.
@param sourcePath the path to use as the source
@param transform an optional transform to apply to the points from the source path
as they are being used
@param extraAccuracy if this is greater than 1.0, it will subdivide the path to
a higher resolution, which improves the quality if you'll later want
to enlarge the stroked path. So for example, if you're planning on drawing
the stroke at 3x the size that you're creating it, you should set this to 3.
@see createDashedStroke
*/
void createStrokedPath (Path& destPath,
const Path& sourcePath,
const AffineTransform& transform = AffineTransform(),
float extraAccuracy = 1.0f) const;
//==============================================================================
/** Applies this stroke type to a path, creating a dashed line.
This is similar to createStrokedPath, but uses the array passed in to
break the stroke up into a series of dashes.
@param destPath the resultant stroked outline shape will be copied into this path.
Note that it's ok for the source and destination Paths to be
the same object, so you can easily turn a path into a stroked version
of itself.
@param sourcePath the path to use as the source
@param dashLengths An array of alternating on/off lengths. E.g. { 2, 3, 4, 5 } will create
a line of length 2, then skip a length of 3, then add a line of length 4,
skip 5, and keep repeating this pattern.
@param numDashLengths The number of lengths in the dashLengths array. This should really be
an even number, otherwise the pattern will get out of step as it
repeats.
@param transform an optional transform to apply to the points from the source path
as they are being used
@param extraAccuracy if this is greater than 1.0, it will subdivide the path to
a higher resolution, which improves the quality if you'll later want
to enlarge the stroked path. So for example, if you're planning on drawing
the stroke at 3x the size that you're creating it, you should set this to 3.
*/
void createDashedStroke (Path& destPath,
const Path& sourcePath,
const float* dashLengths,
int numDashLengths,
const AffineTransform& transform = AffineTransform(),
float extraAccuracy = 1.0f) const;
//==============================================================================
/** Applies this stroke type to a path and returns the resultant stroke as another Path.
@param destPath the resultant stroked outline shape will be copied into this path.
Note that it's ok for the source and destination Paths to be
the same object, so you can easily turn a path into a stroked version
of itself.
@param sourcePath the path to use as the source
@param arrowheadStartWidth the width of the arrowhead at the start of the path
@param arrowheadStartLength the length of the arrowhead at the start of the path
@param arrowheadEndWidth the width of the arrowhead at the end of the path
@param arrowheadEndLength the length of the arrowhead at the end of the path
@param transform an optional transform to apply to the points from the source path
as they are being used
@param extraAccuracy if this is greater than 1.0, it will subdivide the path to
a higher resolution, which improves the quality if you'll later want
to enlarge the stroked path. So for example, if you're planning on drawing
the stroke at 3x the size that you're creating it, you should set this to 3.
@see createDashedStroke
*/
void createStrokeWithArrowheads (Path& destPath,
const Path& sourcePath,
float arrowheadStartWidth, float arrowheadStartLength,
float arrowheadEndWidth, float arrowheadEndLength,
const AffineTransform& transform = AffineTransform(),
float extraAccuracy = 1.0f) const;
//==============================================================================
/** Returns the stroke thickness. */
float getStrokeThickness() const noexcept { return thickness; }
/** Sets the stroke thickness. */
void setStrokeThickness (float newThickness) noexcept { thickness = newThickness; }
/** Returns the joint style. */
JointStyle getJointStyle() const noexcept { return jointStyle; }
/** Sets the joint style. */
void setJointStyle (JointStyle newStyle) noexcept { jointStyle = newStyle; }
/** Returns the end-cap style. */
EndCapStyle getEndStyle() const noexcept { return endStyle; }
/** Sets the end-cap style. */
void setEndStyle (EndCapStyle newStyle) noexcept { endStyle = newStyle; }
//==============================================================================
/** Compares the stroke thickness, joint and end styles of two stroke types. */
bool operator== (const PathStrokeType&) const noexcept;
/** Compares the stroke thickness, joint and end styles of two stroke types. */
bool operator!= (const PathStrokeType&) const noexcept;
private:
//==============================================================================
float thickness;
JointStyle jointStyle;
EndCapStyle endStyle;
JUCE_LEAK_DETECTOR (PathStrokeType)
};
} // namespace juce

View File

@ -1,254 +1,254 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A pair of (x, y) coordinates.
The ValueType template should be a primitive type such as int, float, double,
rather than a class.
@see Line, Path, AffineTransform
@tags{Graphics}
*/
template <typename ValueType>
class Point
{
public:
/** Creates a point at the origin */
constexpr Point() = default;
/** Creates a copy of another point. */
constexpr Point (const Point&) = default;
/** Creates a point from an (x, y) position. */
constexpr Point (ValueType initialX, ValueType initialY) noexcept : x (initialX), y (initialY) {}
//==============================================================================
/** Copies this point from another one. */
Point& operator= (const Point&) = default;
constexpr inline bool operator== (Point other) const noexcept { return x == other.x && y == other.y; }
constexpr inline bool operator!= (Point other) const noexcept { return x != other.x || y != other.y; }
/** Returns true if the point is (0, 0). */
constexpr bool isOrigin() const noexcept { return x == ValueType() && y == ValueType(); }
/** Returns true if the coordinates are finite values. */
constexpr inline bool isFinite() const noexcept { return juce_isfinite(x) && juce_isfinite(y); }
/** Returns the point's x coordinate. */
constexpr inline ValueType getX() const noexcept { return x; }
/** Returns the point's y coordinate. */
constexpr inline ValueType getY() const noexcept { return y; }
/** Sets the point's x coordinate. */
inline void setX (ValueType newX) noexcept { x = newX; }
/** Sets the point's y coordinate. */
inline void setY (ValueType newY) noexcept { y = newY; }
/** Returns a point which has the same Y position as this one, but a new X. */
constexpr Point withX (ValueType newX) const noexcept { return Point (newX, y); }
/** Returns a point which has the same X position as this one, but a new Y. */
constexpr Point withY (ValueType newY) const noexcept { return Point (x, newY); }
/** Changes the point's x and y coordinates. */
void setXY (ValueType newX, ValueType newY) noexcept { x = newX; y = newY; }
/** Adds a pair of coordinates to this value. */
void addXY (ValueType xToAdd, ValueType yToAdd) noexcept { x += xToAdd; y += yToAdd; }
//==============================================================================
/** Returns a point with a given offset from this one. */
constexpr Point translated (ValueType deltaX, ValueType deltaY) const noexcept { return Point (x + deltaX, y + deltaY); }
/** Adds two points together */
constexpr Point operator+ (Point other) const noexcept { return Point (x + other.x, y + other.y); }
/** Adds another point's coordinates to this one */
Point& operator+= (Point other) noexcept { x += other.x; y += other.y; return *this; }
/** Subtracts one points from another */
constexpr Point operator- (Point other) const noexcept { return Point (x - other.x, y - other.y); }
/** Subtracts another point's coordinates to this one */
Point& operator-= (Point other) noexcept { x -= other.x; y -= other.y; return *this; }
/** Multiplies two points together */
template <typename OtherType>
constexpr Point operator* (Point<OtherType> other) const noexcept { return Point ((ValueType) (x * other.x), (ValueType) (y * other.y)); }
/** Multiplies another point's coordinates to this one */
template <typename OtherType>
Point& operator*= (Point<OtherType> other) noexcept { *this = *this * other; return *this; }
/** Divides one point by another */
template <typename OtherType>
constexpr Point operator/ (Point<OtherType> other) const noexcept { return Point ((ValueType) (x / other.x), (ValueType) (y / other.y)); }
/** Divides this point's coordinates by another */
template <typename OtherType>
Point& operator/= (Point<OtherType> other) noexcept { *this = *this / other; return *this; }
/** Returns a point whose coordinates are multiplied by a given scalar value. */
template <typename OtherType>
constexpr Point operator* (OtherType multiplier) const noexcept
{
using CommonType = typename std::common_type<ValueType, OtherType>::type;
return Point ((ValueType) ((CommonType) x * (CommonType) multiplier),
(ValueType) ((CommonType) y * (CommonType) multiplier));
}
/** Returns a point whose coordinates are divided by a given scalar value. */
template <typename OtherType>
constexpr Point operator/ (OtherType divisor) const noexcept
{
using CommonType = typename std::common_type<ValueType, OtherType>::type;
return Point ((ValueType) ((CommonType) x / (CommonType) divisor),
(ValueType) ((CommonType) y / (CommonType) divisor));
}
/** Multiplies the point's coordinates by a scalar value. */
template <typename FloatType>
Point& operator*= (FloatType multiplier) noexcept { x = (ValueType) (x * multiplier); y = (ValueType) (y * multiplier); return *this; }
/** Divides the point's coordinates by a scalar value. */
template <typename FloatType>
Point& operator/= (FloatType divisor) noexcept { x = (ValueType) (x / divisor); y = (ValueType) (y / divisor); return *this; }
/** Returns the inverse of this point. */
constexpr Point operator-() const noexcept { return Point (-x, -y); }
//==============================================================================
/** This type will be double if the Point's type is double, otherwise it will be float. */
using FloatType = typename TypeHelpers::SmallestFloatType<ValueType>::type;
//==============================================================================
/** Returns the straight-line distance between this point and the origin. */
ValueType getDistanceFromOrigin() const noexcept { return juce_hypot (x, y); }
/** Returns the straight-line distance between this point and another one. */
ValueType getDistanceFrom (Point other) const noexcept { return juce_hypot (x - other.x, y - other.y); }
/** Returns the square of the straight-line distance between this point and the origin. */
constexpr ValueType getDistanceSquaredFromOrigin() const noexcept { return x * x + y * y; }
/** Returns the square of the straight-line distance between this point and another one. */
constexpr ValueType getDistanceSquaredFrom (Point other) const noexcept { return (*this - other).getDistanceSquaredFromOrigin(); }
/** Returns the angle from this point to another one.
Taking this point to be the centre of a circle, and the other point being a position on
the circumference, the return value is the number of radians clockwise from the 12 o'clock
direction.
So 12 o'clock = 0, 3 o'clock = Pi/2, 6 o'clock = Pi, 9 o'clock = -Pi/2
*/
FloatType getAngleToPoint (Point other) const noexcept
{
return static_cast<FloatType> (std::atan2 (static_cast<FloatType> (other.x - x),
static_cast<FloatType> (y - other.y)));
}
/** Returns the point that would be reached by rotating this point clockwise
about the origin by the specified angle.
*/
Point rotatedAboutOrigin (ValueType angleRadians) const noexcept
{
return Point (x * std::cos (angleRadians) - y * std::sin (angleRadians),
x * std::sin (angleRadians) + y * std::cos (angleRadians));
}
/** Taking this point to be the centre of a circle, this returns a point on its circumference.
@param radius the radius of the circle.
@param angle the angle of the point, in radians clockwise from the 12 o'clock position.
*/
Point<FloatType> getPointOnCircumference (float radius, float angle) const noexcept
{
return Point<FloatType> (static_cast<FloatType> (x + radius * std::sin (angle)),
static_cast<FloatType> (y - radius * std::cos (angle)));
}
/** Taking this point to be the centre of an ellipse, this returns a point on its circumference.
@param radiusX the horizontal radius of the circle.
@param radiusY the vertical radius of the circle.
@param angle the angle of the point, in radians clockwise from the 12 o'clock position.
*/
Point<FloatType> getPointOnCircumference (float radiusX, float radiusY, float angle) const noexcept
{
return Point<FloatType> (static_cast<FloatType> (x + radiusX * std::sin (angle)),
static_cast<FloatType> (y - radiusY * std::cos (angle)));
}
/** Returns the dot-product of two points (x1 * x2 + y1 * y2). */
constexpr FloatType getDotProduct (Point other) const noexcept { return x * other.x + y * other.y; }
//==============================================================================
/** Uses a transform to change the point's coordinates.
This will only compile if ValueType = float!
@see AffineTransform::transformPoint
*/
void applyTransform (const AffineTransform& transform) noexcept { transform.transformPoint (x, y); }
/** Returns the position of this point, if it is transformed by a given AffineTransform. */
Point transformedBy (const AffineTransform& transform) const noexcept
{
return Point (static_cast<ValueType> (transform.mat00 * (float) x + transform.mat01 * (float) y + transform.mat02),
static_cast<ValueType> (transform.mat10 * (float) x + transform.mat11 * (float) y + transform.mat12));
}
//==============================================================================
/** Casts this point to a Point<int> object. */
constexpr Point<int> toInt() const noexcept { return Point<int> (static_cast<int> (x), static_cast<int> (y)); }
/** Casts this point to a Point<float> object. */
constexpr Point<float> toFloat() const noexcept { return Point<float> (static_cast<float> (x), static_cast<float> (y)); }
/** Casts this point to a Point<double> object. */
constexpr Point<double> toDouble() const noexcept { return Point<double> (static_cast<double> (x), static_cast<double> (y)); }
/** Casts this point to a Point<int> object using roundToInt() to convert the values. */
constexpr Point<int> roundToInt() const noexcept { return Point<int> (juce::roundToInt (x), juce::roundToInt (y)); }
/** Returns the point as a string in the form "x, y". */
String toString() const { return String (x) + ", " + String (y); }
//==============================================================================
ValueType x{}; /**< The point's X coordinate. */
ValueType y{}; /**< The point's Y coordinate. */
};
/** Multiplies the point's coordinates by a scalar value. */
template <typename ValueType>
Point<ValueType> operator* (ValueType value, Point<ValueType> p) noexcept { return p * value; }
} // namespace juce
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
//==============================================================================
/**
A pair of (x, y) coordinates.
The ValueType template should be a primitive type such as int, float, double,
rather than a class.
@see Line, Path, AffineTransform
@tags{Graphics}
*/
template <typename ValueType>
class Point
{
public:
/** Creates a point at the origin */
constexpr Point() = default;
/** Creates a copy of another point. */
constexpr Point (const Point&) = default;
/** Creates a point from an (x, y) position. */
constexpr Point (ValueType initialX, ValueType initialY) noexcept : x (initialX), y (initialY) {}
//==============================================================================
/** Copies this point from another one. */
Point& operator= (const Point&) = default;
constexpr inline bool operator== (Point other) const noexcept { return x == other.x && y == other.y; }
constexpr inline bool operator!= (Point other) const noexcept { return x != other.x || y != other.y; }
/** Returns true if the point is (0, 0). */
constexpr bool isOrigin() const noexcept { return x == ValueType() && y == ValueType(); }
/** Returns true if the coordinates are finite values. */
constexpr inline bool isFinite() const noexcept { return juce_isfinite(x) && juce_isfinite(y); }
/** Returns the point's x coordinate. */
constexpr inline ValueType getX() const noexcept { return x; }
/** Returns the point's y coordinate. */
constexpr inline ValueType getY() const noexcept { return y; }
/** Sets the point's x coordinate. */
inline void setX (ValueType newX) noexcept { x = newX; }
/** Sets the point's y coordinate. */
inline void setY (ValueType newY) noexcept { y = newY; }
/** Returns a point which has the same Y position as this one, but a new X. */
constexpr Point withX (ValueType newX) const noexcept { return Point (newX, y); }
/** Returns a point which has the same X position as this one, but a new Y. */
constexpr Point withY (ValueType newY) const noexcept { return Point (x, newY); }
/** Changes the point's x and y coordinates. */
void setXY (ValueType newX, ValueType newY) noexcept { x = newX; y = newY; }
/** Adds a pair of coordinates to this value. */
void addXY (ValueType xToAdd, ValueType yToAdd) noexcept { x += xToAdd; y += yToAdd; }
//==============================================================================
/** Returns a point with a given offset from this one. */
constexpr Point translated (ValueType deltaX, ValueType deltaY) const noexcept { return Point (x + deltaX, y + deltaY); }
/** Adds two points together */
constexpr Point operator+ (Point other) const noexcept { return Point (x + other.x, y + other.y); }
/** Adds another point's coordinates to this one */
Point& operator+= (Point other) noexcept { x += other.x; y += other.y; return *this; }
/** Subtracts one points from another */
constexpr Point operator- (Point other) const noexcept { return Point (x - other.x, y - other.y); }
/** Subtracts another point's coordinates to this one */
Point& operator-= (Point other) noexcept { x -= other.x; y -= other.y; return *this; }
/** Multiplies two points together */
template <typename OtherType>
constexpr Point operator* (Point<OtherType> other) const noexcept { return Point ((ValueType) (x * other.x), (ValueType) (y * other.y)); }
/** Multiplies another point's coordinates to this one */
template <typename OtherType>
Point& operator*= (Point<OtherType> other) noexcept { *this = *this * other; return *this; }
/** Divides one point by another */
template <typename OtherType>
constexpr Point operator/ (Point<OtherType> other) const noexcept { return Point ((ValueType) (x / other.x), (ValueType) (y / other.y)); }
/** Divides this point's coordinates by another */
template <typename OtherType>
Point& operator/= (Point<OtherType> other) noexcept { *this = *this / other; return *this; }
/** Returns a point whose coordinates are multiplied by a given scalar value. */
template <typename OtherType>
constexpr Point operator* (OtherType multiplier) const noexcept
{
using CommonType = typename std::common_type<ValueType, OtherType>::type;
return Point ((ValueType) ((CommonType) x * (CommonType) multiplier),
(ValueType) ((CommonType) y * (CommonType) multiplier));
}
/** Returns a point whose coordinates are divided by a given scalar value. */
template <typename OtherType>
constexpr Point operator/ (OtherType divisor) const noexcept
{
using CommonType = typename std::common_type<ValueType, OtherType>::type;
return Point ((ValueType) ((CommonType) x / (CommonType) divisor),
(ValueType) ((CommonType) y / (CommonType) divisor));
}
/** Multiplies the point's coordinates by a scalar value. */
template <typename FloatType>
Point& operator*= (FloatType multiplier) noexcept { x = (ValueType) (x * multiplier); y = (ValueType) (y * multiplier); return *this; }
/** Divides the point's coordinates by a scalar value. */
template <typename FloatType>
Point& operator/= (FloatType divisor) noexcept { x = (ValueType) (x / divisor); y = (ValueType) (y / divisor); return *this; }
/** Returns the inverse of this point. */
constexpr Point operator-() const noexcept { return Point (-x, -y); }
//==============================================================================
/** This type will be double if the Point's type is double, otherwise it will be float. */
using FloatType = typename TypeHelpers::SmallestFloatType<ValueType>::type;
//==============================================================================
/** Returns the straight-line distance between this point and the origin. */
ValueType getDistanceFromOrigin() const noexcept { return juce_hypot (x, y); }
/** Returns the straight-line distance between this point and another one. */
ValueType getDistanceFrom (Point other) const noexcept { return juce_hypot (x - other.x, y - other.y); }
/** Returns the square of the straight-line distance between this point and the origin. */
constexpr ValueType getDistanceSquaredFromOrigin() const noexcept { return x * x + y * y; }
/** Returns the square of the straight-line distance between this point and another one. */
constexpr ValueType getDistanceSquaredFrom (Point other) const noexcept { return (*this - other).getDistanceSquaredFromOrigin(); }
/** Returns the angle from this point to another one.
Taking this point to be the centre of a circle, and the other point being a position on
the circumference, the return value is the number of radians clockwise from the 12 o'clock
direction.
So 12 o'clock = 0, 3 o'clock = Pi/2, 6 o'clock = Pi, 9 o'clock = -Pi/2
*/
FloatType getAngleToPoint (Point other) const noexcept
{
return static_cast<FloatType> (std::atan2 (static_cast<FloatType> (other.x - x),
static_cast<FloatType> (y - other.y)));
}
/** Returns the point that would be reached by rotating this point clockwise
about the origin by the specified angle.
*/
Point rotatedAboutOrigin (ValueType angleRadians) const noexcept
{
return Point (x * std::cos (angleRadians) - y * std::sin (angleRadians),
x * std::sin (angleRadians) + y * std::cos (angleRadians));
}
/** Taking this point to be the centre of a circle, this returns a point on its circumference.
@param radius the radius of the circle.
@param angle the angle of the point, in radians clockwise from the 12 o'clock position.
*/
Point<FloatType> getPointOnCircumference (float radius, float angle) const noexcept
{
return Point<FloatType> (static_cast<FloatType> (x + radius * std::sin (angle)),
static_cast<FloatType> (y - radius * std::cos (angle)));
}
/** Taking this point to be the centre of an ellipse, this returns a point on its circumference.
@param radiusX the horizontal radius of the circle.
@param radiusY the vertical radius of the circle.
@param angle the angle of the point, in radians clockwise from the 12 o'clock position.
*/
Point<FloatType> getPointOnCircumference (float radiusX, float radiusY, float angle) const noexcept
{
return Point<FloatType> (static_cast<FloatType> (x + radiusX * std::sin (angle)),
static_cast<FloatType> (y - radiusY * std::cos (angle)));
}
/** Returns the dot-product of two points (x1 * x2 + y1 * y2). */
constexpr FloatType getDotProduct (Point other) const noexcept { return x * other.x + y * other.y; }
//==============================================================================
/** Uses a transform to change the point's coordinates.
This will only compile if ValueType = float!
@see AffineTransform::transformPoint
*/
void applyTransform (const AffineTransform& transform) noexcept { transform.transformPoint (x, y); }
/** Returns the position of this point, if it is transformed by a given AffineTransform. */
Point transformedBy (const AffineTransform& transform) const noexcept
{
return Point (static_cast<ValueType> (transform.mat00 * (float) x + transform.mat01 * (float) y + transform.mat02),
static_cast<ValueType> (transform.mat10 * (float) x + transform.mat11 * (float) y + transform.mat12));
}
//==============================================================================
/** Casts this point to a Point<int> object. */
constexpr Point<int> toInt() const noexcept { return Point<int> (static_cast<int> (x), static_cast<int> (y)); }
/** Casts this point to a Point<float> object. */
constexpr Point<float> toFloat() const noexcept { return Point<float> (static_cast<float> (x), static_cast<float> (y)); }
/** Casts this point to a Point<double> object. */
constexpr Point<double> toDouble() const noexcept { return Point<double> (static_cast<double> (x), static_cast<double> (y)); }
/** Casts this point to a Point<int> object using roundToInt() to convert the values. */
constexpr Point<int> roundToInt() const noexcept { return Point<int> (juce::roundToInt (x), juce::roundToInt (y)); }
/** Returns the point as a string in the form "x, y". */
String toString() const { return String (x) + ", " + String (y); }
//==============================================================================
ValueType x{}; /**< The point's X coordinate. */
ValueType y{}; /**< The point's Y coordinate. */
};
/** Multiplies the point's coordinates by a scalar value. */
template <typename ValueType>
Point<ValueType> operator* (ValueType value, Point<ValueType> p) noexcept { return p * value; }
} // namespace juce

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,51 @@
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2022 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 7 End-User License
Agreement and JUCE Privacy Policy.
End User License Agreement: www.juce.com/juce-7-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
struct RectangleUnitTest : public UnitTest
{
RectangleUnitTest() : UnitTest ("Rectangle", UnitTestCategories::graphics) {}
void runTest() override
{
beginTest ("Rectangle/string conversions can be round-tripped");
{
const Rectangle<float> a (0.1f, 0.2f, 0.3f, 0.4f);
expect (Rectangle<float>::fromString (a.toString()) == a);
const Rectangle<double> b (0.1, 0.2, 0.3, 0.4);
expect (Rectangle<double>::fromString (b.toString()) == b);
const Rectangle<int> c (1, 2, 3, 4);
expect (Rectangle<int>::fromString (c.toString()) == c);
}
}
};
static RectangleUnitTest rectangleUnitTest;
} // namespace juce

View File

@ -1,132 +1,132 @@
/*
* cderror.h
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file defines the error and message codes for the cjpeg/djpeg
* applications. These strings are not needed as part of the JPEG library
* proper.
* Edit this file to add new codes, or to translate the message strings to
* some other language.
*/
/*
* To define the enum list of message codes, include this file without
* defining macro JMESSAGE. To create a message string table, include it
* again with a suitable JMESSAGE definition (see jerror.c for an example).
*/
#ifndef JMESSAGE
#ifndef CDERROR_H
#define CDERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code,string)
#endif /* CDERROR_H */
#endif /* JMESSAGE */
#ifdef JMAKE_ENUM_LIST
typedef enum {
#define JMESSAGE(code,string) code ,
#endif /* JMAKE_ENUM_LIST */
JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */
#ifdef BMP_SUPPORTED
JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported")
JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image")
JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image")
JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
#endif /* BMP_SUPPORTED */
#ifdef GIF_SUPPORTED
JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
JMESSAGE(JTRC_GIF_BADVERSION,
"Warning: unexpected GIF version number '%c%c%c'")
JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
#endif /* GIF_SUPPORTED */
#ifdef PPM_SUPPORTED
JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file")
JMESSAGE(JTRC_PGM, "%ux%u PGM image")
JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image")
JMESSAGE(JTRC_PPM, "%ux%u PPM image")
JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image")
#endif /* PPM_SUPPORTED */
#ifdef RLE_SUPPORTED
JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library")
JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB")
JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE")
JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file")
JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header")
JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header")
JMESSAGE(JERR_RLE_NOT, "Not an RLE file")
JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE")
JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup")
JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file")
JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d")
JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file")
JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d")
JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d")
#endif /* RLE_SUPPORTED */
#ifdef TARGA_SUPPORTED
JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
#else
JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
#endif /* TARGA_SUPPORTED */
JMESSAGE(JERR_BAD_CMAP_FILE,
"Color map file is invalid or of unsupported format")
JMESSAGE(JERR_TOO_MANY_COLORS,
"Output file format cannot handle %d colormap entries")
JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
#ifdef TARGA_SUPPORTED
JMESSAGE(JERR_UNKNOWN_FORMAT,
"Unrecognized input file format --- perhaps you need -targa")
#else
JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
#endif
JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")
#ifdef JMAKE_ENUM_LIST
JMSG_LASTADDONCODE
} ADDON_MESSAGE_CODE;
#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE
/*
* cderror.h
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file defines the error and message codes for the cjpeg/djpeg
* applications. These strings are not needed as part of the JPEG library
* proper.
* Edit this file to add new codes, or to translate the message strings to
* some other language.
*/
/*
* To define the enum list of message codes, include this file without
* defining macro JMESSAGE. To create a message string table, include it
* again with a suitable JMESSAGE definition (see jerror.c for an example).
*/
#ifndef JMESSAGE
#ifndef CDERROR_H
#define CDERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code,string)
#endif /* CDERROR_H */
#endif /* JMESSAGE */
#ifdef JMAKE_ENUM_LIST
typedef enum {
#define JMESSAGE(code,string) code ,
#endif /* JMAKE_ENUM_LIST */
JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */
#ifdef BMP_SUPPORTED
JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported")
JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image")
JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image")
JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
#endif /* BMP_SUPPORTED */
#ifdef GIF_SUPPORTED
JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
JMESSAGE(JTRC_GIF_BADVERSION,
"Warning: unexpected GIF version number '%c%c%c'")
JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
#endif /* GIF_SUPPORTED */
#ifdef PPM_SUPPORTED
JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file")
JMESSAGE(JTRC_PGM, "%ux%u PGM image")
JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image")
JMESSAGE(JTRC_PPM, "%ux%u PPM image")
JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image")
#endif /* PPM_SUPPORTED */
#ifdef RLE_SUPPORTED
JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library")
JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB")
JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE")
JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file")
JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header")
JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header")
JMESSAGE(JERR_RLE_NOT, "Not an RLE file")
JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE")
JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup")
JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file")
JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d")
JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file")
JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d")
JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d")
#endif /* RLE_SUPPORTED */
#ifdef TARGA_SUPPORTED
JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
#else
JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
#endif /* TARGA_SUPPORTED */
JMESSAGE(JERR_BAD_CMAP_FILE,
"Color map file is invalid or of unsupported format")
JMESSAGE(JERR_TOO_MANY_COLORS,
"Output file format cannot handle %d colormap entries")
JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
#ifdef TARGA_SUPPORTED
JMESSAGE(JERR_UNKNOWN_FORMAT,
"Unrecognized input file format --- perhaps you need -targa")
#else
JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
#endif
JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")
#ifdef JMAKE_ENUM_LIST
JMSG_LASTADDONCODE
} ADDON_MESSAGE_CODE;
#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE

View File

@ -1,280 +1,280 @@
/*
* jcapimin.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the compression half
* of the JPEG library. These are the "minimum" API routines that may be
* needed in either the normal full-compression case or the transcoding-only
* case.
*
* Most of the routines intended to be called directly by an application
* are in this file or in jcapistd.c. But also see jcparam.c for
* parameter-setup helper routines, jcomapi.c for routines shared by
* compression and decompression, and jctrans.c for the transcoding case.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Initialization of a JPEG compression object.
* The error manager must already be set up (in case memory manager fails).
*/
GLOBAL(void)
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
{
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_compress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
* client_data, so we have to save and restore those fields.
* Note: if application hasn't set client_data, tools like Purify may
* complain here.
*/
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
cinfo->is_decompressor = FALSE;
/* Initialize a memory manager instance for this object */
jinit_memory_mgr((j_common_ptr) cinfo);
/* Zero out pointers to permanent structures. */
cinfo->progress = NULL;
cinfo->dest = NULL;
cinfo->comp_info = NULL;
for (i = 0; i < NUM_QUANT_TBLS; i++)
cinfo->quant_tbl_ptrs[i] = NULL;
for (i = 0; i < NUM_HUFF_TBLS; i++) {
cinfo->dc_huff_tbl_ptrs[i] = NULL;
cinfo->ac_huff_tbl_ptrs[i] = NULL;
}
cinfo->script_space = NULL;
cinfo->input_gamma = 1.0; /* in case application forgets */
/* OK, I'm ready */
cinfo->global_state = CSTATE_START;
}
/*
* Destruction of a JPEG compression object
*/
GLOBAL(void)
jpeg_destroy_compress (j_compress_ptr cinfo)
{
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
}
/*
* Abort processing of a JPEG compression operation,
* but don't destroy the object itself.
*/
GLOBAL(void)
jpeg_abort_compress (j_compress_ptr cinfo)
{
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
}
/*
* Forcibly suppress or un-suppress all quantization and Huffman tables.
* Marks all currently defined tables as already written (if suppress)
* or not written (if !suppress). This will control whether they get emitted
* by a subsequent jpeg_start_compress call.
*
* This routine is exported for use by applications that want to produce
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
* since it is called by jpeg_start_compress, we put it here --- otherwise
* jcparam.o would be linked whether the application used it or not.
*/
GLOBAL(void)
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
{
int i;
JQUANT_TBL * qtbl;
JHUFF_TBL * htbl;
for (i = 0; i < NUM_QUANT_TBLS; i++) {
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
qtbl->sent_table = suppress;
}
for (i = 0; i < NUM_HUFF_TBLS; i++) {
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
htbl->sent_table = suppress;
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
htbl->sent_table = suppress;
}
}
/*
* Finish JPEG compression.
*
* If a multipass operating mode was selected, this may do a great deal of
* work including most of the actual output.
*/
GLOBAL(void)
jpeg_finish_compress (j_compress_ptr cinfo)
{
JDIMENSION iMCU_row;
if (cinfo->global_state == CSTATE_SCANNING ||
cinfo->global_state == CSTATE_RAW_OK) {
/* Terminate first pass */
if (cinfo->next_scanline < cinfo->image_height)
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
(*cinfo->master->finish_pass) (cinfo);
} else if (cinfo->global_state != CSTATE_WRCOEFS)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Perform any remaining passes */
while (! cinfo->master->is_last_pass) {
(*cinfo->master->prepare_for_pass) (cinfo);
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) iMCU_row;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* We bypass the main controller and invoke coef controller directly;
* all work is being done from the coefficient buffer.
*/
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
}
(*cinfo->master->finish_pass) (cinfo);
}
/* Write EOI, do final cleanup */
(*cinfo->marker->write_file_trailer) (cinfo);
(*cinfo->dest->term_destination) (cinfo);
/* We can use jpeg_abort to release memory and reset global_state */
jpeg_abort((j_common_ptr) cinfo);
}
/*
* Write a special marker.
* This is only recommended for writing COM or APPn markers.
* Must be called after jpeg_start_compress() and before
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
*/
GLOBAL(void)
jpeg_write_marker (j_compress_ptr cinfo, int marker,
const JOCTET *dataptr, unsigned int datalen)
{
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
if (cinfo->next_scanline != 0 ||
(cinfo->global_state != CSTATE_SCANNING &&
cinfo->global_state != CSTATE_RAW_OK &&
cinfo->global_state != CSTATE_WRCOEFS))
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
while (datalen--) {
(*write_marker_byte) (cinfo, *dataptr);
dataptr++;
}
}
/* Same, but piecemeal. */
GLOBAL(void)
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
{
if (cinfo->next_scanline != 0 ||
(cinfo->global_state != CSTATE_SCANNING &&
cinfo->global_state != CSTATE_RAW_OK &&
cinfo->global_state != CSTATE_WRCOEFS))
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
}
GLOBAL(void)
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
{
(*cinfo->marker->write_marker_byte) (cinfo, val);
}
/*
* Alternate compression function: just write an abbreviated table file.
* Before calling this, all parameters and a data destination must be set up.
*
* To produce a pair of files containing abbreviated tables and abbreviated
* image data, one would proceed as follows:
*
* initialize JPEG object
* set JPEG parameters
* set destination to table file
* jpeg_write_tables(cinfo);
* set destination to image file
* jpeg_start_compress(cinfo, FALSE);
* write data...
* jpeg_finish_compress(cinfo);
*
* jpeg_write_tables has the side effect of marking all tables written
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
*/
GLOBAL(void)
jpeg_write_tables (j_compress_ptr cinfo)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Initialize the marker writer ... bit of a crock to do it here. */
jinit_marker_writer(cinfo);
/* Write them tables! */
(*cinfo->marker->write_tables_only) (cinfo);
/* And clean up. */
(*cinfo->dest->term_destination) (cinfo);
/*
* In library releases up through v6a, we called jpeg_abort() here to free
* any working memory allocated by the destination manager and marker
* writer. Some applications had a problem with that: they allocated space
* of their own from the library memory manager, and didn't want it to go
* away during write_tables. So now we do nothing. This will cause a
* memory leak if an app calls write_tables repeatedly without doing a full
* compression cycle or otherwise resetting the JPEG object. However, that
* seems less bad than unexpectedly freeing memory in the normal case.
* An app that prefers the old behavior can call jpeg_abort for itself after
* each call to jpeg_write_tables().
*/
}
/*
* jcapimin.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the compression half
* of the JPEG library. These are the "minimum" API routines that may be
* needed in either the normal full-compression case or the transcoding-only
* case.
*
* Most of the routines intended to be called directly by an application
* are in this file or in jcapistd.c. But also see jcparam.c for
* parameter-setup helper routines, jcomapi.c for routines shared by
* compression and decompression, and jctrans.c for the transcoding case.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Initialization of a JPEG compression object.
* The error manager must already be set up (in case memory manager fails).
*/
GLOBAL(void)
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
{
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_compress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
* client_data, so we have to save and restore those fields.
* Note: if application hasn't set client_data, tools like Purify may
* complain here.
*/
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
cinfo->is_decompressor = FALSE;
/* Initialize a memory manager instance for this object */
jinit_memory_mgr((j_common_ptr) cinfo);
/* Zero out pointers to permanent structures. */
cinfo->progress = NULL;
cinfo->dest = NULL;
cinfo->comp_info = NULL;
for (i = 0; i < NUM_QUANT_TBLS; i++)
cinfo->quant_tbl_ptrs[i] = NULL;
for (i = 0; i < NUM_HUFF_TBLS; i++) {
cinfo->dc_huff_tbl_ptrs[i] = NULL;
cinfo->ac_huff_tbl_ptrs[i] = NULL;
}
cinfo->script_space = NULL;
cinfo->input_gamma = 1.0; /* in case application forgets */
/* OK, I'm ready */
cinfo->global_state = CSTATE_START;
}
/*
* Destruction of a JPEG compression object
*/
GLOBAL(void)
jpeg_destroy_compress (j_compress_ptr cinfo)
{
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
}
/*
* Abort processing of a JPEG compression operation,
* but don't destroy the object itself.
*/
GLOBAL(void)
jpeg_abort_compress (j_compress_ptr cinfo)
{
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
}
/*
* Forcibly suppress or un-suppress all quantization and Huffman tables.
* Marks all currently defined tables as already written (if suppress)
* or not written (if !suppress). This will control whether they get emitted
* by a subsequent jpeg_start_compress call.
*
* This routine is exported for use by applications that want to produce
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
* since it is called by jpeg_start_compress, we put it here --- otherwise
* jcparam.o would be linked whether the application used it or not.
*/
GLOBAL(void)
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
{
int i;
JQUANT_TBL * qtbl;
JHUFF_TBL * htbl;
for (i = 0; i < NUM_QUANT_TBLS; i++) {
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
qtbl->sent_table = suppress;
}
for (i = 0; i < NUM_HUFF_TBLS; i++) {
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
htbl->sent_table = suppress;
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
htbl->sent_table = suppress;
}
}
/*
* Finish JPEG compression.
*
* If a multipass operating mode was selected, this may do a great deal of
* work including most of the actual output.
*/
GLOBAL(void)
jpeg_finish_compress (j_compress_ptr cinfo)
{
JDIMENSION iMCU_row;
if (cinfo->global_state == CSTATE_SCANNING ||
cinfo->global_state == CSTATE_RAW_OK) {
/* Terminate first pass */
if (cinfo->next_scanline < cinfo->image_height)
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
(*cinfo->master->finish_pass) (cinfo);
} else if (cinfo->global_state != CSTATE_WRCOEFS)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Perform any remaining passes */
while (! cinfo->master->is_last_pass) {
(*cinfo->master->prepare_for_pass) (cinfo);
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) iMCU_row;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* We bypass the main controller and invoke coef controller directly;
* all work is being done from the coefficient buffer.
*/
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
}
(*cinfo->master->finish_pass) (cinfo);
}
/* Write EOI, do final cleanup */
(*cinfo->marker->write_file_trailer) (cinfo);
(*cinfo->dest->term_destination) (cinfo);
/* We can use jpeg_abort to release memory and reset global_state */
jpeg_abort((j_common_ptr) cinfo);
}
/*
* Write a special marker.
* This is only recommended for writing COM or APPn markers.
* Must be called after jpeg_start_compress() and before
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
*/
GLOBAL(void)
jpeg_write_marker (j_compress_ptr cinfo, int marker,
const JOCTET *dataptr, unsigned int datalen)
{
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
if (cinfo->next_scanline != 0 ||
(cinfo->global_state != CSTATE_SCANNING &&
cinfo->global_state != CSTATE_RAW_OK &&
cinfo->global_state != CSTATE_WRCOEFS))
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
while (datalen--) {
(*write_marker_byte) (cinfo, *dataptr);
dataptr++;
}
}
/* Same, but piecemeal. */
GLOBAL(void)
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
{
if (cinfo->next_scanline != 0 ||
(cinfo->global_state != CSTATE_SCANNING &&
cinfo->global_state != CSTATE_RAW_OK &&
cinfo->global_state != CSTATE_WRCOEFS))
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
}
GLOBAL(void)
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
{
(*cinfo->marker->write_marker_byte) (cinfo, val);
}
/*
* Alternate compression function: just write an abbreviated table file.
* Before calling this, all parameters and a data destination must be set up.
*
* To produce a pair of files containing abbreviated tables and abbreviated
* image data, one would proceed as follows:
*
* initialize JPEG object
* set JPEG parameters
* set destination to table file
* jpeg_write_tables(cinfo);
* set destination to image file
* jpeg_start_compress(cinfo, FALSE);
* write data...
* jpeg_finish_compress(cinfo);
*
* jpeg_write_tables has the side effect of marking all tables written
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
*/
GLOBAL(void)
jpeg_write_tables (j_compress_ptr cinfo)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Initialize the marker writer ... bit of a crock to do it here. */
jinit_marker_writer(cinfo);
/* Write them tables! */
(*cinfo->marker->write_tables_only) (cinfo);
/* And clean up. */
(*cinfo->dest->term_destination) (cinfo);
/*
* In library releases up through v6a, we called jpeg_abort() here to free
* any working memory allocated by the destination manager and marker
* writer. Some applications had a problem with that: they allocated space
* of their own from the library memory manager, and didn't want it to go
* away during write_tables. So now we do nothing. This will cause a
* memory leak if an app calls write_tables repeatedly without doing a full
* compression cycle or otherwise resetting the JPEG object. However, that
* seems less bad than unexpectedly freeing memory in the normal case.
* An app that prefers the old behavior can call jpeg_abort for itself after
* each call to jpeg_write_tables().
*/
}

View File

@ -1,161 +1,161 @@
/*
* jcapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the compression half
* of the JPEG library. These are the "standard" API routines that are
* used in the normal full-compression case. They are not used by a
* transcoding-only application. Note that if an application links in
* jpeg_start_compress, it will end up linking in the entire compressor.
* We thus must separate this file from jcapimin.c to avoid linking the
* whole compression library into a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Compression initialization.
* Before calling this, all parameters and a data destination must be set up.
*
* We require a write_all_tables parameter as a failsafe check when writing
* multiple datastreams from the same compression object. Since prior runs
* will have left all the tables marked sent_table=TRUE, a subsequent run
* would emit an abbreviated stream (no tables) by default. This may be what
* is wanted, but for safety's sake it should not be the default behavior:
* programmers should have to make a deliberate choice to emit abbreviated
* images. Therefore the documentation and examples should encourage people
* to pass write_all_tables=TRUE; then it will take active thought to do the
* wrong thing.
*/
GLOBAL(void)
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (write_all_tables)
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
jinit_compress_master(cinfo);
/* Set up for the first pass */
(*cinfo->master->prepare_for_pass) (cinfo);
/* Ready for application to drive first pass through jpeg_write_scanlines
* or jpeg_write_raw_data.
*/
cinfo->next_scanline = 0;
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
}
/*
* Write some scanlines of data to the JPEG compressor.
*
* The return value will be the number of lines actually written.
* This should be less than the supplied num_lines only in case that
* the data destination module has requested suspension of the compressor,
* or if more than image_height scanlines are passed in.
*
* Note: we warn about excess calls to jpeg_write_scanlines() since
* this likely signals an application programmer error. However,
* excess scanlines passed in the last valid call are *silently* ignored,
* so that the application need not adjust num_lines for end-of-image
* when using a multiple-scanline buffer.
*/
GLOBAL(JDIMENSION)
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines)
{
JDIMENSION row_ctr, rows_left;
if (cinfo->global_state != CSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height)
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_scanlines. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_scanlines.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Ignore any extra scanlines at bottom of image. */
rows_left = cinfo->image_height - cinfo->next_scanline;
if (num_lines > rows_left)
num_lines = rows_left;
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
cinfo->next_scanline += row_ctr;
return row_ctr;
}
/*
* Alternate entry point to write raw data.
* Processes exactly one iMCU row per call, unless suspended.
*/
GLOBAL(JDIMENSION)
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION num_lines)
{
JDIMENSION lines_per_iMCU_row;
if (cinfo->global_state != CSTATE_RAW_OK)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_raw_data. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_raw_data.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Verify that at least one iMCU row has been passed. */
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
if (num_lines < lines_per_iMCU_row)
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* Directly compress the row. */
if (! (*cinfo->coef->compress_data) (cinfo, data)) {
/* If compressor did not consume the whole row, suspend processing. */
return 0;
}
/* OK, we processed one iMCU row. */
cinfo->next_scanline += lines_per_iMCU_row;
return lines_per_iMCU_row;
}
/*
* jcapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the compression half
* of the JPEG library. These are the "standard" API routines that are
* used in the normal full-compression case. They are not used by a
* transcoding-only application. Note that if an application links in
* jpeg_start_compress, it will end up linking in the entire compressor.
* We thus must separate this file from jcapimin.c to avoid linking the
* whole compression library into a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Compression initialization.
* Before calling this, all parameters and a data destination must be set up.
*
* We require a write_all_tables parameter as a failsafe check when writing
* multiple datastreams from the same compression object. Since prior runs
* will have left all the tables marked sent_table=TRUE, a subsequent run
* would emit an abbreviated stream (no tables) by default. This may be what
* is wanted, but for safety's sake it should not be the default behavior:
* programmers should have to make a deliberate choice to emit abbreviated
* images. Therefore the documentation and examples should encourage people
* to pass write_all_tables=TRUE; then it will take active thought to do the
* wrong thing.
*/
GLOBAL(void)
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (write_all_tables)
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
jinit_compress_master(cinfo);
/* Set up for the first pass */
(*cinfo->master->prepare_for_pass) (cinfo);
/* Ready for application to drive first pass through jpeg_write_scanlines
* or jpeg_write_raw_data.
*/
cinfo->next_scanline = 0;
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
}
/*
* Write some scanlines of data to the JPEG compressor.
*
* The return value will be the number of lines actually written.
* This should be less than the supplied num_lines only in case that
* the data destination module has requested suspension of the compressor,
* or if more than image_height scanlines are passed in.
*
* Note: we warn about excess calls to jpeg_write_scanlines() since
* this likely signals an application programmer error. However,
* excess scanlines passed in the last valid call are *silently* ignored,
* so that the application need not adjust num_lines for end-of-image
* when using a multiple-scanline buffer.
*/
GLOBAL(JDIMENSION)
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines)
{
JDIMENSION row_ctr, rows_left;
if (cinfo->global_state != CSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height)
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_scanlines. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_scanlines.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Ignore any extra scanlines at bottom of image. */
rows_left = cinfo->image_height - cinfo->next_scanline;
if (num_lines > rows_left)
num_lines = rows_left;
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
cinfo->next_scanline += row_ctr;
return row_ctr;
}
/*
* Alternate entry point to write raw data.
* Processes exactly one iMCU row per call, unless suspended.
*/
GLOBAL(JDIMENSION)
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION num_lines)
{
JDIMENSION lines_per_iMCU_row;
if (cinfo->global_state != CSTATE_RAW_OK)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_raw_data. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_raw_data.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Verify that at least one iMCU row has been passed. */
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
if (num_lines < lines_per_iMCU_row)
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* Directly compress the row. */
if (! (*cinfo->coef->compress_data) (cinfo, data)) {
/* If compressor did not consume the whole row, suspend processing. */
return 0;
}
/* OK, we processed one iMCU row. */
cinfo->next_scanline += lines_per_iMCU_row;
return lines_per_iMCU_row;
}

View File

@ -1,449 +1,449 @@
/*
* jccoefct.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the coefficient buffer controller for compression.
* This controller is the top level of the JPEG compressor proper.
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* We use a full-image coefficient buffer when doing Huffman optimization,
* and also for writing multiple-scan JPEG files. In all cases, the DCT
* step is run during the first pass, and subsequent passes need only read
* the buffered coefficients.
*/
#ifdef ENTROPY_OPT_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#else
#ifdef C_MULTISCAN_FILES_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#endif
#endif
/* Private buffer controller object */
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* For single-pass compression, it's sufficient to buffer just one MCU
* (although this may prove a bit slow in practice). We allocate a
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
* it's not really very big; this is to keep the module interfaces unchanged
* when a large coefficient buffer is necessary.)
* In multi-pass modes, this array points to the current MCU's blocks
* within the virtual arrays.
*/
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
/* In multi-pass modes, we need a virtual block array for each component. */
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
} my_coef_controller;
typedef my_coef_controller * my_coef_ptr;
/* Forward declarations */
METHODDEF(boolean) compress_data
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#ifdef FULL_COEF_BUFFER_SUPPORTED
METHODDEF(boolean) compress_first_pass
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
METHODDEF(boolean) compress_output
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#endif
LOCAL(void)
start_iMCU_row (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->mcu_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
coef->iMCU_row_num = 0;
start_iMCU_row(cinfo);
switch (pass_mode) {
case JBUF_PASS_THRU:
if (coef->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_data;
break;
#ifdef FULL_COEF_BUFFER_SUPPORTED
case JBUF_SAVE_AND_PASS:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_first_pass;
break;
case JBUF_CRANK_DEST:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_output;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
}
/*
* Process some data in the single-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf contains a plane for each component in image,
* which we index according to the component's SOF position.
*/
METHODDEF(boolean)
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, bi, ci, yindex, yoffset, blockcnt;
JDIMENSION ypos, xpos;
jpeg_component_info *compptr;
/* Loop to write as much as one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
/* Determine where data comes from in input_buf and do the DCT thing.
* Each call on forward_DCT processes a horizontal row of DCT blocks
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
* sequentially. Dummy blocks at the right or bottom edge are filled in
* specially. The data in them does not matter for image reconstruction,
* so we fill them with values that will encode to the smallest amount of
* data, viz: all zeroes in the AC entries, DC entries equal to previous
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
*/
blkn = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
xpos = MCU_col_num * compptr->MCU_sample_width;
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yoffset+yindex < compptr->last_row_height) {
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[compptr->component_index],
coef->MCU_buffer[blkn],
ypos, xpos, (JDIMENSION) blockcnt);
if (blockcnt < compptr->MCU_width) {
/* Create some dummy blocks at the right edge of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
}
}
} else {
/* Create a row of dummy blocks at the bottom of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn],
compptr->MCU_width * SIZEOF(JBLOCK));
for (bi = 0; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
}
}
blkn += compptr->MCU_width;
ypos += DCTSIZE;
}
}
/* Try to write the MCU. In event of a suspension failure, we will
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
*/
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#ifdef FULL_COEF_BUFFER_SUPPORTED
/*
* Process some data in the first pass of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* This amount of data is read from the source buffer, DCT'd and quantized,
* and saved into the virtual arrays. We also generate suitable dummy blocks
* as needed at the right and lower edges. (The dummy blocks are constructed
* in the virtual arrays, which have been padded appropriately.) This makes
* it possible for subsequent passes not to worry about real vs. dummy blocks.
*
* We must also emit the data to the entropy encoder. This is conveniently
* done by calling compress_output() after we've loaded the current strip
* of the virtual arrays.
*
* NB: input_buf contains a plane for each component in image. All
* components are DCT'd and loaded into the virtual arrays in this pass.
* However, it may be that only a subset of the components are emitted to
* the entropy encoder during this first pass; be careful about looking
* at the scan-dependent variables (MCU dimensions, etc).
*/
METHODDEF(boolean)
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
JDIMENSION blocks_across, MCUs_across, MCUindex;
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
JCOEF lastDC;
jpeg_component_info *compptr;
JBLOCKARRAY buffer;
JBLOCKROW thisblockrow, lastblockrow;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Align the virtual buffer for this component. */
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, TRUE);
/* Count non-dummy DCT block rows in this iMCU row. */
if (coef->iMCU_row_num < last_iMCU_row)
block_rows = compptr->v_samp_factor;
else {
/* NB: can't use last_row_height here, since may not be set! */
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (block_rows == 0) block_rows = compptr->v_samp_factor;
}
blocks_across = compptr->width_in_blocks;
h_samp_factor = compptr->h_samp_factor;
/* Count number of dummy blocks to be added at the right margin. */
ndummy = (int) (blocks_across % h_samp_factor);
if (ndummy > 0)
ndummy = h_samp_factor - ndummy;
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
* on forward_DCT processes a complete horizontal row of DCT blocks.
*/
for (block_row = 0; block_row < block_rows; block_row++) {
thisblockrow = buffer[block_row];
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[ci], thisblockrow,
(JDIMENSION) (block_row * DCTSIZE),
(JDIMENSION) 0, blocks_across);
if (ndummy > 0) {
/* Create dummy blocks at the right edge of the image. */
thisblockrow += blocks_across; /* => first dummy block */
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
lastDC = thisblockrow[-1][0];
for (bi = 0; bi < ndummy; bi++) {
thisblockrow[bi][0] = lastDC;
}
}
}
/* If at end of image, create dummy block rows as needed.
* The tricky part here is that within each MCU, we want the DC values
* of the dummy blocks to match the last real block's DC value.
* This squeezes a few more bytes out of the resulting file...
*/
if (coef->iMCU_row_num == last_iMCU_row) {
blocks_across += ndummy; /* include lower right corner */
MCUs_across = blocks_across / h_samp_factor;
for (block_row = block_rows; block_row < compptr->v_samp_factor;
block_row++) {
thisblockrow = buffer[block_row];
lastblockrow = buffer[block_row-1];
jzero_far((void FAR *) thisblockrow,
(size_t) (blocks_across * SIZEOF(JBLOCK)));
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
lastDC = lastblockrow[h_samp_factor-1][0];
for (bi = 0; bi < h_samp_factor; bi++) {
thisblockrow[bi][0] = lastDC;
}
thisblockrow += h_samp_factor; /* advance to next MCU in row */
lastblockrow += h_samp_factor;
}
}
}
}
/* NB: compress_output will increment iMCU_row_num if successful.
* A suspension return will result in redoing all the work above next time.
*/
/* Emit data to the entropy encoder, sharing code with subsequent passes */
return compress_output(cinfo, input_buf);
}
/*
* Process some data in subsequent passes of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the scan.
* The data is obtained from the virtual arrays and fed to the entropy coder.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf is ignored; it is likely to be a NULL pointer.
*/
METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
int blkn, ci, xindex, yindex, yoffset;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan.
* NB: during first pass, this is safe only because the buffers will
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
*/
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
coef->MCU_buffer[blkn++] = buffer_ptr++;
}
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#endif /* FULL_COEF_BUFFER_SUPPORTED */
/*
* Initialize coefficient buffer controller.
*/
GLOBAL(void)
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_coef_ptr coef;
coef = (my_coef_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller));
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
coef->pub.start_pass = start_pass_coef;
/* Create the coefficient buffer. */
if (need_full_buffer) {
#ifdef FULL_COEF_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component, */
/* padded to a multiple of samp_factor DCT blocks in each direction. */
int ci;
jpeg_component_info *compptr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) compptr->v_samp_factor);
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
/* We only need a single-MCU buffer. */
JBLOCKROW buffer;
int i;
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
coef->MCU_buffer[i] = buffer + i;
}
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
}
}
/*
* jccoefct.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the coefficient buffer controller for compression.
* This controller is the top level of the JPEG compressor proper.
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* We use a full-image coefficient buffer when doing Huffman optimization,
* and also for writing multiple-scan JPEG files. In all cases, the DCT
* step is run during the first pass, and subsequent passes need only read
* the buffered coefficients.
*/
#ifdef ENTROPY_OPT_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#else
#ifdef C_MULTISCAN_FILES_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#endif
#endif
/* Private buffer controller object */
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* For single-pass compression, it's sufficient to buffer just one MCU
* (although this may prove a bit slow in practice). We allocate a
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
* MCU constructed and sent. (On 80x86, the workspace is FAR even though
* it's not really very big; this is to keep the module interfaces unchanged
* when a large coefficient buffer is necessary.)
* In multi-pass modes, this array points to the current MCU's blocks
* within the virtual arrays.
*/
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
/* In multi-pass modes, we need a virtual block array for each component. */
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
} my_coef_controller;
typedef my_coef_controller * my_coef_ptr;
/* Forward declarations */
METHODDEF(boolean) compress_data
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#ifdef FULL_COEF_BUFFER_SUPPORTED
METHODDEF(boolean) compress_first_pass
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
METHODDEF(boolean) compress_output
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#endif
LOCAL(void)
start_iMCU_row (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->mcu_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
coef->iMCU_row_num = 0;
start_iMCU_row(cinfo);
switch (pass_mode) {
case JBUF_PASS_THRU:
if (coef->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_data;
break;
#ifdef FULL_COEF_BUFFER_SUPPORTED
case JBUF_SAVE_AND_PASS:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_first_pass;
break;
case JBUF_CRANK_DEST:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_output;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
}
/*
* Process some data in the single-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf contains a plane for each component in image,
* which we index according to the component's SOF position.
*/
METHODDEF(boolean)
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, bi, ci, yindex, yoffset, blockcnt;
JDIMENSION ypos, xpos;
jpeg_component_info *compptr;
/* Loop to write as much as one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
/* Determine where data comes from in input_buf and do the DCT thing.
* Each call on forward_DCT processes a horizontal row of DCT blocks
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
* sequentially. Dummy blocks at the right or bottom edge are filled in
* specially. The data in them does not matter for image reconstruction,
* so we fill them with values that will encode to the smallest amount of
* data, viz: all zeroes in the AC entries, DC entries equal to previous
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
*/
blkn = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
xpos = MCU_col_num * compptr->MCU_sample_width;
ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yoffset+yindex < compptr->last_row_height) {
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[compptr->component_index],
coef->MCU_buffer[blkn],
ypos, xpos, (JDIMENSION) blockcnt);
if (blockcnt < compptr->MCU_width) {
/* Create some dummy blocks at the right edge of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
}
}
} else {
/* Create a row of dummy blocks at the bottom of the image. */
jzero_far((void FAR *) coef->MCU_buffer[blkn],
compptr->MCU_width * SIZEOF(JBLOCK));
for (bi = 0; bi < compptr->MCU_width; bi++) {
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
}
}
blkn += compptr->MCU_width;
ypos += DCTSIZE;
}
}
/* Try to write the MCU. In event of a suspension failure, we will
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
*/
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#ifdef FULL_COEF_BUFFER_SUPPORTED
/*
* Process some data in the first pass of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* This amount of data is read from the source buffer, DCT'd and quantized,
* and saved into the virtual arrays. We also generate suitable dummy blocks
* as needed at the right and lower edges. (The dummy blocks are constructed
* in the virtual arrays, which have been padded appropriately.) This makes
* it possible for subsequent passes not to worry about real vs. dummy blocks.
*
* We must also emit the data to the entropy encoder. This is conveniently
* done by calling compress_output() after we've loaded the current strip
* of the virtual arrays.
*
* NB: input_buf contains a plane for each component in image. All
* components are DCT'd and loaded into the virtual arrays in this pass.
* However, it may be that only a subset of the components are emitted to
* the entropy encoder during this first pass; be careful about looking
* at the scan-dependent variables (MCU dimensions, etc).
*/
METHODDEF(boolean)
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
JDIMENSION blocks_across, MCUs_across, MCUindex;
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
JCOEF lastDC;
jpeg_component_info *compptr;
JBLOCKARRAY buffer;
JBLOCKROW thisblockrow, lastblockrow;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Align the virtual buffer for this component. */
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, TRUE);
/* Count non-dummy DCT block rows in this iMCU row. */
if (coef->iMCU_row_num < last_iMCU_row)
block_rows = compptr->v_samp_factor;
else {
/* NB: can't use last_row_height here, since may not be set! */
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (block_rows == 0) block_rows = compptr->v_samp_factor;
}
blocks_across = compptr->width_in_blocks;
h_samp_factor = compptr->h_samp_factor;
/* Count number of dummy blocks to be added at the right margin. */
ndummy = (int) (blocks_across % h_samp_factor);
if (ndummy > 0)
ndummy = h_samp_factor - ndummy;
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
* on forward_DCT processes a complete horizontal row of DCT blocks.
*/
for (block_row = 0; block_row < block_rows; block_row++) {
thisblockrow = buffer[block_row];
(*cinfo->fdct->forward_DCT) (cinfo, compptr,
input_buf[ci], thisblockrow,
(JDIMENSION) (block_row * DCTSIZE),
(JDIMENSION) 0, blocks_across);
if (ndummy > 0) {
/* Create dummy blocks at the right edge of the image. */
thisblockrow += blocks_across; /* => first dummy block */
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
lastDC = thisblockrow[-1][0];
for (bi = 0; bi < ndummy; bi++) {
thisblockrow[bi][0] = lastDC;
}
}
}
/* If at end of image, create dummy block rows as needed.
* The tricky part here is that within each MCU, we want the DC values
* of the dummy blocks to match the last real block's DC value.
* This squeezes a few more bytes out of the resulting file...
*/
if (coef->iMCU_row_num == last_iMCU_row) {
blocks_across += ndummy; /* include lower right corner */
MCUs_across = blocks_across / h_samp_factor;
for (block_row = block_rows; block_row < compptr->v_samp_factor;
block_row++) {
thisblockrow = buffer[block_row];
lastblockrow = buffer[block_row-1];
jzero_far((void FAR *) thisblockrow,
(size_t) (blocks_across * SIZEOF(JBLOCK)));
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
lastDC = lastblockrow[h_samp_factor-1][0];
for (bi = 0; bi < h_samp_factor; bi++) {
thisblockrow[bi][0] = lastDC;
}
thisblockrow += h_samp_factor; /* advance to next MCU in row */
lastblockrow += h_samp_factor;
}
}
}
}
/* NB: compress_output will increment iMCU_row_num if successful.
* A suspension return will result in redoing all the work above next time.
*/
/* Emit data to the entropy encoder, sharing code with subsequent passes */
return compress_output(cinfo, input_buf);
}
/*
* Process some data in subsequent passes of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the scan.
* The data is obtained from the virtual arrays and fed to the entropy coder.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf is ignored; it is likely to be a NULL pointer.
*/
METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
int blkn, ci, xindex, yindex, yoffset;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan.
* NB: during first pass, this is safe only because the buffers will
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
*/
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
coef->MCU_buffer[blkn++] = buffer_ptr++;
}
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#endif /* FULL_COEF_BUFFER_SUPPORTED */
/*
* Initialize coefficient buffer controller.
*/
GLOBAL(void)
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_coef_ptr coef;
coef = (my_coef_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller));
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
coef->pub.start_pass = start_pass_coef;
/* Create the coefficient buffer. */
if (need_full_buffer) {
#ifdef FULL_COEF_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component, */
/* padded to a multiple of samp_factor DCT blocks in each direction. */
int ci;
jpeg_component_info *compptr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) compptr->v_samp_factor);
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
/* We only need a single-MCU buffer. */
JBLOCKROW buffer;
int i;
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
coef->MCU_buffer[i] = buffer + i;
}
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
}
}

View File

@ -1,459 +1,459 @@
/*
* jccolor.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains input colorspace conversion routines.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private subobject */
typedef struct {
struct jpeg_color_converter pub; /* public fields */
/* Private state for RGB->YCC conversion */
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
} my_color_converter;
typedef my_color_converter * my_cconvert_ptr;
/**************** RGB -> YCbCr conversion: most common case **************/
/*
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
* were not represented exactly. Now we sacrifice exact representation of
* maximum red and maximum blue in order to get exact grayscales.
*
* To avoid floating-point arithmetic, we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
* the products by 2^16, with appropriate rounding, to get the correct answer.
*
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times R,G,B for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 12-bit samples it is still acceptable. It's not very reasonable for
* 16-bit samples, but if you want lossless storage you shouldn't be changing
* colorspace anyway.
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
* in the tables to save adding them separately in the inner loop.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/* We allocate one big table and divide it up into eight parts, instead of
* doing eight alloc_small requests. This lets us use a single table base
* address, which can be held in a register in the inner loops on many
* machines (more than can hold all eight addresses, anyway).
*/
#define R_Y_OFF 0 /* offset to R => Y section */
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
#define R_CB_OFF (3*(MAXJSAMPLE+1))
#define G_CB_OFF (4*(MAXJSAMPLE+1))
#define B_CB_OFF (5*(MAXJSAMPLE+1))
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
#define G_CR_OFF (6*(MAXJSAMPLE+1))
#define B_CR_OFF (7*(MAXJSAMPLE+1))
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
/*
* Initialize for RGB->YCC colorspace conversion.
*/
METHODDEF(void)
rgb_ycc_start (j_compress_ptr cinfo)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
INT32 * rgb_ycc_tab;
INT32 i;
/* Allocate and fill in the conversion tables. */
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(TABLE_SIZE * SIZEOF(INT32)));
for (i = 0; i <= MAXJSAMPLE; i++) {
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
* This ensures that the maximum output will round to MAXJSAMPLE
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
*/
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
/* B=>Cb and R=>Cr tables are the same
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
*/
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
*
* Note that we change from the application's interleaved-pixel format
* to our internal noninterleaved, one-plane-per-component format.
* The input buffer is therefore three times as wide as the output buffer.
*
* A starting row offset is provided only for the output buffer. The caller
* can easily adjust the passed input_buf value to accommodate any row
* offset required on that side.
*/
METHODDEF(void)
rgb_ycc_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int r, g, b;
INT32 * ctab = cconvert->rgb_ycc_tab;
JSAMPROW inptr;
JSAMPROW outptr0, outptr1, outptr2;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr[RGB_RED]);
g = GETJSAMPLE(inptr[RGB_GREEN]);
b = GETJSAMPLE(inptr[RGB_BLUE]);
inptr += RGB_PIXELSIZE;
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
* Hence the value being shifted is never negative, and we don't
* need the general RIGHT_SHIFT macro.
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
/**************** Cases other than RGB -> YCbCr **************/
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles RGB->grayscale conversion, which is the same
* as the RGB->Y portion of RGB->YCbCr.
* We assume rgb_ycc_start has been called (we only use the Y tables).
*/
METHODDEF(void)
rgb_gray_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int r, g, b;
INT32 * ctab = cconvert->rgb_ycc_tab;
JSAMPROW inptr;
JSAMPROW outptr;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr = output_buf[0][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr[RGB_RED]);
g = GETJSAMPLE(inptr[RGB_GREEN]);
b = GETJSAMPLE(inptr[RGB_BLUE]);
inptr += RGB_PIXELSIZE;
/* Y */
outptr[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles Adobe-style CMYK->YCCK conversion,
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
* conversion as above, while passing K (black) unchanged.
* We assume rgb_ycc_start has been called.
*/
METHODDEF(void)
cmyk_ycck_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int r, g, b;
INT32 * ctab = cconvert->rgb_ycc_tab;
JSAMPROW inptr;
JSAMPROW outptr0, outptr1, outptr2, outptr3;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
outptr3 = output_buf[3][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
/* K passes through as-is */
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
inptr += 4;
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
* Hence the value being shifted is never negative, and we don't
* need the general RIGHT_SHIFT macro.
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles grayscale output with no conversion.
* The source can be either plain grayscale or YCbCr (since Y == gray).
*/
METHODDEF(void)
grayscale_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
JSAMPROW inptr;
JSAMPROW outptr;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
int instride = cinfo->input_components;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr = output_buf[0][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
inptr += instride;
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles multi-component colorspaces without conversion.
* We assume input_components == num_components.
*/
METHODDEF(void)
null_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
JSAMPROW inptr;
JSAMPROW outptr;
JDIMENSION col;
int ci;
int nc = cinfo->num_components;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
/* It seems fastest to make a separate pass for each component. */
for (ci = 0; ci < nc; ci++) {
inptr = *input_buf;
outptr = output_buf[ci][output_row];
for (col = 0; col < num_cols; col++) {
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
inptr += nc;
}
}
input_buf++;
output_row++;
}
}
/*
* Empty method for start_pass.
*/
METHODDEF(void)
null_method (j_compress_ptr)
{
/* no work needed */
}
/*
* Module initialization routine for input colorspace conversion.
*/
GLOBAL(void)
jinit_color_converter (j_compress_ptr cinfo)
{
my_cconvert_ptr cconvert;
cconvert = (my_cconvert_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_color_converter));
cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
/* set start_pass to null method until we find out differently */
cconvert->pub.start_pass = null_method;
/* Make sure input_components agrees with in_color_space */
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
if (cinfo->input_components != 1)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
case JCS_RGB:
#if RGB_PIXELSIZE != 3
if (cinfo->input_components != RGB_PIXELSIZE)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
#endif /* else share code with YCbCr */
case JCS_YCbCr:
if (cinfo->input_components != 3)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
case JCS_CMYK:
case JCS_YCCK:
if (cinfo->input_components != 4)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
if (cinfo->input_components < 1)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
}
/* Check num_components, set conversion method based on requested space */
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
if (cinfo->num_components != 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_GRAYSCALE)
cconvert->pub.color_convert = grayscale_convert;
else if (cinfo->in_color_space == JCS_RGB) {
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_gray_convert;
} else if (cinfo->in_color_space == JCS_YCbCr)
cconvert->pub.color_convert = grayscale_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_RGB:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_YCbCr:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_RGB) {
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_ycc_convert;
} else if (cinfo->in_color_space == JCS_YCbCr)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_CMYK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_CMYK)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_YCCK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_CMYK) {
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = cmyk_ycck_convert;
} else if (cinfo->in_color_space == JCS_YCCK)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
default: /* allow null conversion of JCS_UNKNOWN */
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
cinfo->num_components != cinfo->input_components)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
cconvert->pub.color_convert = null_convert;
break;
}
}
/*
* jccolor.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains input colorspace conversion routines.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private subobject */
typedef struct {
struct jpeg_color_converter pub; /* public fields */
/* Private state for RGB->YCC conversion */
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
} my_color_converter;
typedef my_color_converter * my_cconvert_ptr;
/**************** RGB -> YCbCr conversion: most common case **************/
/*
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
* were not represented exactly. Now we sacrifice exact representation of
* maximum red and maximum blue in order to get exact grayscales.
*
* To avoid floating-point arithmetic, we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
* the products by 2^16, with appropriate rounding, to get the correct answer.
*
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times R,G,B for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 12-bit samples it is still acceptable. It's not very reasonable for
* 16-bit samples, but if you want lossless storage you shouldn't be changing
* colorspace anyway.
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
* in the tables to save adding them separately in the inner loop.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/* We allocate one big table and divide it up into eight parts, instead of
* doing eight alloc_small requests. This lets us use a single table base
* address, which can be held in a register in the inner loops on many
* machines (more than can hold all eight addresses, anyway).
*/
#define R_Y_OFF 0 /* offset to R => Y section */
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
#define R_CB_OFF (3*(MAXJSAMPLE+1))
#define G_CB_OFF (4*(MAXJSAMPLE+1))
#define B_CB_OFF (5*(MAXJSAMPLE+1))
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
#define G_CR_OFF (6*(MAXJSAMPLE+1))
#define B_CR_OFF (7*(MAXJSAMPLE+1))
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
/*
* Initialize for RGB->YCC colorspace conversion.
*/
METHODDEF(void)
rgb_ycc_start (j_compress_ptr cinfo)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
INT32 * rgb_ycc_tab;
INT32 i;
/* Allocate and fill in the conversion tables. */
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(TABLE_SIZE * SIZEOF(INT32)));
for (i = 0; i <= MAXJSAMPLE; i++) {
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
* This ensures that the maximum output will round to MAXJSAMPLE
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
*/
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
/* B=>Cb and R=>Cr tables are the same
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
*/
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
*
* Note that we change from the application's interleaved-pixel format
* to our internal noninterleaved, one-plane-per-component format.
* The input buffer is therefore three times as wide as the output buffer.
*
* A starting row offset is provided only for the output buffer. The caller
* can easily adjust the passed input_buf value to accommodate any row
* offset required on that side.
*/
METHODDEF(void)
rgb_ycc_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int r, g, b;
INT32 * ctab = cconvert->rgb_ycc_tab;
JSAMPROW inptr;
JSAMPROW outptr0, outptr1, outptr2;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr[RGB_RED]);
g = GETJSAMPLE(inptr[RGB_GREEN]);
b = GETJSAMPLE(inptr[RGB_BLUE]);
inptr += RGB_PIXELSIZE;
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
* Hence the value being shifted is never negative, and we don't
* need the general RIGHT_SHIFT macro.
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
/**************** Cases other than RGB -> YCbCr **************/
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles RGB->grayscale conversion, which is the same
* as the RGB->Y portion of RGB->YCbCr.
* We assume rgb_ycc_start has been called (we only use the Y tables).
*/
METHODDEF(void)
rgb_gray_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int r, g, b;
INT32 * ctab = cconvert->rgb_ycc_tab;
JSAMPROW inptr;
JSAMPROW outptr;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr = output_buf[0][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr[RGB_RED]);
g = GETJSAMPLE(inptr[RGB_GREEN]);
b = GETJSAMPLE(inptr[RGB_BLUE]);
inptr += RGB_PIXELSIZE;
/* Y */
outptr[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles Adobe-style CMYK->YCCK conversion,
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
* conversion as above, while passing K (black) unchanged.
* We assume rgb_ycc_start has been called.
*/
METHODDEF(void)
cmyk_ycck_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int r, g, b;
INT32 * ctab = cconvert->rgb_ycc_tab;
JSAMPROW inptr;
JSAMPROW outptr0, outptr1, outptr2, outptr3;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
outptr3 = output_buf[3][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
/* K passes through as-is */
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
inptr += 4;
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
* Hence the value being shifted is never negative, and we don't
* need the general RIGHT_SHIFT macro.
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles grayscale output with no conversion.
* The source can be either plain grayscale or YCbCr (since Y == gray).
*/
METHODDEF(void)
grayscale_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
JSAMPROW inptr;
JSAMPROW outptr;
JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
int instride = cinfo->input_components;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr = output_buf[0][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
inptr += instride;
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles multi-component colorspaces without conversion.
* We assume input_components == num_components.
*/
METHODDEF(void)
null_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
JSAMPROW inptr;
JSAMPROW outptr;
JDIMENSION col;
int ci;
int nc = cinfo->num_components;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
/* It seems fastest to make a separate pass for each component. */
for (ci = 0; ci < nc; ci++) {
inptr = *input_buf;
outptr = output_buf[ci][output_row];
for (col = 0; col < num_cols; col++) {
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
inptr += nc;
}
}
input_buf++;
output_row++;
}
}
/*
* Empty method for start_pass.
*/
METHODDEF(void)
null_method (j_compress_ptr)
{
/* no work needed */
}
/*
* Module initialization routine for input colorspace conversion.
*/
GLOBAL(void)
jinit_color_converter (j_compress_ptr cinfo)
{
my_cconvert_ptr cconvert;
cconvert = (my_cconvert_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_color_converter));
cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
/* set start_pass to null method until we find out differently */
cconvert->pub.start_pass = null_method;
/* Make sure input_components agrees with in_color_space */
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
if (cinfo->input_components != 1)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
case JCS_RGB:
#if RGB_PIXELSIZE != 3
if (cinfo->input_components != RGB_PIXELSIZE)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
#endif /* else share code with YCbCr */
case JCS_YCbCr:
if (cinfo->input_components != 3)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
case JCS_CMYK:
case JCS_YCCK:
if (cinfo->input_components != 4)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
if (cinfo->input_components < 1)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
}
/* Check num_components, set conversion method based on requested space */
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
if (cinfo->num_components != 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_GRAYSCALE)
cconvert->pub.color_convert = grayscale_convert;
else if (cinfo->in_color_space == JCS_RGB) {
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_gray_convert;
} else if (cinfo->in_color_space == JCS_YCbCr)
cconvert->pub.color_convert = grayscale_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_RGB:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_YCbCr:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_RGB) {
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_ycc_convert;
} else if (cinfo->in_color_space == JCS_YCbCr)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_CMYK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_CMYK)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_YCCK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space == JCS_CMYK) {
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = cmyk_ycck_convert;
} else if (cinfo->in_color_space == JCS_YCCK)
cconvert->pub.color_convert = null_convert;
else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
default: /* allow null conversion of JCS_UNKNOWN */
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
cinfo->num_components != cinfo->input_components)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
cconvert->pub.color_convert = null_convert;
break;
}
}

View File

@ -1,387 +1,387 @@
/*
* jcdctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the forward-DCT management logic.
* This code selects a particular DCT implementation to be used,
* and it performs related housekeeping chores including coefficient
* quantization.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/* Private subobject for this module */
typedef struct {
struct jpeg_forward_dct pub; /* public fields */
/* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr do_dct;
/* The actual post-DCT divisors --- not identical to the quant table
* entries, because of scaling (especially for an unnormalized DCT).
* Each table is given in normal array order.
*/
DCTELEM * divisors[NUM_QUANT_TBLS];
#ifdef DCT_FLOAT_SUPPORTED
/* Same as above for the floating-point case. */
float_DCT_method_ptr do_float_dct;
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
#endif
} my_fdct_controller;
typedef my_fdct_controller * my_fdct_ptr;
/*
* Initialize for a processing pass.
* Verify that all referenced Q-tables are present, and set up
* the divisor table for each one.
* In the current implementation, DCT of all components is done during
* the first pass, even if only some components will be output in the
* first scan. Hence all components should be examined here.
*/
METHODDEF(void)
start_pass_fdctmgr (j_compress_ptr cinfo)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
int ci, qtblno, i;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
DCTELEM * dtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Compute divisors for this quant table */
/* We may do this more than once for same table, but it's not a big deal */
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
/* For LL&M IDCT method, divisors are equal to raw quantization
* coefficients multiplied by 8 (to counteract scaling).
*/
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Perform forward DCT on one or more blocks of a component.
*
* The input samples are taken from the sample_data[] array starting at
* position start_row/start_col, and moving to the right for any additional
* blocks. The quantized coefficients are returned in coef_blocks[].
*/
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
forward_DCT_method_ptr do_dct = fdct->do_dct;
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
{ DCTELEM *workspaceptr;
JSAMPROW elemptr;
int elemr;
workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8 /* unroll the inner loop */
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
#else
{ int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--) {
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
}
}
#endif
}
}
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ DCTELEM temp, qval;
int i;
JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
qval = divisors[i];
temp = workspace[i];
/* Divide the coefficient value by qval, ensuring proper rounding.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
*
* In most files, at least half of the output values will be zero
* (at default quantization settings, more like three-quarters...)
* so we should ensure that this case is fast. On many machines,
* a comparison is enough cheaper than a divide to make a special test
* a win. Since both inputs will be nonnegative, we need only test
* for a < b to discover whether a/b is 0.
* If your machine's division is fast enough, define FAST_DIVIDE.
*/
#ifdef FAST_DIVIDE
#define DIVIDE_BY(a,b) a /= b
#else
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
#endif
if (temp < 0) {
temp = -temp;
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
temp = -temp;
} else {
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
}
output_ptr[i] = (JCOEF) temp;
}
}
}
}
#ifdef DCT_FLOAT_SUPPORTED
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
float_DCT_method_ptr do_dct = fdct->do_float_dct;
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
{ FAST_FLOAT *workspaceptr;
JSAMPROW elemptr;
int elemr;
workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8 /* unroll the inner loop */
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
#else
{ int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--) {
*workspaceptr++ = (FAST_FLOAT)
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
}
}
#endif
}
}
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ FAST_FLOAT temp;
int i;
JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
/* Apply the quantization and scaling factor */
temp = workspace[i] * divisors[i];
/* Round to nearest integer.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
* The maximum coefficient size is +-16K (for 12-bit data), so this
* code should work for either 16-bit or 32-bit ints.
*/
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
}
}
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* Initialize FDCT manager.
*/
GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
my_fdct_ptr fdct;
int i;
fdct = (my_fdct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_fdct_controller));
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
fdct->pub.start_pass = start_pass_fdctmgr;
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_islow;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_ifast;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
fdct->pub.forward_DCT = forward_DCT_float;
fdct->do_float_dct = jpeg_fdct_float;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
/* Mark divisor tables unallocated */
for (i = 0; i < NUM_QUANT_TBLS; i++) {
fdct->divisors[i] = NULL;
#ifdef DCT_FLOAT_SUPPORTED
fdct->float_divisors[i] = NULL;
#endif
}
}
/*
* jcdctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the forward-DCT management logic.
* This code selects a particular DCT implementation to be used,
* and it performs related housekeeping chores including coefficient
* quantization.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/* Private subobject for this module */
typedef struct {
struct jpeg_forward_dct pub; /* public fields */
/* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr do_dct;
/* The actual post-DCT divisors --- not identical to the quant table
* entries, because of scaling (especially for an unnormalized DCT).
* Each table is given in normal array order.
*/
DCTELEM * divisors[NUM_QUANT_TBLS];
#ifdef DCT_FLOAT_SUPPORTED
/* Same as above for the floating-point case. */
float_DCT_method_ptr do_float_dct;
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
#endif
} my_fdct_controller;
typedef my_fdct_controller * my_fdct_ptr;
/*
* Initialize for a processing pass.
* Verify that all referenced Q-tables are present, and set up
* the divisor table for each one.
* In the current implementation, DCT of all components is done during
* the first pass, even if only some components will be output in the
* first scan. Hence all components should be examined here.
*/
METHODDEF(void)
start_pass_fdctmgr (j_compress_ptr cinfo)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
int ci, qtblno, i;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
DCTELEM * dtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Compute divisors for this quant table */
/* We may do this more than once for same table, but it's not a big deal */
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
/* For LL&M IDCT method, divisors are equal to raw quantization
* coefficients multiplied by 8 (to counteract scaling).
*/
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Perform forward DCT on one or more blocks of a component.
*
* The input samples are taken from the sample_data[] array starting at
* position start_row/start_col, and moving to the right for any additional
* blocks. The quantized coefficients are returned in coef_blocks[].
*/
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
forward_DCT_method_ptr do_dct = fdct->do_dct;
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
{ DCTELEM *workspaceptr;
JSAMPROW elemptr;
int elemr;
workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8 /* unroll the inner loop */
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
#else
{ int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--) {
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
}
}
#endif
}
}
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ DCTELEM temp, qval;
int i;
JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
qval = divisors[i];
temp = workspace[i];
/* Divide the coefficient value by qval, ensuring proper rounding.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
*
* In most files, at least half of the output values will be zero
* (at default quantization settings, more like three-quarters...)
* so we should ensure that this case is fast. On many machines,
* a comparison is enough cheaper than a divide to make a special test
* a win. Since both inputs will be nonnegative, we need only test
* for a < b to discover whether a/b is 0.
* If your machine's division is fast enough, define FAST_DIVIDE.
*/
#ifdef FAST_DIVIDE
#define DIVIDE_BY(a,b) a /= b
#else
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
#endif
if (temp < 0) {
temp = -temp;
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
temp = -temp;
} else {
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
}
output_ptr[i] = (JCOEF) temp;
}
}
}
}
#ifdef DCT_FLOAT_SUPPORTED
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
float_DCT_method_ptr do_dct = fdct->do_float_dct;
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
sample_data += start_row; /* fold in the vertical offset once */
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
/* Load data into workspace, applying unsigned->signed conversion */
{ FAST_FLOAT *workspaceptr;
JSAMPROW elemptr;
int elemr;
workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8 /* unroll the inner loop */
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
#else
{ int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--) {
*workspaceptr++ = (FAST_FLOAT)
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
}
}
#endif
}
}
/* Perform the DCT */
(*do_dct) (workspace);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ FAST_FLOAT temp;
int i;
JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
/* Apply the quantization and scaling factor */
temp = workspace[i] * divisors[i];
/* Round to nearest integer.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
* The maximum coefficient size is +-16K (for 12-bit data), so this
* code should work for either 16-bit or 32-bit ints.
*/
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
}
}
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* Initialize FDCT manager.
*/
GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
my_fdct_ptr fdct;
int i;
fdct = (my_fdct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_fdct_controller));
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
fdct->pub.start_pass = start_pass_fdctmgr;
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_islow;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_ifast;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
fdct->pub.forward_DCT = forward_DCT_float;
fdct->do_float_dct = jpeg_fdct_float;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
/* Mark divisor tables unallocated */
for (i = 0; i < NUM_QUANT_TBLS; i++) {
fdct->divisors[i] = NULL;
#ifdef DCT_FLOAT_SUPPORTED
fdct->float_divisors[i] = NULL;
#endif
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,52 +1,52 @@
/*
* jchuff.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains declarations for Huffman entropy encoding routines
* that are shared between the sequential encoder (jchuff.c) and the
* progressive encoder (jcphuff.c). No other modules need to see these.
*/
/* The legal range of a DCT coefficient is
* -1024 .. +1023 for 8-bit data;
* -16384 .. +16383 for 12-bit data.
* Hence the magnitude should always fit in 10 or 14 bits respectively.
*/
#ifndef _jchuff_h_
#define _jchuff_h_
#if BITS_IN_JSAMPLE == 8
#define MAX_COEF_BITS 10
#else
#define MAX_COEF_BITS 14
#endif
/* Derived data constructed for each Huffman table */
typedef struct {
unsigned int ehufco[256]; /* code for each symbol */
char ehufsi[256]; /* length of code for each symbol */
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
} c_derived_tbl;
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_make_c_derived_tbl jMkCDerived
#define jpeg_gen_optimal_table jGenOptTbl
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Expand a Huffman table definition into the derived format */
EXTERN(void) jpeg_make_c_derived_tbl
JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
c_derived_tbl ** pdtbl));
/* Generate an optimal table definition given the specified counts */
EXTERN(void) jpeg_gen_optimal_table
JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));
#endif
/*
* jchuff.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains declarations for Huffman entropy encoding routines
* that are shared between the sequential encoder (jchuff.c) and the
* progressive encoder (jcphuff.c). No other modules need to see these.
*/
/* The legal range of a DCT coefficient is
* -1024 .. +1023 for 8-bit data;
* -16384 .. +16383 for 12-bit data.
* Hence the magnitude should always fit in 10 or 14 bits respectively.
*/
#ifndef _jchuff_h_
#define _jchuff_h_
#if BITS_IN_JSAMPLE == 8
#define MAX_COEF_BITS 10
#else
#define MAX_COEF_BITS 14
#endif
/* Derived data constructed for each Huffman table */
typedef struct {
unsigned int ehufco[256]; /* code for each symbol */
char ehufsi[256]; /* length of code for each symbol */
/* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
} c_derived_tbl;
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_make_c_derived_tbl jMkCDerived
#define jpeg_gen_optimal_table jGenOptTbl
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Expand a Huffman table definition into the derived format */
EXTERN(void) jpeg_make_c_derived_tbl
JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
c_derived_tbl ** pdtbl));
/* Generate an optimal table definition given the specified counts */
EXTERN(void) jpeg_gen_optimal_table
JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));
#endif

View File

@ -1,72 +1,72 @@
/*
* jcinit.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains initialization logic for the JPEG compressor.
* This routine is in charge of selecting the modules to be executed and
* making an initialization call to each one.
*
* Logically, this code belongs in jcmaster.c. It's split out because
* linking this routine implies linking the entire compression library.
* For a transcoding-only application, we want to be able to use jcmaster.c
* without linking in the whole library.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Master selection of compression modules.
* This is done once at the start of processing an image. We determine
* which modules will be used and give them appropriate initialization calls.
*/
GLOBAL(void)
jinit_compress_master (j_compress_ptr cinfo)
{
/* Initialize master control (includes parameter checking/processing) */
jinit_c_master_control(cinfo, FALSE /* full compression */);
/* Preprocessing */
if (! cinfo->raw_data_in) {
jinit_color_converter(cinfo);
jinit_downsampler(cinfo);
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
}
/* Forward DCT */
jinit_forward_dct(cinfo);
/* Entropy encoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
} else {
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
jinit_phuff_encoder(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else
jinit_huff_encoder(cinfo);
}
/* Need a full-image coefficient buffer in any multi-pass mode. */
jinit_c_coef_controller(cinfo,
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
jinit_marker_writer(cinfo);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Write the datastream header (SOI) immediately.
* Frame and scan headers are postponed till later.
* This lets application insert special markers after the SOI.
*/
(*cinfo->marker->write_file_header) (cinfo);
}
/*
* jcinit.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains initialization logic for the JPEG compressor.
* This routine is in charge of selecting the modules to be executed and
* making an initialization call to each one.
*
* Logically, this code belongs in jcmaster.c. It's split out because
* linking this routine implies linking the entire compression library.
* For a transcoding-only application, we want to be able to use jcmaster.c
* without linking in the whole library.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Master selection of compression modules.
* This is done once at the start of processing an image. We determine
* which modules will be used and give them appropriate initialization calls.
*/
GLOBAL(void)
jinit_compress_master (j_compress_ptr cinfo)
{
/* Initialize master control (includes parameter checking/processing) */
jinit_c_master_control(cinfo, FALSE /* full compression */);
/* Preprocessing */
if (! cinfo->raw_data_in) {
jinit_color_converter(cinfo);
jinit_downsampler(cinfo);
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
}
/* Forward DCT */
jinit_forward_dct(cinfo);
/* Entropy encoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
} else {
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
jinit_phuff_encoder(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else
jinit_huff_encoder(cinfo);
}
/* Need a full-image coefficient buffer in any multi-pass mode. */
jinit_c_coef_controller(cinfo,
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
jinit_marker_writer(cinfo);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Write the datastream header (SOI) immediately.
* Frame and scan headers are postponed till later.
* This lets application insert special markers after the SOI.
*/
(*cinfo->marker->write_file_header) (cinfo);
}

View File

@ -1,293 +1,293 @@
/*
* jcmainct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the main buffer controller for compression.
* The main buffer lies between the pre-processor and the JPEG
* compressor proper; it holds downsampled data in the JPEG colorspace.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Note: currently, there is no operating mode in which a full-image buffer
* is needed at this step. If there were, that mode could not be used with
* "raw data" input, since this module is bypassed in that case. However,
* we've left the code here for possible use in special applications.
*/
#undef FULL_MAIN_BUFFER_SUPPORTED
/* Private buffer controller object */
typedef struct {
struct jpeg_c_main_controller pub; /* public fields */
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
boolean suspended; /* remember if we suspended output */
J_BUF_MODE pass_mode; /* current operating mode */
/* If using just a strip buffer, this points to the entire set of buffers
* (we allocate one for each component). In the full-image case, this
* points to the currently accessible strips of the virtual arrays.
*/
JSAMPARRAY buffer[MAX_COMPONENTS];
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* If using full-image storage, this array holds pointers to virtual-array
* control blocks for each component. Unused if not full-image storage.
*/
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
#endif
} my_main_controller;
typedef my_main_controller * my_main_ptr;
/* Forward declarations */
METHODDEF(void) process_data_simple_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#ifdef FULL_MAIN_BUFFER_SUPPORTED
METHODDEF(void) process_data_buffer_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#endif
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_main_ptr main_ = (my_main_ptr) cinfo->main;
/* Do nothing in raw-data mode. */
if (cinfo->raw_data_in)
return;
main_->cur_iMCU_row = 0; /* initialize counters */
main_->rowgroup_ctr = 0;
main_->suspended = FALSE;
main_->pass_mode = pass_mode; /* save mode for use by process_data */
switch (pass_mode) {
case JBUF_PASS_THRU:
#ifdef FULL_MAIN_BUFFER_SUPPORTED
if (main_->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
main_->pub.process_data = process_data_simple_main;
break;
#ifdef FULL_MAIN_BUFFER_SUPPORTED
case JBUF_SAVE_SOURCE:
case JBUF_CRANK_DEST:
case JBUF_SAVE_AND_PASS:
if (main_->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
main_->pub.process_data = process_data_buffer_main;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
}
/*
* Process some data.
* This routine handles the simple pass-through mode,
* where we have only a strip buffer.
*/
METHODDEF(void)
process_data_simple_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr main_ = (my_main_ptr) cinfo->main;
while (main_->cur_iMCU_row < cinfo->total_iMCU_rows) {
/* Read input data if we haven't filled the main buffer yet */
if (main_->rowgroup_ctr < DCTSIZE)
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
main_->buffer, &main_->rowgroup_ctr,
(JDIMENSION) DCTSIZE);
/* If we don't have a full iMCU row buffered, return to application for
* more data. Note that preprocessor will always pad to fill the iMCU row
* at the bottom of the image.
*/
if (main_->rowgroup_ctr != DCTSIZE)
return;
/* Send the completed row to the compressor */
if (! (*cinfo->coef->compress_data) (cinfo, main_->buffer)) {
/* If compressor did not consume the whole row, then we must need to
* suspend processing and return to the application. In this situation
* we pretend we didn't yet consume the last input row; otherwise, if
* it happened to be the last row of the image, the application would
* think we were done.
*/
if (! main_->suspended) {
(*in_row_ctr)--;
main_->suspended = TRUE;
}
return;
}
/* We did finish the row. Undo our little suspension hack if a previous
* call suspended; then mark the main buffer empty.
*/
if (main_->suspended) {
(*in_row_ctr)++;
main_->suspended = FALSE;
}
main_->rowgroup_ctr = 0;
main_->cur_iMCU_row++;
}
}
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/*
* Process some data.
* This routine handles all of the modes that use a full-size buffer.
*/
METHODDEF(void)
process_data_buffer_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr main = (my_main_ptr) cinfo->main;
int ci;
jpeg_component_info *compptr;
boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
/* Realign the virtual buffers if at the start of an iMCU row. */
if (main->rowgroup_ctr == 0) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, main->whole_image[ci],
main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
}
/* In a read pass, pretend we just read some source data. */
if (! writing) {
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
main->rowgroup_ctr = DCTSIZE;
}
}
/* If a write pass, read input data until the current iMCU row is full. */
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
if (writing) {
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
main->buffer, &main->rowgroup_ctr,
(JDIMENSION) DCTSIZE);
/* Return to application if we need more data to fill the iMCU row. */
if (main->rowgroup_ctr < DCTSIZE)
return;
}
/* Emit data, unless this is a sink-only pass. */
if (main->pass_mode != JBUF_SAVE_SOURCE) {
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
/* If compressor did not consume the whole row, then we must need to
* suspend processing and return to the application. In this situation
* we pretend we didn't yet consume the last input row; otherwise, if
* it happened to be the last row of the image, the application would
* think we were done.
*/
if (! main->suspended) {
(*in_row_ctr)--;
main->suspended = TRUE;
}
return;
}
/* We did finish the row. Undo our little suspension hack if a previous
* call suspended; then mark the main buffer empty.
*/
if (main->suspended) {
(*in_row_ctr)++;
main->suspended = FALSE;
}
}
/* If get here, we are done with this iMCU row. Mark buffer empty. */
main->rowgroup_ctr = 0;
main->cur_iMCU_row++;
}
}
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
/*
* Initialize main buffer controller.
*/
GLOBAL(void)
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_main_ptr main_;
int ci;
jpeg_component_info *compptr;
main_ = (my_main_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_main_controller));
cinfo->main = (struct jpeg_c_main_controller *) main_;
main_->pub.start_pass = start_pass_main;
/* We don't need to create a buffer in raw-data mode. */
if (cinfo->raw_data_in)
return;
/* Create the buffer. It holds downsampled data, so each component
* may be of a different size.
*/
if (need_full_buffer) {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component */
/* Note we pad the bottom to a multiple of the iMCU height */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
compptr->width_in_blocks * DCTSIZE,
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor) * DCTSIZE,
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
main_->whole_image[0] = NULL; /* flag for no virtual arrays */
#endif
/* Allocate a strip buffer for each component */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main_->buffer[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
compptr->width_in_blocks * DCTSIZE,
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
}
}
}
/*
* jcmainct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the main buffer controller for compression.
* The main buffer lies between the pre-processor and the JPEG
* compressor proper; it holds downsampled data in the JPEG colorspace.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Note: currently, there is no operating mode in which a full-image buffer
* is needed at this step. If there were, that mode could not be used with
* "raw data" input, since this module is bypassed in that case. However,
* we've left the code here for possible use in special applications.
*/
#undef FULL_MAIN_BUFFER_SUPPORTED
/* Private buffer controller object */
typedef struct {
struct jpeg_c_main_controller pub; /* public fields */
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
boolean suspended; /* remember if we suspended output */
J_BUF_MODE pass_mode; /* current operating mode */
/* If using just a strip buffer, this points to the entire set of buffers
* (we allocate one for each component). In the full-image case, this
* points to the currently accessible strips of the virtual arrays.
*/
JSAMPARRAY buffer[MAX_COMPONENTS];
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* If using full-image storage, this array holds pointers to virtual-array
* control blocks for each component. Unused if not full-image storage.
*/
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
#endif
} my_main_controller;
typedef my_main_controller * my_main_ptr;
/* Forward declarations */
METHODDEF(void) process_data_simple_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#ifdef FULL_MAIN_BUFFER_SUPPORTED
METHODDEF(void) process_data_buffer_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#endif
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_main_ptr main_ = (my_main_ptr) cinfo->main;
/* Do nothing in raw-data mode. */
if (cinfo->raw_data_in)
return;
main_->cur_iMCU_row = 0; /* initialize counters */
main_->rowgroup_ctr = 0;
main_->suspended = FALSE;
main_->pass_mode = pass_mode; /* save mode for use by process_data */
switch (pass_mode) {
case JBUF_PASS_THRU:
#ifdef FULL_MAIN_BUFFER_SUPPORTED
if (main_->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
main_->pub.process_data = process_data_simple_main;
break;
#ifdef FULL_MAIN_BUFFER_SUPPORTED
case JBUF_SAVE_SOURCE:
case JBUF_CRANK_DEST:
case JBUF_SAVE_AND_PASS:
if (main_->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
main_->pub.process_data = process_data_buffer_main;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
}
/*
* Process some data.
* This routine handles the simple pass-through mode,
* where we have only a strip buffer.
*/
METHODDEF(void)
process_data_simple_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr main_ = (my_main_ptr) cinfo->main;
while (main_->cur_iMCU_row < cinfo->total_iMCU_rows) {
/* Read input data if we haven't filled the main buffer yet */
if (main_->rowgroup_ctr < DCTSIZE)
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
main_->buffer, &main_->rowgroup_ctr,
(JDIMENSION) DCTSIZE);
/* If we don't have a full iMCU row buffered, return to application for
* more data. Note that preprocessor will always pad to fill the iMCU row
* at the bottom of the image.
*/
if (main_->rowgroup_ctr != DCTSIZE)
return;
/* Send the completed row to the compressor */
if (! (*cinfo->coef->compress_data) (cinfo, main_->buffer)) {
/* If compressor did not consume the whole row, then we must need to
* suspend processing and return to the application. In this situation
* we pretend we didn't yet consume the last input row; otherwise, if
* it happened to be the last row of the image, the application would
* think we were done.
*/
if (! main_->suspended) {
(*in_row_ctr)--;
main_->suspended = TRUE;
}
return;
}
/* We did finish the row. Undo our little suspension hack if a previous
* call suspended; then mark the main buffer empty.
*/
if (main_->suspended) {
(*in_row_ctr)++;
main_->suspended = FALSE;
}
main_->rowgroup_ctr = 0;
main_->cur_iMCU_row++;
}
}
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/*
* Process some data.
* This routine handles all of the modes that use a full-size buffer.
*/
METHODDEF(void)
process_data_buffer_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr main = (my_main_ptr) cinfo->main;
int ci;
jpeg_component_info *compptr;
boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
/* Realign the virtual buffers if at the start of an iMCU row. */
if (main->rowgroup_ctr == 0) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, main->whole_image[ci],
main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
}
/* In a read pass, pretend we just read some source data. */
if (! writing) {
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
main->rowgroup_ctr = DCTSIZE;
}
}
/* If a write pass, read input data until the current iMCU row is full. */
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
if (writing) {
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
main->buffer, &main->rowgroup_ctr,
(JDIMENSION) DCTSIZE);
/* Return to application if we need more data to fill the iMCU row. */
if (main->rowgroup_ctr < DCTSIZE)
return;
}
/* Emit data, unless this is a sink-only pass. */
if (main->pass_mode != JBUF_SAVE_SOURCE) {
if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
/* If compressor did not consume the whole row, then we must need to
* suspend processing and return to the application. In this situation
* we pretend we didn't yet consume the last input row; otherwise, if
* it happened to be the last row of the image, the application would
* think we were done.
*/
if (! main->suspended) {
(*in_row_ctr)--;
main->suspended = TRUE;
}
return;
}
/* We did finish the row. Undo our little suspension hack if a previous
* call suspended; then mark the main buffer empty.
*/
if (main->suspended) {
(*in_row_ctr)++;
main->suspended = FALSE;
}
}
/* If get here, we are done with this iMCU row. Mark buffer empty. */
main->rowgroup_ctr = 0;
main->cur_iMCU_row++;
}
}
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
/*
* Initialize main buffer controller.
*/
GLOBAL(void)
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_main_ptr main_;
int ci;
jpeg_component_info *compptr;
main_ = (my_main_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_main_controller));
cinfo->main = (struct jpeg_c_main_controller *) main_;
main_->pub.start_pass = start_pass_main;
/* We don't need to create a buffer in raw-data mode. */
if (cinfo->raw_data_in)
return;
/* Create the buffer. It holds downsampled data, so each component
* may be of a different size.
*/
if (need_full_buffer) {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component */
/* Note we pad the bottom to a multiple of the iMCU height */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
compptr->width_in_blocks * DCTSIZE,
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor) * DCTSIZE,
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
main_->whole_image[0] = NULL; /* flag for no virtual arrays */
#endif
/* Allocate a strip buffer for each component */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
main_->buffer[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
compptr->width_in_blocks * DCTSIZE,
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,106 +1,106 @@
/*
* jcomapi.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface routines that are used for both
* compression and decompression.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Abort processing of a JPEG compression or decompression operation,
* but don't destroy the object itself.
*
* For this, we merely clean up all the nonpermanent memory pools.
* Note that temp files (virtual arrays) are not allowed to belong to
* the permanent pool, so we will be able to close all temp files here.
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_abort (j_common_ptr cinfo)
{
int pool;
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
if (cinfo->mem == NULL)
return;
/* Releasing pools in reverse order might help avoid fragmentation
* with some (brain-damaged) malloc libraries.
*/
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
(*cinfo->mem->free_pool) (cinfo, pool);
}
/* Reset overall state for possible reuse of object */
if (cinfo->is_decompressor) {
cinfo->global_state = DSTATE_START;
/* Try to keep application from accessing now-deleted marker list.
* A bit kludgy to do it here, but this is the most central place.
*/
((j_decompress_ptr) cinfo)->marker_list = NULL;
} else {
cinfo->global_state = CSTATE_START;
}
}
/*
* Destruction of a JPEG object.
*
* Everything gets deallocated except the master jpeg_compress_struct itself
* and the error manager struct. Both of these are supplied by the application
* and must be freed, if necessary, by the application. (Often they are on
* the stack and so don't need to be freed anyway.)
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_destroy (j_common_ptr cinfo)
{
/* We need only tell the memory manager to release everything. */
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
if (cinfo->mem != NULL)
(*cinfo->mem->self_destruct) (cinfo);
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
cinfo->global_state = 0; /* mark it destroyed */
}
/*
* Convenience routines for allocating quantization and Huffman tables.
* (Would jutils.c be a more reasonable place to put these?)
*/
GLOBAL(JQUANT_TBL *)
jpeg_alloc_quant_table (j_common_ptr cinfo)
{
JQUANT_TBL *tbl;
tbl = (JQUANT_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}
GLOBAL(JHUFF_TBL *)
jpeg_alloc_huff_table (j_common_ptr cinfo)
{
JHUFF_TBL *tbl;
tbl = (JHUFF_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}
/*
* jcomapi.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface routines that are used for both
* compression and decompression.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Abort processing of a JPEG compression or decompression operation,
* but don't destroy the object itself.
*
* For this, we merely clean up all the nonpermanent memory pools.
* Note that temp files (virtual arrays) are not allowed to belong to
* the permanent pool, so we will be able to close all temp files here.
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_abort (j_common_ptr cinfo)
{
int pool;
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
if (cinfo->mem == NULL)
return;
/* Releasing pools in reverse order might help avoid fragmentation
* with some (brain-damaged) malloc libraries.
*/
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
(*cinfo->mem->free_pool) (cinfo, pool);
}
/* Reset overall state for possible reuse of object */
if (cinfo->is_decompressor) {
cinfo->global_state = DSTATE_START;
/* Try to keep application from accessing now-deleted marker list.
* A bit kludgy to do it here, but this is the most central place.
*/
((j_decompress_ptr) cinfo)->marker_list = NULL;
} else {
cinfo->global_state = CSTATE_START;
}
}
/*
* Destruction of a JPEG object.
*
* Everything gets deallocated except the master jpeg_compress_struct itself
* and the error manager struct. Both of these are supplied by the application
* and must be freed, if necessary, by the application. (Often they are on
* the stack and so don't need to be freed anyway.)
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_destroy (j_common_ptr cinfo)
{
/* We need only tell the memory manager to release everything. */
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
if (cinfo->mem != NULL)
(*cinfo->mem->self_destruct) (cinfo);
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
cinfo->global_state = 0; /* mark it destroyed */
}
/*
* Convenience routines for allocating quantization and Huffman tables.
* (Would jutils.c be a more reasonable place to put these?)
*/
GLOBAL(JQUANT_TBL *)
jpeg_alloc_quant_table (j_common_ptr cinfo)
{
JQUANT_TBL *tbl;
tbl = (JQUANT_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}
GLOBAL(JHUFF_TBL *)
jpeg_alloc_huff_table (j_common_ptr cinfo)
{
JHUFF_TBL *tbl;
tbl = (JHUFF_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}

View File

@ -1,59 +1,59 @@
/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
/* see jconfig.doc for explanations */
// disable all the warnings under MSVC
#ifdef _MSC_VER
#pragma warning (disable: 4996 4267 4100 4127 4702 4244)
#endif
#ifdef __BORLANDC__
#pragma warn -8057
#pragma warn -8019
#pragma warn -8004
#pragma warn -8008
#endif
#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#ifndef HAVE_STDLIB_H
#define HAVE_STDLIB_H
#endif
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN
/* Define "boolean" as unsigned char, not int, per Windows custom */
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
#ifdef JPEG_INTERNALS
#undef RIGHT_SHIFT_IS_UNSIGNED
#endif /* JPEG_INTERNALS */
#ifdef JPEG_CJPEG_DJPEG
#define BMP_SUPPORTED /* BMP image file format */
#define GIF_SUPPORTED /* GIF image file format */
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED /* Utah RLE image file format */
#define TARGA_SUPPORTED /* Targa image file format */
#define TWO_FILE_COMMANDLINE /* optional */
#define USE_SETMODE /* Microsoft has setmode() */
#undef NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT /* optional */
#endif /* JPEG_CJPEG_DJPEG */
/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
/* see jconfig.doc for explanations */
// disable all the warnings under MSVC
#ifdef _MSC_VER
#pragma warning (disable: 4996 4267 4100 4127 4702 4244)
#endif
#ifdef __BORLANDC__
#pragma warn -8057
#pragma warn -8019
#pragma warn -8004
#pragma warn -8008
#endif
#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#ifndef HAVE_STDLIB_H
#define HAVE_STDLIB_H
#endif
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN
/* Define "boolean" as unsigned char, not int, per Windows custom */
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
#ifdef JPEG_INTERNALS
#undef RIGHT_SHIFT_IS_UNSIGNED
#endif /* JPEG_INTERNALS */
#ifdef JPEG_CJPEG_DJPEG
#define BMP_SUPPORTED /* BMP image file format */
#define GIF_SUPPORTED /* GIF image file format */
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED /* Utah RLE image file format */
#define TARGA_SUPPORTED /* Targa image file format */
#define TWO_FILE_COMMANDLINE /* optional */
#define USE_SETMODE /* Microsoft has setmode() */
#undef NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT /* optional */
#endif /* JPEG_CJPEG_DJPEG */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,354 +1,354 @@
/*
* jcprepct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the compression preprocessing controller.
* This controller manages the color conversion, downsampling,
* and edge expansion steps.
*
* Most of the complexity here is associated with buffering input rows
* as required by the downsampler. See the comments at the head of
* jcsample.c for the downsampler's needs.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* At present, jcsample.c can request context rows only for smoothing.
* In the future, we might also need context rows for CCIR601 sampling
* or other more-complex downsampling procedures. The code to support
* context rows should be compiled only if needed.
*/
#ifdef INPUT_SMOOTHING_SUPPORTED
#define CONTEXT_ROWS_SUPPORTED
#endif
/*
* For the simple (no-context-row) case, we just need to buffer one
* row group's worth of pixels for the downsampling step. At the bottom of
* the image, we pad to a full row group by replicating the last pixel row.
* The downsampler's last output row is then replicated if needed to pad
* out to a full iMCU row.
*
* When providing context rows, we must buffer three row groups' worth of
* pixels. Three row groups are physically allocated, but the row pointer
* arrays are made five row groups high, with the extra pointers above and
* below "wrapping around" to point to the last and first real row groups.
* This allows the downsampler to access the proper context rows.
* At the top and bottom of the image, we create dummy context rows by
* copying the first or last real pixel row. This copying could be avoided
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
* trouble on the compression side.
*/
/* Private buffer controller object */
typedef struct {
struct jpeg_c_prep_controller pub; /* public fields */
/* Downsampling input buffer. This buffer holds color-converted data
* until we have enough to do a downsample step.
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
JDIMENSION rows_to_go; /* counts rows remaining in source image */
int next_buf_row; /* index of next row to store in color_buf */
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
int this_row_group; /* starting row index of group to process */
int next_buf_stop; /* downsample when we reach this index */
#endif
} my_prep_controller;
typedef my_prep_controller * my_prep_ptr;
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
if (pass_mode != JBUF_PASS_THRU)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
/* Initialize total-height counter for detecting bottom of image */
prep->rows_to_go = cinfo->image_height;
/* Mark the conversion buffer empty */
prep->next_buf_row = 0;
#ifdef CONTEXT_ROWS_SUPPORTED
/* Preset additional state variables for context mode.
* These aren't used in non-context mode, so we needn't test which mode.
*/
prep->this_row_group = 0;
/* Set next_buf_stop to stop after two row groups have been read in. */
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
#endif
}
/*
* Expand an image vertically from height input_rows to height output_rows,
* by duplicating the bottom row.
*/
LOCAL(void)
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
int input_rows, int output_rows)
{
int row;
for (row = input_rows; row < output_rows; row++) {
jcopy_sample_rows(image_data, input_rows-1, image_data, row,
1, num_cols);
}
}
/*
* Process some data in the simple no-context case.
*
* Preprocessor output data is counted in "row groups". A row group
* is defined to be v_samp_factor sample rows of each component.
* Downsampling will produce this much data from each max_v_samp_factor
* input rows.
*/
METHODDEF(void)
pre_process_data (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
JDIMENSION inrows;
jpeg_component_info * compptr;
while (*in_row_ctr < in_rows_avail &&
*out_row_group_ctr < out_row_groups_avail) {
/* Do color conversion to fill the conversion buffer. */
inrows = in_rows_avail - *in_row_ctr;
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
prep->rows_to_go -= numrows;
/* If at bottom of image, pad to fill the conversion buffer. */
if (prep->rows_to_go == 0 &&
prep->next_buf_row < cinfo->max_v_samp_factor) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, cinfo->max_v_samp_factor);
}
prep->next_buf_row = cinfo->max_v_samp_factor;
}
/* If we've filled the conversion buffer, empty it. */
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf, (JDIMENSION) 0,
output_buf, *out_row_group_ctr);
prep->next_buf_row = 0;
(*out_row_group_ctr)++;
}
/* If at bottom of image, pad the output to a full iMCU height.
* Note we assume the caller is providing a one-iMCU-height output buffer!
*/
if (prep->rows_to_go == 0 &&
*out_row_group_ctr < out_row_groups_avail) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
expand_bottom_edge(output_buf[ci],
compptr->width_in_blocks * DCTSIZE,
(int) (*out_row_group_ctr * compptr->v_samp_factor),
(int) (out_row_groups_avail * compptr->v_samp_factor));
}
*out_row_group_ctr = out_row_groups_avail;
break; /* can exit outer loop without test */
}
}
}
#ifdef CONTEXT_ROWS_SUPPORTED
/*
* Process some data in the context case.
*/
METHODDEF(void)
pre_process_context (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
int buf_height = cinfo->max_v_samp_factor * 3;
JDIMENSION inrows;
while (*out_row_group_ctr < out_row_groups_avail) {
if (*in_row_ctr < in_rows_avail) {
/* Do color conversion to fill the conversion buffer. */
inrows = in_rows_avail - *in_row_ctr;
numrows = prep->next_buf_stop - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
/* Pad at top of image, if first time through */
if (prep->rows_to_go == cinfo->image_height) {
for (ci = 0; ci < cinfo->num_components; ci++) {
int row;
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
jcopy_sample_rows(prep->color_buf[ci], 0,
prep->color_buf[ci], -row,
1, cinfo->image_width);
}
}
}
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
prep->rows_to_go -= numrows;
} else {
/* Return for more data, unless we are at the bottom of the image. */
if (prep->rows_to_go != 0)
break;
/* When at bottom of image, pad to fill the conversion buffer. */
if (prep->next_buf_row < prep->next_buf_stop) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, prep->next_buf_stop);
}
prep->next_buf_row = prep->next_buf_stop;
}
}
/* If we've gotten enough data, downsample a row group. */
if (prep->next_buf_row == prep->next_buf_stop) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf,
(JDIMENSION) prep->this_row_group,
output_buf, *out_row_group_ctr);
(*out_row_group_ctr)++;
/* Advance pointers with wraparound as necessary. */
prep->this_row_group += cinfo->max_v_samp_factor;
if (prep->this_row_group >= buf_height)
prep->this_row_group = 0;
if (prep->next_buf_row >= buf_height)
prep->next_buf_row = 0;
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
}
}
}
/*
* Create the wrapped-around downsampling input buffer needed for context mode.
*/
LOCAL(void)
create_context_buffer (j_compress_ptr cinfo)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int rgroup_height = cinfo->max_v_samp_factor;
int ci, i;
jpeg_component_info * compptr;
JSAMPARRAY true_buffer, fake_buffer;
/* Grab enough space for fake row pointers for all the components;
* we need five row groups' worth of pointers for each component.
*/
fake_buffer = (JSAMPARRAY)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(cinfo->num_components * 5 * rgroup_height) *
SIZEOF(JSAMPROW));
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate the actual buffer space (3 row groups) for this component.
* We make the buffer wide enough to allow the downsampler to edge-expand
* horizontally within the buffer, if it so chooses.
*/
true_buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) (3 * rgroup_height));
/* Copy true buffer row pointers into the middle of the fake row array */
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
3 * rgroup_height * SIZEOF(JSAMPROW));
/* Fill in the above and below wraparound pointers */
for (i = 0; i < rgroup_height; i++) {
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
}
prep->color_buf[ci] = fake_buffer + rgroup_height;
fake_buffer += 5 * rgroup_height; /* point to space for next component */
}
}
#endif /* CONTEXT_ROWS_SUPPORTED */
/*
* Initialize preprocessing controller.
*/
GLOBAL(void)
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_prep_ptr prep;
int ci;
jpeg_component_info * compptr;
if (need_full_buffer) /* safety check */
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
prep = (my_prep_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_prep_controller));
cinfo->prep = (struct jpeg_c_prep_controller *) prep;
prep->pub.start_pass = start_pass_prep;
/* Allocate the color conversion buffer.
* We make the buffer wide enough to allow the downsampler to edge-expand
* horizontally within the buffer, if it so chooses.
*/
if (cinfo->downsample->need_context_rows) {
/* Set up to provide context rows */
#ifdef CONTEXT_ROWS_SUPPORTED
prep->pub.pre_process_data = pre_process_context;
create_context_buffer(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
/* No context, just make it tall enough for one row group */
prep->pub.pre_process_data = pre_process_data;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}
}
/*
* jcprepct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the compression preprocessing controller.
* This controller manages the color conversion, downsampling,
* and edge expansion steps.
*
* Most of the complexity here is associated with buffering input rows
* as required by the downsampler. See the comments at the head of
* jcsample.c for the downsampler's needs.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* At present, jcsample.c can request context rows only for smoothing.
* In the future, we might also need context rows for CCIR601 sampling
* or other more-complex downsampling procedures. The code to support
* context rows should be compiled only if needed.
*/
#ifdef INPUT_SMOOTHING_SUPPORTED
#define CONTEXT_ROWS_SUPPORTED
#endif
/*
* For the simple (no-context-row) case, we just need to buffer one
* row group's worth of pixels for the downsampling step. At the bottom of
* the image, we pad to a full row group by replicating the last pixel row.
* The downsampler's last output row is then replicated if needed to pad
* out to a full iMCU row.
*
* When providing context rows, we must buffer three row groups' worth of
* pixels. Three row groups are physically allocated, but the row pointer
* arrays are made five row groups high, with the extra pointers above and
* below "wrapping around" to point to the last and first real row groups.
* This allows the downsampler to access the proper context rows.
* At the top and bottom of the image, we create dummy context rows by
* copying the first or last real pixel row. This copying could be avoided
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
* trouble on the compression side.
*/
/* Private buffer controller object */
typedef struct {
struct jpeg_c_prep_controller pub; /* public fields */
/* Downsampling input buffer. This buffer holds color-converted data
* until we have enough to do a downsample step.
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
JDIMENSION rows_to_go; /* counts rows remaining in source image */
int next_buf_row; /* index of next row to store in color_buf */
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
int this_row_group; /* starting row index of group to process */
int next_buf_stop; /* downsample when we reach this index */
#endif
} my_prep_controller;
typedef my_prep_controller * my_prep_ptr;
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
if (pass_mode != JBUF_PASS_THRU)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
/* Initialize total-height counter for detecting bottom of image */
prep->rows_to_go = cinfo->image_height;
/* Mark the conversion buffer empty */
prep->next_buf_row = 0;
#ifdef CONTEXT_ROWS_SUPPORTED
/* Preset additional state variables for context mode.
* These aren't used in non-context mode, so we needn't test which mode.
*/
prep->this_row_group = 0;
/* Set next_buf_stop to stop after two row groups have been read in. */
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
#endif
}
/*
* Expand an image vertically from height input_rows to height output_rows,
* by duplicating the bottom row.
*/
LOCAL(void)
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
int input_rows, int output_rows)
{
int row;
for (row = input_rows; row < output_rows; row++) {
jcopy_sample_rows(image_data, input_rows-1, image_data, row,
1, num_cols);
}
}
/*
* Process some data in the simple no-context case.
*
* Preprocessor output data is counted in "row groups". A row group
* is defined to be v_samp_factor sample rows of each component.
* Downsampling will produce this much data from each max_v_samp_factor
* input rows.
*/
METHODDEF(void)
pre_process_data (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
JDIMENSION inrows;
jpeg_component_info * compptr;
while (*in_row_ctr < in_rows_avail &&
*out_row_group_ctr < out_row_groups_avail) {
/* Do color conversion to fill the conversion buffer. */
inrows = in_rows_avail - *in_row_ctr;
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
prep->rows_to_go -= numrows;
/* If at bottom of image, pad to fill the conversion buffer. */
if (prep->rows_to_go == 0 &&
prep->next_buf_row < cinfo->max_v_samp_factor) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, cinfo->max_v_samp_factor);
}
prep->next_buf_row = cinfo->max_v_samp_factor;
}
/* If we've filled the conversion buffer, empty it. */
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf, (JDIMENSION) 0,
output_buf, *out_row_group_ctr);
prep->next_buf_row = 0;
(*out_row_group_ctr)++;
}
/* If at bottom of image, pad the output to a full iMCU height.
* Note we assume the caller is providing a one-iMCU-height output buffer!
*/
if (prep->rows_to_go == 0 &&
*out_row_group_ctr < out_row_groups_avail) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
expand_bottom_edge(output_buf[ci],
compptr->width_in_blocks * DCTSIZE,
(int) (*out_row_group_ctr * compptr->v_samp_factor),
(int) (out_row_groups_avail * compptr->v_samp_factor));
}
*out_row_group_ctr = out_row_groups_avail;
break; /* can exit outer loop without test */
}
}
}
#ifdef CONTEXT_ROWS_SUPPORTED
/*
* Process some data in the context case.
*/
METHODDEF(void)
pre_process_context (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
int buf_height = cinfo->max_v_samp_factor * 3;
JDIMENSION inrows;
while (*out_row_group_ctr < out_row_groups_avail) {
if (*in_row_ctr < in_rows_avail) {
/* Do color conversion to fill the conversion buffer. */
inrows = in_rows_avail - *in_row_ctr;
numrows = prep->next_buf_stop - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
/* Pad at top of image, if first time through */
if (prep->rows_to_go == cinfo->image_height) {
for (ci = 0; ci < cinfo->num_components; ci++) {
int row;
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
jcopy_sample_rows(prep->color_buf[ci], 0,
prep->color_buf[ci], -row,
1, cinfo->image_width);
}
}
}
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
prep->rows_to_go -= numrows;
} else {
/* Return for more data, unless we are at the bottom of the image. */
if (prep->rows_to_go != 0)
break;
/* When at bottom of image, pad to fill the conversion buffer. */
if (prep->next_buf_row < prep->next_buf_stop) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, prep->next_buf_stop);
}
prep->next_buf_row = prep->next_buf_stop;
}
}
/* If we've gotten enough data, downsample a row group. */
if (prep->next_buf_row == prep->next_buf_stop) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf,
(JDIMENSION) prep->this_row_group,
output_buf, *out_row_group_ctr);
(*out_row_group_ctr)++;
/* Advance pointers with wraparound as necessary. */
prep->this_row_group += cinfo->max_v_samp_factor;
if (prep->this_row_group >= buf_height)
prep->this_row_group = 0;
if (prep->next_buf_row >= buf_height)
prep->next_buf_row = 0;
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
}
}
}
/*
* Create the wrapped-around downsampling input buffer needed for context mode.
*/
LOCAL(void)
create_context_buffer (j_compress_ptr cinfo)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int rgroup_height = cinfo->max_v_samp_factor;
int ci, i;
jpeg_component_info * compptr;
JSAMPARRAY true_buffer, fake_buffer;
/* Grab enough space for fake row pointers for all the components;
* we need five row groups' worth of pointers for each component.
*/
fake_buffer = (JSAMPARRAY)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(cinfo->num_components * 5 * rgroup_height) *
SIZEOF(JSAMPROW));
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate the actual buffer space (3 row groups) for this component.
* We make the buffer wide enough to allow the downsampler to edge-expand
* horizontally within the buffer, if it so chooses.
*/
true_buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) (3 * rgroup_height));
/* Copy true buffer row pointers into the middle of the fake row array */
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
3 * rgroup_height * SIZEOF(JSAMPROW));
/* Fill in the above and below wraparound pointers */
for (i = 0; i < rgroup_height; i++) {
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
}
prep->color_buf[ci] = fake_buffer + rgroup_height;
fake_buffer += 5 * rgroup_height; /* point to space for next component */
}
}
#endif /* CONTEXT_ROWS_SUPPORTED */
/*
* Initialize preprocessing controller.
*/
GLOBAL(void)
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_prep_ptr prep;
int ci;
jpeg_component_info * compptr;
if (need_full_buffer) /* safety check */
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
prep = (my_prep_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_prep_controller));
cinfo->prep = (struct jpeg_c_prep_controller *) prep;
prep->pub.start_pass = start_pass_prep;
/* Allocate the color conversion buffer.
* We make the buffer wide enough to allow the downsampler to edge-expand
* horizontally within the buffer, if it so chooses.
*/
if (cinfo->downsample->need_context_rows) {
/* Set up to provide context rows */
#ifdef CONTEXT_ROWS_SUPPORTED
prep->pub.pre_process_data = pre_process_context;
create_context_buffer(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
/* No context, just make it tall enough for one row group */
prep->pub.pre_process_data = pre_process_data;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,388 +1,388 @@
/*
* jctrans.c
*
* Copyright (C) 1995-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains library routines for transcoding compression,
* that is, writing raw DCT coefficient arrays to an output JPEG file.
* The routines in jcapimin.c will also be needed by a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(void) transencode_master_selection
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
LOCAL(void) transencode_coef_controller
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
/*
* Compression initialization for writing raw-coefficient data.
* Before calling this, all parameters and a data destination must be set up.
* Call jpeg_finish_compress() to actually write the data.
*
* The number of passed virtual arrays must match cinfo->num_components.
* Note that the virtual arrays need not be filled or even realized at
* the time write_coefficients is called; indeed, if the virtual arrays
* were requested from this compression object's memory manager, they
* typically will be realized during this routine and filled afterwards.
*/
GLOBAL(void)
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Mark all tables to be written */
jpeg_suppress_tables(cinfo, FALSE);
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
transencode_master_selection(cinfo, coef_arrays);
/* Wait for jpeg_finish_compress() call */
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
cinfo->global_state = CSTATE_WRCOEFS;
}
/*
* Initialize the compression object with default parameters,
* then copy from the source object all parameters needed for lossless
* transcoding. Parameters that can be varied without loss (such as
* scan script and Huffman optimization) are left in their default states.
*/
GLOBAL(void)
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
j_compress_ptr dstinfo)
{
JQUANT_TBL ** qtblptr;
jpeg_component_info *incomp, *outcomp;
JQUANT_TBL *c_quant, *slot_quant;
int tblno, ci, coefi;
/* Safety check to ensure start_compress not called yet. */
if (dstinfo->global_state != CSTATE_START)
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
/* Copy fundamental image dimensions */
dstinfo->image_width = srcinfo->image_width;
dstinfo->image_height = srcinfo->image_height;
dstinfo->input_components = srcinfo->num_components;
dstinfo->in_color_space = srcinfo->jpeg_color_space;
/* Initialize all parameters to default values */
jpeg_set_defaults(dstinfo);
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
* Fix it to get the right header markers for the image colorspace.
*/
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
dstinfo->data_precision = srcinfo->data_precision;
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
/* Copy the source's quantization tables. */
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
if (*qtblptr == NULL)
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
MEMCOPY((*qtblptr)->quantval,
srcinfo->quant_tbl_ptrs[tblno]->quantval,
SIZEOF((*qtblptr)->quantval));
(*qtblptr)->sent_table = FALSE;
}
}
/* Copy the source's per-component info.
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
*/
dstinfo->num_components = srcinfo->num_components;
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
MAX_COMPONENTS);
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
outcomp->component_id = incomp->component_id;
outcomp->h_samp_factor = incomp->h_samp_factor;
outcomp->v_samp_factor = incomp->v_samp_factor;
outcomp->quant_tbl_no = incomp->quant_tbl_no;
/* Make sure saved quantization table for component matches the qtable
* slot. If not, the input file re-used this qtable slot.
* IJG encoder currently cannot duplicate this.
*/
tblno = outcomp->quant_tbl_no;
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
c_quant = incomp->quant_table;
if (c_quant != NULL) {
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
}
}
/* Note: we do not copy the source's Huffman table assignments;
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
*/
}
/* Also copy JFIF version and resolution information, if available.
* Strictly speaking this isn't "critical" info, but it's nearly
* always appropriate to copy it if available. In particular,
* if the application chooses to copy JFIF 1.02 extension markers from
* the source file, we need to copy the version to make sure we don't
* emit a file that has 1.02 extensions but a claimed version of 1.01.
* We will *not*, however, copy version info from mislabeled "2.01" files.
*/
if (srcinfo->saw_JFIF_marker) {
if (srcinfo->JFIF_major_version == 1) {
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
}
dstinfo->density_unit = srcinfo->density_unit;
dstinfo->X_density = srcinfo->X_density;
dstinfo->Y_density = srcinfo->Y_density;
}
}
/*
* Master selection of compression modules for transcoding.
* This substitutes for jcinit.c's initialization of the full compressor.
*/
LOCAL(void)
transencode_master_selection (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
{
/* Although we don't actually use input_components for transcoding,
* jcmaster.c's initial_setup will complain if input_components is 0.
*/
cinfo->input_components = 1;
/* Initialize master control (includes parameter checking/processing) */
jinit_c_master_control(cinfo, TRUE /* transcode only */);
/* Entropy encoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
} else {
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
jinit_phuff_encoder(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else
jinit_huff_encoder(cinfo);
}
/* We need a special coefficient buffer controller. */
transencode_coef_controller(cinfo, coef_arrays);
jinit_marker_writer(cinfo);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Write the datastream header (SOI, JFIF) immediately.
* Frame and scan headers are postponed till later.
* This lets application insert special markers after the SOI.
*/
(*cinfo->marker->write_file_header) (cinfo);
}
/*
* The rest of this file is a special implementation of the coefficient
* buffer controller. This is similar to jccoefct.c, but it handles only
* output from presupplied virtual arrays. Furthermore, we generate any
* dummy padding blocks on-the-fly rather than expecting them to be present
* in the arrays.
*/
/* Private buffer controller object */
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* Virtual block array for each component. */
jvirt_barray_ptr * whole_image;
/* Workspace for constructing dummy blocks at right/bottom edges. */
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
} my_coef_controller2;
typedef my_coef_controller2 * my_coef_ptr2;
LOCAL(void)
start_iMCU_row2 (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->mcu_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_coef2 (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef;
if (pass_mode != JBUF_CRANK_DEST)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->iMCU_row_num = 0;
start_iMCU_row2(cinfo);
}
/*
* Process some data.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the scan.
* The data is obtained from the virtual arrays and fed to the entropy coder.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf is ignored; it is likely to be a NULL pointer.
*/
METHODDEF(boolean)
compress_output2 (j_compress_ptr cinfo, JSAMPIMAGE)
{
my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, ci, xindex, yindex, yoffset, blockcnt;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan. */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yindex+yoffset < compptr->last_row_height) {
/* Fill in pointers to real blocks in this row */
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < blockcnt; xindex++)
MCU_buffer[blkn++] = buffer_ptr++;
} else {
/* At bottom of image, need a whole row of dummy blocks */
xindex = 0;
}
/* Fill in any dummy blocks needed in this row.
* Dummy blocks are filled in the same way as in jccoefct.c:
* all zeroes in the AC entries, DC entries equal to previous
* block's DC value. The init routine has already zeroed the
* AC entries, so we need only set the DC entries correctly.
*/
for (; xindex < compptr->MCU_width; xindex++) {
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
blkn++;
}
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row2(cinfo);
return TRUE;
}
/*
* Initialize coefficient buffer controller.
*
* Each passed coefficient array must be the right size for that
* coefficient: width_in_blocks wide and height_in_blocks high,
* with unitheight at least v_samp_factor.
*/
LOCAL(void)
transencode_coef_controller (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
{
my_coef_ptr2 coef;
JBLOCKROW buffer;
int i;
coef = (my_coef_ptr2)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller2));
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
coef->pub.start_pass = start_pass_coef2;
coef->pub.compress_data = compress_output2;
/* Save pointer to virtual arrays */
coef->whole_image = coef_arrays;
/* Allocate and pre-zero space for dummy DCT blocks. */
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
coef->dummy_buffer[i] = buffer + i;
}
}
/*
* jctrans.c
*
* Copyright (C) 1995-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains library routines for transcoding compression,
* that is, writing raw DCT coefficient arrays to an output JPEG file.
* The routines in jcapimin.c will also be needed by a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(void) transencode_master_selection
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
LOCAL(void) transencode_coef_controller
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
/*
* Compression initialization for writing raw-coefficient data.
* Before calling this, all parameters and a data destination must be set up.
* Call jpeg_finish_compress() to actually write the data.
*
* The number of passed virtual arrays must match cinfo->num_components.
* Note that the virtual arrays need not be filled or even realized at
* the time write_coefficients is called; indeed, if the virtual arrays
* were requested from this compression object's memory manager, they
* typically will be realized during this routine and filled afterwards.
*/
GLOBAL(void)
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Mark all tables to be written */
jpeg_suppress_tables(cinfo, FALSE);
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
transencode_master_selection(cinfo, coef_arrays);
/* Wait for jpeg_finish_compress() call */
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
cinfo->global_state = CSTATE_WRCOEFS;
}
/*
* Initialize the compression object with default parameters,
* then copy from the source object all parameters needed for lossless
* transcoding. Parameters that can be varied without loss (such as
* scan script and Huffman optimization) are left in their default states.
*/
GLOBAL(void)
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
j_compress_ptr dstinfo)
{
JQUANT_TBL ** qtblptr;
jpeg_component_info *incomp, *outcomp;
JQUANT_TBL *c_quant, *slot_quant;
int tblno, ci, coefi;
/* Safety check to ensure start_compress not called yet. */
if (dstinfo->global_state != CSTATE_START)
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
/* Copy fundamental image dimensions */
dstinfo->image_width = srcinfo->image_width;
dstinfo->image_height = srcinfo->image_height;
dstinfo->input_components = srcinfo->num_components;
dstinfo->in_color_space = srcinfo->jpeg_color_space;
/* Initialize all parameters to default values */
jpeg_set_defaults(dstinfo);
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
* Fix it to get the right header markers for the image colorspace.
*/
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
dstinfo->data_precision = srcinfo->data_precision;
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
/* Copy the source's quantization tables. */
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
if (*qtblptr == NULL)
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
MEMCOPY((*qtblptr)->quantval,
srcinfo->quant_tbl_ptrs[tblno]->quantval,
SIZEOF((*qtblptr)->quantval));
(*qtblptr)->sent_table = FALSE;
}
}
/* Copy the source's per-component info.
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
*/
dstinfo->num_components = srcinfo->num_components;
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
MAX_COMPONENTS);
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
outcomp->component_id = incomp->component_id;
outcomp->h_samp_factor = incomp->h_samp_factor;
outcomp->v_samp_factor = incomp->v_samp_factor;
outcomp->quant_tbl_no = incomp->quant_tbl_no;
/* Make sure saved quantization table for component matches the qtable
* slot. If not, the input file re-used this qtable slot.
* IJG encoder currently cannot duplicate this.
*/
tblno = outcomp->quant_tbl_no;
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
c_quant = incomp->quant_table;
if (c_quant != NULL) {
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
}
}
/* Note: we do not copy the source's Huffman table assignments;
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
*/
}
/* Also copy JFIF version and resolution information, if available.
* Strictly speaking this isn't "critical" info, but it's nearly
* always appropriate to copy it if available. In particular,
* if the application chooses to copy JFIF 1.02 extension markers from
* the source file, we need to copy the version to make sure we don't
* emit a file that has 1.02 extensions but a claimed version of 1.01.
* We will *not*, however, copy version info from mislabeled "2.01" files.
*/
if (srcinfo->saw_JFIF_marker) {
if (srcinfo->JFIF_major_version == 1) {
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
}
dstinfo->density_unit = srcinfo->density_unit;
dstinfo->X_density = srcinfo->X_density;
dstinfo->Y_density = srcinfo->Y_density;
}
}
/*
* Master selection of compression modules for transcoding.
* This substitutes for jcinit.c's initialization of the full compressor.
*/
LOCAL(void)
transencode_master_selection (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
{
/* Although we don't actually use input_components for transcoding,
* jcmaster.c's initial_setup will complain if input_components is 0.
*/
cinfo->input_components = 1;
/* Initialize master control (includes parameter checking/processing) */
jinit_c_master_control(cinfo, TRUE /* transcode only */);
/* Entropy encoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
} else {
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
jinit_phuff_encoder(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else
jinit_huff_encoder(cinfo);
}
/* We need a special coefficient buffer controller. */
transencode_coef_controller(cinfo, coef_arrays);
jinit_marker_writer(cinfo);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Write the datastream header (SOI, JFIF) immediately.
* Frame and scan headers are postponed till later.
* This lets application insert special markers after the SOI.
*/
(*cinfo->marker->write_file_header) (cinfo);
}
/*
* The rest of this file is a special implementation of the coefficient
* buffer controller. This is similar to jccoefct.c, but it handles only
* output from presupplied virtual arrays. Furthermore, we generate any
* dummy padding blocks on-the-fly rather than expecting them to be present
* in the arrays.
*/
/* Private buffer controller object */
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* Virtual block array for each component. */
jvirt_barray_ptr * whole_image;
/* Workspace for constructing dummy blocks at right/bottom edges. */
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
} my_coef_controller2;
typedef my_coef_controller2 * my_coef_ptr2;
LOCAL(void)
start_iMCU_row2 (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->mcu_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_coef2 (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef;
if (pass_mode != JBUF_CRANK_DEST)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->iMCU_row_num = 0;
start_iMCU_row2(cinfo);
}
/*
* Process some data.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the scan.
* The data is obtained from the virtual arrays and fed to the entropy coder.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf is ignored; it is likely to be a NULL pointer.
*/
METHODDEF(boolean)
compress_output2 (j_compress_ptr cinfo, JSAMPIMAGE)
{
my_coef_ptr2 coef = (my_coef_ptr2) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, ci, xindex, yindex, yoffset, blockcnt;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan. */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yindex+yoffset < compptr->last_row_height) {
/* Fill in pointers to real blocks in this row */
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
for (xindex = 0; xindex < blockcnt; xindex++)
MCU_buffer[blkn++] = buffer_ptr++;
} else {
/* At bottom of image, need a whole row of dummy blocks */
xindex = 0;
}
/* Fill in any dummy blocks needed in this row.
* Dummy blocks are filled in the same way as in jccoefct.c:
* all zeroes in the AC entries, DC entries equal to previous
* block's DC value. The init routine has already zeroed the
* AC entries, so we need only set the DC entries correctly.
*/
for (; xindex < compptr->MCU_width; xindex++) {
MCU_buffer[blkn] = coef->dummy_buffer[blkn];
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
blkn++;
}
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->mcu_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->mcu_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row2(cinfo);
return TRUE;
}
/*
* Initialize coefficient buffer controller.
*
* Each passed coefficient array must be the right size for that
* coefficient: width_in_blocks wide and height_in_blocks high,
* with unitheight at least v_samp_factor.
*/
LOCAL(void)
transencode_coef_controller (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
{
my_coef_ptr2 coef;
JBLOCKROW buffer;
int i;
coef = (my_coef_ptr2)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller2));
cinfo->coef = (struct jpeg_c_coef_controller *) coef;
coef->pub.start_pass = start_pass_coef2;
coef->pub.compress_data = compress_output2;
/* Save pointer to virtual arrays */
coef->whole_image = coef_arrays;
/* Allocate and pre-zero space for dummy DCT blocks. */
buffer = (JBLOCKROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
coef->dummy_buffer[i] = buffer + i;
}
}

View File

@ -1,395 +1,395 @@
/*
* jdapimin.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the decompression half
* of the JPEG library. These are the "minimum" API routines that may be
* needed in either the normal full-decompression case or the
* transcoding-only case.
*
* Most of the routines intended to be called directly by an application
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
* shared by compression and decompression, and jdtrans.c for the transcoding
* case.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Initialization of a JPEG decompression object.
* The error manager must already be set up (in case memory manager fails).
*/
GLOBAL(void)
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
{
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_decompress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
* client_data, so we have to save and restore those fields.
* Note: if application hasn't set client_data, tools like Purify may
* complain here.
*/
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
cinfo->is_decompressor = TRUE;
/* Initialize a memory manager instance for this object */
jinit_memory_mgr((j_common_ptr) cinfo);
/* Zero out pointers to permanent structures. */
cinfo->progress = NULL;
cinfo->src = NULL;
for (i = 0; i < NUM_QUANT_TBLS; i++)
cinfo->quant_tbl_ptrs[i] = NULL;
for (i = 0; i < NUM_HUFF_TBLS; i++) {
cinfo->dc_huff_tbl_ptrs[i] = NULL;
cinfo->ac_huff_tbl_ptrs[i] = NULL;
}
/* Initialize marker processor so application can override methods
* for COM, APPn markers before calling jpeg_read_header.
*/
cinfo->marker_list = NULL;
jinit_marker_reader(cinfo);
/* And initialize the overall input controller. */
jinit_input_controller(cinfo);
/* OK, I'm ready */
cinfo->global_state = DSTATE_START;
}
/*
* Destruction of a JPEG decompression object
*/
GLOBAL(void)
jpeg_destroy_decompress (j_decompress_ptr cinfo)
{
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
}
/*
* Abort processing of a JPEG decompression operation,
* but don't destroy the object itself.
*/
GLOBAL(void)
jpeg_abort_decompress (j_decompress_ptr cinfo)
{
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
}
/*
* Set default decompression parameters.
*/
LOCAL(void)
default_decompress_parms (j_decompress_ptr cinfo)
{
/* Guess the input colorspace, and set output colorspace accordingly. */
/* (Wish JPEG committee had provided a real way to specify this...) */
/* Note application may override our guesses. */
switch (cinfo->num_components) {
case 1:
cinfo->jpeg_color_space = JCS_GRAYSCALE;
cinfo->out_color_space = JCS_GRAYSCALE;
break;
case 3:
if (cinfo->saw_JFIF_marker) {
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
} else if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_RGB;
break;
case 1:
cinfo->jpeg_color_space = JCS_YCbCr;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
break;
}
} else {
/* Saw no special markers, try to guess from the component IDs */
int cid0 = cinfo->comp_info[0].component_id;
int cid1 = cinfo->comp_info[1].component_id;
int cid2 = cinfo->comp_info[2].component_id;
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
else {
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
}
}
/* Always guess RGB is proper output colorspace. */
cinfo->out_color_space = JCS_RGB;
break;
case 4:
if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_CMYK;
break;
case 2:
cinfo->jpeg_color_space = JCS_YCCK;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
break;
}
} else {
/* No special markers, assume straight CMYK. */
cinfo->jpeg_color_space = JCS_CMYK;
}
cinfo->out_color_space = JCS_CMYK;
break;
default:
cinfo->jpeg_color_space = JCS_UNKNOWN;
cinfo->out_color_space = JCS_UNKNOWN;
break;
}
/* Set defaults for other decompression parameters. */
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_denom = 1;
cinfo->output_gamma = 1.0;
cinfo->buffered_image = FALSE;
cinfo->raw_data_out = FALSE;
cinfo->dct_method = JDCT_DEFAULT;
cinfo->do_fancy_upsampling = TRUE;
cinfo->do_block_smoothing = TRUE;
cinfo->quantize_colors = FALSE;
/* We set these in case application only sets quantize_colors. */
cinfo->dither_mode = JDITHER_FS;
#ifdef QUANT_2PASS_SUPPORTED
cinfo->two_pass_quantize = TRUE;
#else
cinfo->two_pass_quantize = FALSE;
#endif
cinfo->desired_number_of_colors = 256;
cinfo->colormap = NULL;
/* Initialize for no mode change in buffered-image mode. */
cinfo->enable_1pass_quant = FALSE;
cinfo->enable_external_quant = FALSE;
cinfo->enable_2pass_quant = FALSE;
}
/*
* Decompression startup: read start of JPEG datastream to see what's there.
* Need only initialize JPEG object and supply a data source before calling.
*
* This routine will read as far as the first SOS marker (ie, actual start of
* compressed data), and will save all tables and parameters in the JPEG
* object. It will also initialize the decompression parameters to default
* values, and finally return JPEG_HEADER_OK. On return, the application may
* adjust the decompression parameters and then call jpeg_start_decompress.
* (Or, if the application only wanted to determine the image parameters,
* the data need not be decompressed. In that case, call jpeg_abort or
* jpeg_destroy to release any temporary space.)
* If an abbreviated (tables only) datastream is presented, the routine will
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
* re-use the JPEG object to read the abbreviated image datastream(s).
* It is unnecessary (but OK) to call jpeg_abort in this case.
* The JPEG_SUSPENDED return code only occurs if the data source module
* requests suspension of the decompressor. In this case the application
* should load more source data and then re-call jpeg_read_header to resume
* processing.
* If a non-suspending data source is used and require_image is TRUE, then the
* return code need not be inspected since only JPEG_HEADER_OK is possible.
*
* This routine is now just a front end to jpeg_consume_input, with some
* extra error checking.
*/
GLOBAL(int)
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
{
int retcode;
if (cinfo->global_state != DSTATE_START &&
cinfo->global_state != DSTATE_INHEADER)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
retcode = jpeg_consume_input(cinfo);
switch (retcode) {
case JPEG_REACHED_SOS:
retcode = JPEG_HEADER_OK;
break;
case JPEG_REACHED_EOI:
if (require_image) /* Complain if application wanted an image */
ERREXIT(cinfo, JERR_NO_IMAGE);
/* Reset to start state; it would be safer to require the application to
* call jpeg_abort, but we can't change it now for compatibility reasons.
* A side effect is to free any temporary memory (there shouldn't be any).
*/
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
retcode = JPEG_HEADER_TABLES_ONLY;
break;
case JPEG_SUSPENDED:
/* no work */
break;
}
return retcode;
}
/*
* Consume data in advance of what the decompressor requires.
* This can be called at any time once the decompressor object has
* been created and a data source has been set up.
*
* This routine is essentially a state machine that handles a couple
* of critical state-transition actions, namely initial setup and
* transition from header scanning to ready-for-start_decompress.
* All the actual input is done via the input controller's consume_input
* method.
*/
GLOBAL(int)
jpeg_consume_input (j_decompress_ptr cinfo)
{
int retcode = JPEG_SUSPENDED;
/* NB: every possible DSTATE value should be listed in this switch */
switch (cinfo->global_state) {
case DSTATE_START:
/* Start-of-datastream actions: reset appropriate modules */
(*cinfo->inputctl->reset_input_controller) (cinfo);
/* Initialize application's data source module */
(*cinfo->src->init_source) (cinfo);
cinfo->global_state = DSTATE_INHEADER;
/*FALLTHROUGH*/
case DSTATE_INHEADER:
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
/* Set up default parameters based on header data */
default_decompress_parms(cinfo);
/* Set global state: ready for start_decompress */
cinfo->global_state = DSTATE_READY;
}
break;
case DSTATE_READY:
/* Can't advance past first SOS until start_decompress is called */
retcode = JPEG_REACHED_SOS;
break;
case DSTATE_PRELOAD:
case DSTATE_PRESCAN:
case DSTATE_SCANNING:
case DSTATE_RAW_OK:
case DSTATE_BUFIMAGE:
case DSTATE_BUFPOST:
case DSTATE_STOPPING:
retcode = (*cinfo->inputctl->consume_input) (cinfo);
break;
default:
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
return retcode;
}
/*
* Have we finished reading the input file?
*/
GLOBAL(boolean)
jpeg_input_complete (j_decompress_ptr cinfo)
{
/* Check for valid jpeg object */
if (cinfo->global_state < DSTATE_START ||
cinfo->global_state > DSTATE_STOPPING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return cinfo->inputctl->eoi_reached;
}
/*
* Is there more than one scan?
*/
GLOBAL(boolean)
jpeg_has_multiple_scans (j_decompress_ptr cinfo)
{
/* Only valid after jpeg_read_header completes */
if (cinfo->global_state < DSTATE_READY ||
cinfo->global_state > DSTATE_STOPPING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return cinfo->inputctl->has_multiple_scans;
}
/*
* Finish JPEG decompression.
*
* This will normally just verify the file trailer and release temp storage.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_finish_decompress (j_decompress_ptr cinfo)
{
if ((cinfo->global_state == DSTATE_SCANNING ||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
/* Terminate final pass of non-buffered mode */
if (cinfo->output_scanline < cinfo->output_height)
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
(*cinfo->master->finish_output_pass) (cinfo);
cinfo->global_state = DSTATE_STOPPING;
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
/* Finishing after a buffered-image operation */
cinfo->global_state = DSTATE_STOPPING;
} else if (cinfo->global_state != DSTATE_STOPPING) {
/* STOPPING = repeat call after a suspension, anything else is error */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
/* Read until EOI */
while (! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
}
/* Do final cleanup */
(*cinfo->src->term_source) (cinfo);
/* We can use jpeg_abort to release memory and reset global_state */
jpeg_abort((j_common_ptr) cinfo);
return TRUE;
}
/*
* jdapimin.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the decompression half
* of the JPEG library. These are the "minimum" API routines that may be
* needed in either the normal full-decompression case or the
* transcoding-only case.
*
* Most of the routines intended to be called directly by an application
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
* shared by compression and decompression, and jdtrans.c for the transcoding
* case.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Initialization of a JPEG decompression object.
* The error manager must already be set up (in case memory manager fails).
*/
GLOBAL(void)
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
{
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_decompress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
* client_data, so we have to save and restore those fields.
* Note: if application hasn't set client_data, tools like Purify may
* complain here.
*/
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
cinfo->is_decompressor = TRUE;
/* Initialize a memory manager instance for this object */
jinit_memory_mgr((j_common_ptr) cinfo);
/* Zero out pointers to permanent structures. */
cinfo->progress = NULL;
cinfo->src = NULL;
for (i = 0; i < NUM_QUANT_TBLS; i++)
cinfo->quant_tbl_ptrs[i] = NULL;
for (i = 0; i < NUM_HUFF_TBLS; i++) {
cinfo->dc_huff_tbl_ptrs[i] = NULL;
cinfo->ac_huff_tbl_ptrs[i] = NULL;
}
/* Initialize marker processor so application can override methods
* for COM, APPn markers before calling jpeg_read_header.
*/
cinfo->marker_list = NULL;
jinit_marker_reader(cinfo);
/* And initialize the overall input controller. */
jinit_input_controller(cinfo);
/* OK, I'm ready */
cinfo->global_state = DSTATE_START;
}
/*
* Destruction of a JPEG decompression object
*/
GLOBAL(void)
jpeg_destroy_decompress (j_decompress_ptr cinfo)
{
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
}
/*
* Abort processing of a JPEG decompression operation,
* but don't destroy the object itself.
*/
GLOBAL(void)
jpeg_abort_decompress (j_decompress_ptr cinfo)
{
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
}
/*
* Set default decompression parameters.
*/
LOCAL(void)
default_decompress_parms (j_decompress_ptr cinfo)
{
/* Guess the input colorspace, and set output colorspace accordingly. */
/* (Wish JPEG committee had provided a real way to specify this...) */
/* Note application may override our guesses. */
switch (cinfo->num_components) {
case 1:
cinfo->jpeg_color_space = JCS_GRAYSCALE;
cinfo->out_color_space = JCS_GRAYSCALE;
break;
case 3:
if (cinfo->saw_JFIF_marker) {
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
} else if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_RGB;
break;
case 1:
cinfo->jpeg_color_space = JCS_YCbCr;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
break;
}
} else {
/* Saw no special markers, try to guess from the component IDs */
int cid0 = cinfo->comp_info[0].component_id;
int cid1 = cinfo->comp_info[1].component_id;
int cid2 = cinfo->comp_info[2].component_id;
if (cid0 == 1 && cid1 == 2 && cid2 == 3)
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
else {
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
}
}
/* Always guess RGB is proper output colorspace. */
cinfo->out_color_space = JCS_RGB;
break;
case 4:
if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_CMYK;
break;
case 2:
cinfo->jpeg_color_space = JCS_YCCK;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
break;
}
} else {
/* No special markers, assume straight CMYK. */
cinfo->jpeg_color_space = JCS_CMYK;
}
cinfo->out_color_space = JCS_CMYK;
break;
default:
cinfo->jpeg_color_space = JCS_UNKNOWN;
cinfo->out_color_space = JCS_UNKNOWN;
break;
}
/* Set defaults for other decompression parameters. */
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_denom = 1;
cinfo->output_gamma = 1.0;
cinfo->buffered_image = FALSE;
cinfo->raw_data_out = FALSE;
cinfo->dct_method = JDCT_DEFAULT;
cinfo->do_fancy_upsampling = TRUE;
cinfo->do_block_smoothing = TRUE;
cinfo->quantize_colors = FALSE;
/* We set these in case application only sets quantize_colors. */
cinfo->dither_mode = JDITHER_FS;
#ifdef QUANT_2PASS_SUPPORTED
cinfo->two_pass_quantize = TRUE;
#else
cinfo->two_pass_quantize = FALSE;
#endif
cinfo->desired_number_of_colors = 256;
cinfo->colormap = NULL;
/* Initialize for no mode change in buffered-image mode. */
cinfo->enable_1pass_quant = FALSE;
cinfo->enable_external_quant = FALSE;
cinfo->enable_2pass_quant = FALSE;
}
/*
* Decompression startup: read start of JPEG datastream to see what's there.
* Need only initialize JPEG object and supply a data source before calling.
*
* This routine will read as far as the first SOS marker (ie, actual start of
* compressed data), and will save all tables and parameters in the JPEG
* object. It will also initialize the decompression parameters to default
* values, and finally return JPEG_HEADER_OK. On return, the application may
* adjust the decompression parameters and then call jpeg_start_decompress.
* (Or, if the application only wanted to determine the image parameters,
* the data need not be decompressed. In that case, call jpeg_abort or
* jpeg_destroy to release any temporary space.)
* If an abbreviated (tables only) datastream is presented, the routine will
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
* re-use the JPEG object to read the abbreviated image datastream(s).
* It is unnecessary (but OK) to call jpeg_abort in this case.
* The JPEG_SUSPENDED return code only occurs if the data source module
* requests suspension of the decompressor. In this case the application
* should load more source data and then re-call jpeg_read_header to resume
* processing.
* If a non-suspending data source is used and require_image is TRUE, then the
* return code need not be inspected since only JPEG_HEADER_OK is possible.
*
* This routine is now just a front end to jpeg_consume_input, with some
* extra error checking.
*/
GLOBAL(int)
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
{
int retcode;
if (cinfo->global_state != DSTATE_START &&
cinfo->global_state != DSTATE_INHEADER)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
retcode = jpeg_consume_input(cinfo);
switch (retcode) {
case JPEG_REACHED_SOS:
retcode = JPEG_HEADER_OK;
break;
case JPEG_REACHED_EOI:
if (require_image) /* Complain if application wanted an image */
ERREXIT(cinfo, JERR_NO_IMAGE);
/* Reset to start state; it would be safer to require the application to
* call jpeg_abort, but we can't change it now for compatibility reasons.
* A side effect is to free any temporary memory (there shouldn't be any).
*/
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
retcode = JPEG_HEADER_TABLES_ONLY;
break;
case JPEG_SUSPENDED:
/* no work */
break;
}
return retcode;
}
/*
* Consume data in advance of what the decompressor requires.
* This can be called at any time once the decompressor object has
* been created and a data source has been set up.
*
* This routine is essentially a state machine that handles a couple
* of critical state-transition actions, namely initial setup and
* transition from header scanning to ready-for-start_decompress.
* All the actual input is done via the input controller's consume_input
* method.
*/
GLOBAL(int)
jpeg_consume_input (j_decompress_ptr cinfo)
{
int retcode = JPEG_SUSPENDED;
/* NB: every possible DSTATE value should be listed in this switch */
switch (cinfo->global_state) {
case DSTATE_START:
/* Start-of-datastream actions: reset appropriate modules */
(*cinfo->inputctl->reset_input_controller) (cinfo);
/* Initialize application's data source module */
(*cinfo->src->init_source) (cinfo);
cinfo->global_state = DSTATE_INHEADER;
/*FALLTHROUGH*/
case DSTATE_INHEADER:
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
/* Set up default parameters based on header data */
default_decompress_parms(cinfo);
/* Set global state: ready for start_decompress */
cinfo->global_state = DSTATE_READY;
}
break;
case DSTATE_READY:
/* Can't advance past first SOS until start_decompress is called */
retcode = JPEG_REACHED_SOS;
break;
case DSTATE_PRELOAD:
case DSTATE_PRESCAN:
case DSTATE_SCANNING:
case DSTATE_RAW_OK:
case DSTATE_BUFIMAGE:
case DSTATE_BUFPOST:
case DSTATE_STOPPING:
retcode = (*cinfo->inputctl->consume_input) (cinfo);
break;
default:
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
return retcode;
}
/*
* Have we finished reading the input file?
*/
GLOBAL(boolean)
jpeg_input_complete (j_decompress_ptr cinfo)
{
/* Check for valid jpeg object */
if (cinfo->global_state < DSTATE_START ||
cinfo->global_state > DSTATE_STOPPING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return cinfo->inputctl->eoi_reached;
}
/*
* Is there more than one scan?
*/
GLOBAL(boolean)
jpeg_has_multiple_scans (j_decompress_ptr cinfo)
{
/* Only valid after jpeg_read_header completes */
if (cinfo->global_state < DSTATE_READY ||
cinfo->global_state > DSTATE_STOPPING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return cinfo->inputctl->has_multiple_scans;
}
/*
* Finish JPEG decompression.
*
* This will normally just verify the file trailer and release temp storage.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_finish_decompress (j_decompress_ptr cinfo)
{
if ((cinfo->global_state == DSTATE_SCANNING ||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
/* Terminate final pass of non-buffered mode */
if (cinfo->output_scanline < cinfo->output_height)
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
(*cinfo->master->finish_output_pass) (cinfo);
cinfo->global_state = DSTATE_STOPPING;
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
/* Finishing after a buffered-image operation */
cinfo->global_state = DSTATE_STOPPING;
} else if (cinfo->global_state != DSTATE_STOPPING) {
/* STOPPING = repeat call after a suspension, anything else is error */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
/* Read until EOI */
while (! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
}
/* Do final cleanup */
(*cinfo->src->term_source) (cinfo);
/* We can use jpeg_abort to release memory and reset global_state */
jpeg_abort((j_common_ptr) cinfo);
return TRUE;
}

View File

@ -1,275 +1,275 @@
/*
* jdapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the decompression half
* of the JPEG library. These are the "standard" API routines that are
* used in the normal full-decompression case. They are not used by a
* transcoding-only application. Note that if an application links in
* jpeg_start_decompress, it will end up linking in the entire decompressor.
* We thus must separate this file from jdapimin.c to avoid linking the
* whole decompression library into a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
/*
* Decompression initialization.
* jpeg_read_header must be completed before calling this.
*
* If a multipass operating mode was selected, this will do all but the
* last pass, and thus may take a great deal of time.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_start_decompress (j_decompress_ptr cinfo)
{
if (cinfo->global_state == DSTATE_READY) {
/* First call: initialize master control, select active modules */
jinit_master_decompress(cinfo);
if (cinfo->buffered_image) {
/* No more work here; expecting jpeg_start_output next */
cinfo->global_state = DSTATE_BUFIMAGE;
return TRUE;
}
cinfo->global_state = DSTATE_PRELOAD;
}
if (cinfo->global_state == DSTATE_PRELOAD) {
/* If file has multiple scans, absorb them all into the coef buffer */
if (cinfo->inputctl->has_multiple_scans) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
for (;;) {
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return FALSE;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* jdmaster underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
}
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* D_MULTISCAN_FILES_SUPPORTED */
}
cinfo->output_scan_number = cinfo->input_scan_number;
} else if (cinfo->global_state != DSTATE_PRESCAN)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Perform any dummy output passes, and set up for the final pass */
return output_pass_setup(cinfo);
}
/*
* Set up for an output pass, and perform any dummy pass(es) needed.
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
* Exit: If done, returns TRUE and sets global_state for proper output mode.
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
*/
LOCAL(boolean)
output_pass_setup (j_decompress_ptr cinfo)
{
if (cinfo->global_state != DSTATE_PRESCAN) {
/* First call: do pass setup */
(*cinfo->master->prepare_for_output_pass) (cinfo);
cinfo->output_scanline = 0;
cinfo->global_state = DSTATE_PRESCAN;
}
/* Loop over any required dummy passes */
while (cinfo->master->is_dummy_pass) {
#ifdef QUANT_2PASS_SUPPORTED
/* Crank through the dummy pass */
while (cinfo->output_scanline < cinfo->output_height) {
JDIMENSION last_scanline;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Process some data */
last_scanline = cinfo->output_scanline;
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
&cinfo->output_scanline, (JDIMENSION) 0);
if (cinfo->output_scanline == last_scanline)
return FALSE; /* No progress made, must suspend */
}
/* Finish up dummy pass, and set up for another one */
(*cinfo->master->finish_output_pass) (cinfo);
(*cinfo->master->prepare_for_output_pass) (cinfo);
cinfo->output_scanline = 0;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* QUANT_2PASS_SUPPORTED */
}
/* Ready for application to drive output pass through
* jpeg_read_scanlines or jpeg_read_raw_data.
*/
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
return TRUE;
}
/*
* Read some scanlines of data from the JPEG decompressor.
*
* The return value will be the number of lines actually read.
* This may be less than the number requested in several cases,
* including bottom of image, data source suspension, and operating
* modes that emit multiple scanlines at a time.
*
* Note: we warn about excess calls to jpeg_read_scanlines() since
* this likely signals an application programmer error. However,
* an oversize buffer (max_lines > scanlines remaining) is not an error.
*/
GLOBAL(JDIMENSION)
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION max_lines)
{
JDIMENSION row_ctr;
if (cinfo->global_state != DSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->output_scanline >= cinfo->output_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Process some data */
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
cinfo->output_scanline += row_ctr;
return row_ctr;
}
/*
* Alternate entry point to read raw data.
* Processes exactly one iMCU row per call, unless suspended.
*/
GLOBAL(JDIMENSION)
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION max_lines)
{
JDIMENSION lines_per_iMCU_row;
if (cinfo->global_state != DSTATE_RAW_OK)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->output_scanline >= cinfo->output_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Verify that at least one iMCU row can be returned. */
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
if (max_lines < lines_per_iMCU_row)
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* Decompress directly into user's buffer. */
if (! (*cinfo->coef->decompress_data) (cinfo, data))
return 0; /* suspension forced, can do nothing more */
/* OK, we processed one iMCU row. */
cinfo->output_scanline += lines_per_iMCU_row;
return lines_per_iMCU_row;
}
/* Additional entry points for buffered-image mode. */
#ifdef D_MULTISCAN_FILES_SUPPORTED
/*
* Initialize for an output pass in buffered-image mode.
*/
GLOBAL(boolean)
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
{
if (cinfo->global_state != DSTATE_BUFIMAGE &&
cinfo->global_state != DSTATE_PRESCAN)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Limit scan number to valid range */
if (scan_number <= 0)
scan_number = 1;
if (cinfo->inputctl->eoi_reached &&
scan_number > cinfo->input_scan_number)
scan_number = cinfo->input_scan_number;
cinfo->output_scan_number = scan_number;
/* Perform any dummy output passes, and set up for the real pass */
return output_pass_setup(cinfo);
}
/*
* Finish up after an output pass in buffered-image mode.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_finish_output (j_decompress_ptr cinfo)
{
if ((cinfo->global_state == DSTATE_SCANNING ||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
/* Terminate this pass. */
/* We do not require the whole pass to have been completed. */
(*cinfo->master->finish_output_pass) (cinfo);
cinfo->global_state = DSTATE_BUFPOST;
} else if (cinfo->global_state != DSTATE_BUFPOST) {
/* BUFPOST = repeat call after a suspension, anything else is error */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
/* Read markers looking for SOS or EOI */
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
}
cinfo->global_state = DSTATE_BUFIMAGE;
return TRUE;
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */
/*
* jdapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the decompression half
* of the JPEG library. These are the "standard" API routines that are
* used in the normal full-decompression case. They are not used by a
* transcoding-only application. Note that if an application links in
* jpeg_start_decompress, it will end up linking in the entire decompressor.
* We thus must separate this file from jdapimin.c to avoid linking the
* whole decompression library into a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
/*
* Decompression initialization.
* jpeg_read_header must be completed before calling this.
*
* If a multipass operating mode was selected, this will do all but the
* last pass, and thus may take a great deal of time.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_start_decompress (j_decompress_ptr cinfo)
{
if (cinfo->global_state == DSTATE_READY) {
/* First call: initialize master control, select active modules */
jinit_master_decompress(cinfo);
if (cinfo->buffered_image) {
/* No more work here; expecting jpeg_start_output next */
cinfo->global_state = DSTATE_BUFIMAGE;
return TRUE;
}
cinfo->global_state = DSTATE_PRELOAD;
}
if (cinfo->global_state == DSTATE_PRELOAD) {
/* If file has multiple scans, absorb them all into the coef buffer */
if (cinfo->inputctl->has_multiple_scans) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
for (;;) {
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return FALSE;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* jdmaster underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
}
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* D_MULTISCAN_FILES_SUPPORTED */
}
cinfo->output_scan_number = cinfo->input_scan_number;
} else if (cinfo->global_state != DSTATE_PRESCAN)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Perform any dummy output passes, and set up for the final pass */
return output_pass_setup(cinfo);
}
/*
* Set up for an output pass, and perform any dummy pass(es) needed.
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
* Exit: If done, returns TRUE and sets global_state for proper output mode.
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
*/
LOCAL(boolean)
output_pass_setup (j_decompress_ptr cinfo)
{
if (cinfo->global_state != DSTATE_PRESCAN) {
/* First call: do pass setup */
(*cinfo->master->prepare_for_output_pass) (cinfo);
cinfo->output_scanline = 0;
cinfo->global_state = DSTATE_PRESCAN;
}
/* Loop over any required dummy passes */
while (cinfo->master->is_dummy_pass) {
#ifdef QUANT_2PASS_SUPPORTED
/* Crank through the dummy pass */
while (cinfo->output_scanline < cinfo->output_height) {
JDIMENSION last_scanline;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Process some data */
last_scanline = cinfo->output_scanline;
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
&cinfo->output_scanline, (JDIMENSION) 0);
if (cinfo->output_scanline == last_scanline)
return FALSE; /* No progress made, must suspend */
}
/* Finish up dummy pass, and set up for another one */
(*cinfo->master->finish_output_pass) (cinfo);
(*cinfo->master->prepare_for_output_pass) (cinfo);
cinfo->output_scanline = 0;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* QUANT_2PASS_SUPPORTED */
}
/* Ready for application to drive output pass through
* jpeg_read_scanlines or jpeg_read_raw_data.
*/
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
return TRUE;
}
/*
* Read some scanlines of data from the JPEG decompressor.
*
* The return value will be the number of lines actually read.
* This may be less than the number requested in several cases,
* including bottom of image, data source suspension, and operating
* modes that emit multiple scanlines at a time.
*
* Note: we warn about excess calls to jpeg_read_scanlines() since
* this likely signals an application programmer error. However,
* an oversize buffer (max_lines > scanlines remaining) is not an error.
*/
GLOBAL(JDIMENSION)
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION max_lines)
{
JDIMENSION row_ctr;
if (cinfo->global_state != DSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->output_scanline >= cinfo->output_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Process some data */
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
cinfo->output_scanline += row_ctr;
return row_ctr;
}
/*
* Alternate entry point to read raw data.
* Processes exactly one iMCU row per call, unless suspended.
*/
GLOBAL(JDIMENSION)
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION max_lines)
{
JDIMENSION lines_per_iMCU_row;
if (cinfo->global_state != DSTATE_RAW_OK)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->output_scanline >= cinfo->output_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Verify that at least one iMCU row can be returned. */
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
if (max_lines < lines_per_iMCU_row)
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* Decompress directly into user's buffer. */
if (! (*cinfo->coef->decompress_data) (cinfo, data))
return 0; /* suspension forced, can do nothing more */
/* OK, we processed one iMCU row. */
cinfo->output_scanline += lines_per_iMCU_row;
return lines_per_iMCU_row;
}
/* Additional entry points for buffered-image mode. */
#ifdef D_MULTISCAN_FILES_SUPPORTED
/*
* Initialize for an output pass in buffered-image mode.
*/
GLOBAL(boolean)
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
{
if (cinfo->global_state != DSTATE_BUFIMAGE &&
cinfo->global_state != DSTATE_PRESCAN)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Limit scan number to valid range */
if (scan_number <= 0)
scan_number = 1;
if (cinfo->inputctl->eoi_reached &&
scan_number > cinfo->input_scan_number)
scan_number = cinfo->input_scan_number;
cinfo->output_scan_number = scan_number;
/* Perform any dummy output passes, and set up for the real pass */
return output_pass_setup(cinfo);
}
/*
* Finish up after an output pass in buffered-image mode.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_finish_output (j_decompress_ptr cinfo)
{
if ((cinfo->global_state == DSTATE_SCANNING ||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
/* Terminate this pass. */
/* We do not require the whole pass to have been completed. */
(*cinfo->master->finish_output_pass) (cinfo);
cinfo->global_state = DSTATE_BUFPOST;
} else if (cinfo->global_state != DSTATE_BUFPOST) {
/* BUFPOST = repeat call after a suspension, anything else is error */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
/* Read markers looking for SOS or EOI */
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
}
cinfo->global_state = DSTATE_BUFIMAGE;
return TRUE;
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */

View File

@ -1,212 +1,212 @@
/*
* jdatasrc.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains decompression data source routines for the case of
* reading JPEG data from a file (or any stdio stream). While these routines
* are sufficient for most applications, some will want to use a different
* source manager.
* IMPORTANT: we assume that fread() will correctly transcribe an array of
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
* than 8 bits on your machine, you may need to do some tweaking.
*/
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jerror.h"
/* Expanded data source object for stdio input */
typedef struct {
struct jpeg_source_mgr pub; /* public fields */
FILE * infile; /* source stream */
JOCTET * buffer; /* start of buffer */
boolean start_of_file; /* have we gotten any data yet? */
} my_source_mgr;
typedef my_source_mgr * my_src_ptr;
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
/*
* Initialize source --- called by jpeg_read_header
* before any data is actually read.
*/
METHODDEF(void)
init_source (j_decompress_ptr cinfo)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
/* We reset the empty-input-file flag for each image,
* but we don't clear the input buffer.
* This is correct behavior for reading a series of images from one source.
*/
src->start_of_file = TRUE;
}
/*
* Fill the input buffer --- called whenever buffer is emptied.
*
* In typical applications, this should read fresh data into the buffer
* (ignoring the current state of next_input_byte & bytes_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been reloaded. It is not necessary to
* fill the buffer entirely, only to obtain at least one more byte.
*
* There is no such thing as an EOF return. If the end of the file has been
* reached, the routine has a choice of ERREXIT() or inserting fake data into
* the buffer. In most cases, generating a warning message and inserting a
* fake EOI marker is the best course of action --- this will allow the
* decompressor to output however much of the image is there. However,
* the resulting error message is misleading if the real problem is an empty
* input file, so we handle that case specially.
*
* In applications that need to be able to suspend compression due to input
* not being available yet, a FALSE return indicates that no more data can be
* obtained right now, but more may be forthcoming later. In this situation,
* the decompressor will return to its caller (with an indication of the
* number of scanlines it has read, if any). The application should resume
* decompression after it has loaded more data into the input buffer. Note
* that there are substantial restrictions on the use of suspension --- see
* the documentation.
*
* When suspending, the decompressor will back up to a convenient restart point
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point must be rescanned after resumption, so move it to
* the front of the buffer rather than discarding it.
*/
METHODDEF(boolean)
fill_input_buffer (j_decompress_ptr cinfo)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
size_t nbytes;
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
if (nbytes <= 0) {
if (src->start_of_file) /* Treat empty input file as fatal error */
ERREXIT(cinfo, JERR_INPUT_EMPTY);
WARNMS(cinfo, JWRN_JPEG_EOF);
/* Insert a fake EOI marker */
src->buffer[0] = (JOCTET) 0xFF;
src->buffer[1] = (JOCTET) JPEG_EOI;
nbytes = 2;
}
src->pub.next_input_byte = src->buffer;
src->pub.bytes_in_buffer = nbytes;
src->start_of_file = FALSE;
return TRUE;
}
/*
* Skip data --- used to skip over a potentially large amount of
* uninteresting data (such as an APPn marker).
*
* Writers of suspendable-input applications must note that skip_input_data
* is not granted the right to give a suspension return. If the skip extends
* beyond the data currently in the buffer, the buffer can be marked empty so
* that the next read will cause a fill_input_buffer call that can suspend.
* Arranging for additional bytes to be discarded before reloading the input
* buffer is the application writer's problem.
*/
METHODDEF(void)
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
/* Just a dumb implementation for now. Could use fseek() except
* it doesn't work on pipes. Not clear that being smart is worth
* any trouble anyway --- large skips are infrequent.
*/
if (num_bytes > 0) {
while (num_bytes > (long) src->pub.bytes_in_buffer) {
num_bytes -= (long) src->pub.bytes_in_buffer;
(void) fill_input_buffer(cinfo);
/* note we assume that fill_input_buffer will never return FALSE,
* so suspension need not be handled.
*/
}
src->pub.next_input_byte += (size_t) num_bytes;
src->pub.bytes_in_buffer -= (size_t) num_bytes;
}
}
/*
* An additional method that can be provided by data source modules is the
* resync_to_restart method for error recovery in the presence of RST markers.
* For the moment, this source module just uses the default resync method
* provided by the JPEG library. That method assumes that no backtracking
* is possible.
*/
/*
* Terminate source --- called by jpeg_finish_decompress
* after all data has been read. Often a no-op.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
METHODDEF(void)
term_source (j_decompress_ptr)
{
/* no work necessary here */
}
/*
* Prepare for input from a stdio stream.
* The caller must have already opened the stream, and is responsible
* for closing it after finishing decompression.
*/
GLOBAL(void)
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
{
my_src_ptr src;
/* The source object and input buffer are made permanent so that a series
* of JPEG images can be read from the same file by calling jpeg_stdio_src
* only before the first one. (If we discarded the buffer at the end of
* one image, we'd likely lose the start of the next one.)
* This makes it unsafe to use this manager and a different source
* manager serially with the same JPEG object. Caveat programmer.
*/
if (cinfo->src == NULL) { /* first time for this JPEG object? */
cinfo->src = (struct jpeg_source_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_source_mgr));
src = (my_src_ptr) cinfo->src;
src->buffer = (JOCTET *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
INPUT_BUF_SIZE * SIZEOF(JOCTET));
}
src = (my_src_ptr) cinfo->src;
src->pub.init_source = init_source;
src->pub.fill_input_buffer = fill_input_buffer;
src->pub.skip_input_data = skip_input_data;
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
src->pub.term_source = term_source;
src->infile = infile;
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
src->pub.next_input_byte = NULL; /* until buffer loaded */
}
/*
* jdatasrc.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains decompression data source routines for the case of
* reading JPEG data from a file (or any stdio stream). While these routines
* are sufficient for most applications, some will want to use a different
* source manager.
* IMPORTANT: we assume that fread() will correctly transcribe an array of
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
* than 8 bits on your machine, you may need to do some tweaking.
*/
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jerror.h"
/* Expanded data source object for stdio input */
typedef struct {
struct jpeg_source_mgr pub; /* public fields */
FILE * infile; /* source stream */
JOCTET * buffer; /* start of buffer */
boolean start_of_file; /* have we gotten any data yet? */
} my_source_mgr;
typedef my_source_mgr * my_src_ptr;
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
/*
* Initialize source --- called by jpeg_read_header
* before any data is actually read.
*/
METHODDEF(void)
init_source (j_decompress_ptr cinfo)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
/* We reset the empty-input-file flag for each image,
* but we don't clear the input buffer.
* This is correct behavior for reading a series of images from one source.
*/
src->start_of_file = TRUE;
}
/*
* Fill the input buffer --- called whenever buffer is emptied.
*
* In typical applications, this should read fresh data into the buffer
* (ignoring the current state of next_input_byte & bytes_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been reloaded. It is not necessary to
* fill the buffer entirely, only to obtain at least one more byte.
*
* There is no such thing as an EOF return. If the end of the file has been
* reached, the routine has a choice of ERREXIT() or inserting fake data into
* the buffer. In most cases, generating a warning message and inserting a
* fake EOI marker is the best course of action --- this will allow the
* decompressor to output however much of the image is there. However,
* the resulting error message is misleading if the real problem is an empty
* input file, so we handle that case specially.
*
* In applications that need to be able to suspend compression due to input
* not being available yet, a FALSE return indicates that no more data can be
* obtained right now, but more may be forthcoming later. In this situation,
* the decompressor will return to its caller (with an indication of the
* number of scanlines it has read, if any). The application should resume
* decompression after it has loaded more data into the input buffer. Note
* that there are substantial restrictions on the use of suspension --- see
* the documentation.
*
* When suspending, the decompressor will back up to a convenient restart point
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point must be rescanned after resumption, so move it to
* the front of the buffer rather than discarding it.
*/
METHODDEF(boolean)
fill_input_buffer (j_decompress_ptr cinfo)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
size_t nbytes;
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
if (nbytes <= 0) {
if (src->start_of_file) /* Treat empty input file as fatal error */
ERREXIT(cinfo, JERR_INPUT_EMPTY);
WARNMS(cinfo, JWRN_JPEG_EOF);
/* Insert a fake EOI marker */
src->buffer[0] = (JOCTET) 0xFF;
src->buffer[1] = (JOCTET) JPEG_EOI;
nbytes = 2;
}
src->pub.next_input_byte = src->buffer;
src->pub.bytes_in_buffer = nbytes;
src->start_of_file = FALSE;
return TRUE;
}
/*
* Skip data --- used to skip over a potentially large amount of
* uninteresting data (such as an APPn marker).
*
* Writers of suspendable-input applications must note that skip_input_data
* is not granted the right to give a suspension return. If the skip extends
* beyond the data currently in the buffer, the buffer can be marked empty so
* that the next read will cause a fill_input_buffer call that can suspend.
* Arranging for additional bytes to be discarded before reloading the input
* buffer is the application writer's problem.
*/
METHODDEF(void)
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
/* Just a dumb implementation for now. Could use fseek() except
* it doesn't work on pipes. Not clear that being smart is worth
* any trouble anyway --- large skips are infrequent.
*/
if (num_bytes > 0) {
while (num_bytes > (long) src->pub.bytes_in_buffer) {
num_bytes -= (long) src->pub.bytes_in_buffer;
(void) fill_input_buffer(cinfo);
/* note we assume that fill_input_buffer will never return FALSE,
* so suspension need not be handled.
*/
}
src->pub.next_input_byte += (size_t) num_bytes;
src->pub.bytes_in_buffer -= (size_t) num_bytes;
}
}
/*
* An additional method that can be provided by data source modules is the
* resync_to_restart method for error recovery in the presence of RST markers.
* For the moment, this source module just uses the default resync method
* provided by the JPEG library. That method assumes that no backtracking
* is possible.
*/
/*
* Terminate source --- called by jpeg_finish_decompress
* after all data has been read. Often a no-op.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
METHODDEF(void)
term_source (j_decompress_ptr)
{
/* no work necessary here */
}
/*
* Prepare for input from a stdio stream.
* The caller must have already opened the stream, and is responsible
* for closing it after finishing decompression.
*/
GLOBAL(void)
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
{
my_src_ptr src;
/* The source object and input buffer are made permanent so that a series
* of JPEG images can be read from the same file by calling jpeg_stdio_src
* only before the first one. (If we discarded the buffer at the end of
* one image, we'd likely lose the start of the next one.)
* This makes it unsafe to use this manager and a different source
* manager serially with the same JPEG object. Caveat programmer.
*/
if (cinfo->src == NULL) { /* first time for this JPEG object? */
cinfo->src = (struct jpeg_source_mgr *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_source_mgr));
src = (my_src_ptr) cinfo->src;
src->buffer = (JOCTET *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
INPUT_BUF_SIZE * SIZEOF(JOCTET));
}
src = (my_src_ptr) cinfo->src;
src->pub.init_source = init_source;
src->pub.fill_input_buffer = fill_input_buffer;
src->pub.skip_input_data = skip_input_data;
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
src->pub.term_source = term_source;
src->infile = infile;
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
src->pub.next_input_byte = NULL; /* until buffer loaded */
}

File diff suppressed because it is too large Load Diff

View File

@ -1,396 +1,396 @@
/*
* jdcolor.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains output colorspace conversion routines.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private subobject */
typedef struct {
struct jpeg_color_deconverter pub; /* public fields */
/* Private state for YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
} my_color_deconverter2;
typedef my_color_deconverter2 * my_cconvert_ptr2;
/**************** YCbCr -> RGB conversion: most common case **************/
/*
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* R = Y + 1.40200 * Cr
* G = Y - 0.34414 * Cb - 0.71414 * Cr
* B = Y + 1.77200 * Cb
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
*
* To avoid floating-point arithmetic, we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
* the products by 2^16, with appropriate rounding, to get the correct answer.
* Notice that Y, being an integral input, does not contribute any fraction
* so it need not participate in the rounding.
*
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times Cb and Cr for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 12-bit samples it is still acceptable. It's not very reasonable for
* 16-bit samples, but if you want lossless storage you shouldn't be changing
* colorspace anyway.
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
* values for the G calculation are left scaled up, since we must add them
* together before rounding.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/*
* Initialize tables for YCC->RGB colorspace conversion.
*/
LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
{
my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert;
int i;
INT32 x;
SHIFT_TEMPS
cconvert->Cr_r_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cb_b_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cr_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->Cb_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
cconvert->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
cconvert->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
}
}
/*
* Convert some rows of samples to the output colorspace.
*
* Note that we change from noninterleaved, one-plane-per-component format
* to interleaved-pixel format. The output buffer is therefore three times
* as wide as the input buffer.
* A starting row offset is provided only for the input buffer. The caller
* can easily adjust the passed output_buf value to accommodate any row
* offset required on that side.
*/
METHODDEF(void)
ycc_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert;
int y, cb, cr;
JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2;
JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = cconvert->Cr_r_tab;
int * Cbbtab = cconvert->Cb_b_tab;
INT32 * Crgtab = cconvert->Cr_g_tab;
INT32 * Cbgtab = cconvert->Cb_g_tab;
SHIFT_TEMPS
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses. */
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
outptr[RGB_GREEN] = range_limit[y +
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
outptr += RGB_PIXELSIZE;
}
}
}
/**************** Cases other than YCbCr -> RGB **************/
/*
* Color conversion for no colorspace change: just copy the data,
* converting from separate-planes to interleaved representation.
*/
METHODDEF(void)
null_convert2 (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
JSAMPROW inptr, outptr;
JDIMENSION count;
int num_components = cinfo->num_components;
JDIMENSION num_cols = cinfo->output_width;
int ci;
while (--num_rows >= 0) {
for (ci = 0; ci < num_components; ci++) {
inptr = input_buf[ci][input_row];
outptr = output_buf[0] + ci;
for (count = num_cols; count > 0; count--) {
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
outptr += num_components;
}
}
input_row++;
output_buf++;
}
}
/*
* Color conversion for grayscale: just copy the data.
* This also works for YCbCr -> grayscale conversion, in which
* we just copy the Y (luminance) component and ignore chrominance.
*/
METHODDEF(void)
grayscale_convert2 (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
num_rows, cinfo->output_width);
}
/*
* Convert grayscale to RGB: just duplicate the graylevel three times.
* This is provided to support applications that don't want to cope
* with grayscale as a separate case.
*/
METHODDEF(void)
gray_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
JSAMPROW inptr, outptr;
JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr = input_buf[0][input_row++];
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
/* We can dispense with GETJSAMPLE() here */
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
outptr += RGB_PIXELSIZE;
}
}
}
/*
* Adobe-style YCCK->CMYK conversion.
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
* conversion as above, while passing K (black) unchanged.
* We assume build_ycc_rgb_table has been called.
*/
METHODDEF(void)
ycck_cmyk_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert;
int y, cb, cr;
JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2, inptr3;
JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = cconvert->Cr_r_tab;
int * Cbbtab = cconvert->Cb_b_tab;
INT32 * Crgtab = cconvert->Cr_g_tab;
INT32 * Cbgtab = cconvert->Cb_g_tab;
SHIFT_TEMPS
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
inptr3 = input_buf[3][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses. */
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)))];
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
/* K passes through unchanged */
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
outptr += 4;
}
}
}
/*
* Empty method for start_pass.
*/
METHODDEF(void)
start_pass_dcolor (j_decompress_ptr)
{
/* no work needed */
}
/*
* Module initialization routine for output colorspace conversion.
*/
GLOBAL(void)
jinit_color_deconverter (j_decompress_ptr cinfo)
{
my_cconvert_ptr2 cconvert;
int ci;
cconvert = (my_cconvert_ptr2)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_color_deconverter2));
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
cconvert->pub.start_pass = start_pass_dcolor;
/* Make sure num_components agrees with jpeg_color_space */
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
if (cinfo->num_components != 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
case JCS_RGB:
case JCS_YCbCr:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
case JCS_CMYK:
case JCS_YCCK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
if (cinfo->num_components < 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
}
/* Set out_color_components and conversion method based on requested space.
* Also clear the component_needed flags for any unused components,
* so that earlier pipeline stages can avoid useless computation.
*/
switch (cinfo->out_color_space) {
case JCS_GRAYSCALE:
cinfo->out_color_components = 1;
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
cinfo->jpeg_color_space == JCS_YCbCr) {
cconvert->pub.color_convert = grayscale_convert2;
/* For color->grayscale conversion, only the Y (0) component is needed */
for (ci = 1; ci < cinfo->num_components; ci++)
cinfo->comp_info[ci].component_needed = FALSE;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_RGB:
cinfo->out_color_components = RGB_PIXELSIZE;
if (cinfo->jpeg_color_space == JCS_YCbCr) {
cconvert->pub.color_convert = ycc_rgb_convert;
build_ycc_rgb_table(cinfo);
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
cconvert->pub.color_convert = gray_rgb_convert;
} else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
cconvert->pub.color_convert = null_convert2;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_CMYK:
cinfo->out_color_components = 4;
if (cinfo->jpeg_color_space == JCS_YCCK) {
cconvert->pub.color_convert = ycck_cmyk_convert;
build_ycc_rgb_table(cinfo);
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
cconvert->pub.color_convert = null_convert2;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
default:
/* Permit null conversion to same output space */
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
cinfo->out_color_components = cinfo->num_components;
cconvert->pub.color_convert = null_convert2;
} else /* unsupported non-null conversion */
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
}
if (cinfo->quantize_colors)
cinfo->output_components = 1; /* single colormapped output component */
else
cinfo->output_components = cinfo->out_color_components;
}
/*
* jdcolor.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains output colorspace conversion routines.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private subobject */
typedef struct {
struct jpeg_color_deconverter pub; /* public fields */
/* Private state for YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
} my_color_deconverter2;
typedef my_color_deconverter2 * my_cconvert_ptr2;
/**************** YCbCr -> RGB conversion: most common case **************/
/*
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* The conversion equations to be implemented are therefore
* R = Y + 1.40200 * Cr
* G = Y - 0.34414 * Cb - 0.71414 * Cr
* B = Y + 1.77200 * Cb
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
*
* To avoid floating-point arithmetic, we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
* the products by 2^16, with appropriate rounding, to get the correct answer.
* Notice that Y, being an integral input, does not contribute any fraction
* so it need not participate in the rounding.
*
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times Cb and Cr for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 12-bit samples it is still acceptable. It's not very reasonable for
* 16-bit samples, but if you want lossless storage you shouldn't be changing
* colorspace anyway.
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the
* values for the G calculation are left scaled up, since we must add them
* together before rounding.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/*
* Initialize tables for YCC->RGB colorspace conversion.
*/
LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
{
my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert;
int i;
INT32 x;
SHIFT_TEMPS
cconvert->Cr_r_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cb_b_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cr_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->Cb_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
cconvert->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
cconvert->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
}
}
/*
* Convert some rows of samples to the output colorspace.
*
* Note that we change from noninterleaved, one-plane-per-component format
* to interleaved-pixel format. The output buffer is therefore three times
* as wide as the input buffer.
* A starting row offset is provided only for the input buffer. The caller
* can easily adjust the passed output_buf value to accommodate any row
* offset required on that side.
*/
METHODDEF(void)
ycc_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert;
int y, cb, cr;
JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2;
JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = cconvert->Cr_r_tab;
int * Cbbtab = cconvert->Cb_b_tab;
INT32 * Crgtab = cconvert->Cr_g_tab;
INT32 * Cbgtab = cconvert->Cb_g_tab;
SHIFT_TEMPS
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses. */
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
outptr[RGB_GREEN] = range_limit[y +
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
outptr += RGB_PIXELSIZE;
}
}
}
/**************** Cases other than YCbCr -> RGB **************/
/*
* Color conversion for no colorspace change: just copy the data,
* converting from separate-planes to interleaved representation.
*/
METHODDEF(void)
null_convert2 (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
JSAMPROW inptr, outptr;
JDIMENSION count;
int num_components = cinfo->num_components;
JDIMENSION num_cols = cinfo->output_width;
int ci;
while (--num_rows >= 0) {
for (ci = 0; ci < num_components; ci++) {
inptr = input_buf[ci][input_row];
outptr = output_buf[0] + ci;
for (count = num_cols; count > 0; count--) {
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
outptr += num_components;
}
}
input_row++;
output_buf++;
}
}
/*
* Color conversion for grayscale: just copy the data.
* This also works for YCbCr -> grayscale conversion, in which
* we just copy the Y (luminance) component and ignore chrominance.
*/
METHODDEF(void)
grayscale_convert2 (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
num_rows, cinfo->output_width);
}
/*
* Convert grayscale to RGB: just duplicate the graylevel three times.
* This is provided to support applications that don't want to cope
* with grayscale as a separate case.
*/
METHODDEF(void)
gray_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
JSAMPROW inptr, outptr;
JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr = input_buf[0][input_row++];
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
/* We can dispense with GETJSAMPLE() here */
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
outptr += RGB_PIXELSIZE;
}
}
}
/*
* Adobe-style YCCK->CMYK conversion.
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
* conversion as above, while passing K (black) unchanged.
* We assume build_ycc_rgb_table has been called.
*/
METHODDEF(void)
ycck_cmyk_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr2 cconvert = (my_cconvert_ptr2) cinfo->cconvert;
int y, cb, cr;
JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2, inptr3;
JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = cconvert->Cr_r_tab;
int * Cbbtab = cconvert->Cb_b_tab;
INT32 * Crgtab = cconvert->Cr_g_tab;
INT32 * Cbgtab = cconvert->Cb_g_tab;
SHIFT_TEMPS
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
inptr3 = input_buf[3][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses. */
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)))];
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
/* K passes through unchanged */
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
outptr += 4;
}
}
}
/*
* Empty method for start_pass.
*/
METHODDEF(void)
start_pass_dcolor (j_decompress_ptr)
{
/* no work needed */
}
/*
* Module initialization routine for output colorspace conversion.
*/
GLOBAL(void)
jinit_color_deconverter (j_decompress_ptr cinfo)
{
my_cconvert_ptr2 cconvert;
int ci;
cconvert = (my_cconvert_ptr2)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_color_deconverter2));
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
cconvert->pub.start_pass = start_pass_dcolor;
/* Make sure num_components agrees with jpeg_color_space */
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
if (cinfo->num_components != 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
case JCS_RGB:
case JCS_YCbCr:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
case JCS_CMYK:
case JCS_YCCK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
if (cinfo->num_components < 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
}
/* Set out_color_components and conversion method based on requested space.
* Also clear the component_needed flags for any unused components,
* so that earlier pipeline stages can avoid useless computation.
*/
switch (cinfo->out_color_space) {
case JCS_GRAYSCALE:
cinfo->out_color_components = 1;
if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
cinfo->jpeg_color_space == JCS_YCbCr) {
cconvert->pub.color_convert = grayscale_convert2;
/* For color->grayscale conversion, only the Y (0) component is needed */
for (ci = 1; ci < cinfo->num_components; ci++)
cinfo->comp_info[ci].component_needed = FALSE;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_RGB:
cinfo->out_color_components = RGB_PIXELSIZE;
if (cinfo->jpeg_color_space == JCS_YCbCr) {
cconvert->pub.color_convert = ycc_rgb_convert;
build_ycc_rgb_table(cinfo);
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
cconvert->pub.color_convert = gray_rgb_convert;
} else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
cconvert->pub.color_convert = null_convert2;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
case JCS_CMYK:
cinfo->out_color_components = 4;
if (cinfo->jpeg_color_space == JCS_YCCK) {
cconvert->pub.color_convert = ycck_cmyk_convert;
build_ycc_rgb_table(cinfo);
} else if (cinfo->jpeg_color_space == JCS_CMYK) {
cconvert->pub.color_convert = null_convert2;
} else
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
default:
/* Permit null conversion to same output space */
if (cinfo->out_color_space == cinfo->jpeg_color_space) {
cinfo->out_color_components = cinfo->num_components;
cconvert->pub.color_convert = null_convert2;
} else /* unsupported non-null conversion */
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
break;
}
if (cinfo->quantize_colors)
cinfo->output_components = 1; /* single colormapped output component */
else
cinfo->output_components = cinfo->out_color_components;
}

View File

@ -1,182 +1,182 @@
/*
* jdct.h
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file contains common declarations for the forward and
* inverse DCT modules. These declarations are private to the DCT managers
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
* The individual DCT algorithms are kept in separate files to ease
* machine-dependent tuning (e.g., assembly coding).
*/
/*
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
* for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
* implementations use an array of type FAST_FLOAT, instead.)
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
* The DCT outputs are returned scaled up by a factor of 8; they therefore
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
* convention improves accuracy in integer implementations and saves some
* work in floating-point ones.
* Quantization of the output coefficients is done by jcdctmgr.c.
*/
#ifndef __jdct_h__
#define __jdct_h__
#if BITS_IN_JSAMPLE == 8
typedef int DCTELEM; /* 16 or 32 bits is fine */
#else
typedef INT32 DCTELEM; /* must have 32 bits */
#endif
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
/*
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
* to an output sample array. The routine must dequantize the input data as
* well as perform the IDCT; for dequantization, it uses the multiplier table
* pointed to by compptr->dct_table. The output data is to be placed into the
* sample array starting at a specified column. (Any row offset needed will
* be applied to the array pointer before it is passed to the IDCT code.)
* Note that the number of samples emitted by the IDCT routine is
* DCT_scaled_size * DCT_scaled_size.
*/
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
/*
* Each IDCT routine has its own ideas about the best dct_table element type.
*/
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
#if BITS_IN_JSAMPLE == 8
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
#else
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
#endif
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
/*
* Each IDCT routine is responsible for range-limiting its results and
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
* be quite far out of range if the input data is corrupt, so a bulletproof
* range-limiting step is required. We use a mask-and-table-lookup method
* to do the combined operations quickly. See the comments with
* prepare_range_limit_table (in jdmaster.c) for more info.
*/
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_fdct_islow jFDislow
#define jpeg_fdct_ifast jFDifast
#define jpeg_fdct_float jFDfloat
#define jpeg_idct_islow jRDislow
#define jpeg_idct_ifast jRDifast
#define jpeg_idct_float jRDfloat
#define jpeg_idct_4x4 jRD4x4
#define jpeg_idct_2x2 jRD2x2
#define jpeg_idct_1x1 jRD1x1
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Extern declarations for the forward and inverse DCT routines. */
EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
EXTERN(void) jpeg_idct_islow
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_ifast
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_float
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_4x4
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_2x2
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_1x1
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
/*
* Macros for handling fixed-point arithmetic; these are used by many
* but not all of the DCT/IDCT modules.
*
* All values are expected to be of type INT32.
* Fractional constants are scaled left by CONST_BITS bits.
* CONST_BITS is defined within each module using these macros,
* and may differ from one module to the next.
*/
#define ONE ((INT32) 1)
#define CONST_SCALE (ONE << CONST_BITS)
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
* thus causing a lot of useless floating-point operations at run time.
*/
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
/* Descale and correctly round an INT32 value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* This macro is used only when the two inputs will actually be no more than
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
* full 32x32 multiply. This provides a useful speedup on many machines.
* Unfortunately there is no way to specify a 16x16->32 multiply portably
* in C, but some C compilers will do the right thing if you provide the
* correct combination of casts.
*/
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
#endif
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
#endif
#ifndef MULTIPLY16C16 /* default definition */
#define MULTIPLY16C16(var,const) ((var) * (const))
#endif
/* Same except both inputs are variables. */
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
#endif
#ifndef MULTIPLY16V16 /* default definition */
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
#endif
#endif
/*
* jdct.h
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file contains common declarations for the forward and
* inverse DCT modules. These declarations are private to the DCT managers
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
* The individual DCT algorithms are kept in separate files to ease
* machine-dependent tuning (e.g., assembly coding).
*/
/*
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
* for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
* implementations use an array of type FAST_FLOAT, instead.)
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
* The DCT outputs are returned scaled up by a factor of 8; they therefore
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
* convention improves accuracy in integer implementations and saves some
* work in floating-point ones.
* Quantization of the output coefficients is done by jcdctmgr.c.
*/
#ifndef __jdct_h__
#define __jdct_h__
#if BITS_IN_JSAMPLE == 8
typedef int DCTELEM; /* 16 or 32 bits is fine */
#else
typedef INT32 DCTELEM; /* must have 32 bits */
#endif
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
/*
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
* to an output sample array. The routine must dequantize the input data as
* well as perform the IDCT; for dequantization, it uses the multiplier table
* pointed to by compptr->dct_table. The output data is to be placed into the
* sample array starting at a specified column. (Any row offset needed will
* be applied to the array pointer before it is passed to the IDCT code.)
* Note that the number of samples emitted by the IDCT routine is
* DCT_scaled_size * DCT_scaled_size.
*/
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
/*
* Each IDCT routine has its own ideas about the best dct_table element type.
*/
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
#if BITS_IN_JSAMPLE == 8
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
#else
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
#endif
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
/*
* Each IDCT routine is responsible for range-limiting its results and
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
* be quite far out of range if the input data is corrupt, so a bulletproof
* range-limiting step is required. We use a mask-and-table-lookup method
* to do the combined operations quickly. See the comments with
* prepare_range_limit_table (in jdmaster.c) for more info.
*/
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_fdct_islow jFDislow
#define jpeg_fdct_ifast jFDifast
#define jpeg_fdct_float jFDfloat
#define jpeg_idct_islow jRDislow
#define jpeg_idct_ifast jRDifast
#define jpeg_idct_float jRDfloat
#define jpeg_idct_4x4 jRD4x4
#define jpeg_idct_2x2 jRD2x2
#define jpeg_idct_1x1 jRD1x1
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Extern declarations for the forward and inverse DCT routines. */
EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
EXTERN(void) jpeg_idct_islow
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_ifast
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_float
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_4x4
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_2x2
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_1x1
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
/*
* Macros for handling fixed-point arithmetic; these are used by many
* but not all of the DCT/IDCT modules.
*
* All values are expected to be of type INT32.
* Fractional constants are scaled left by CONST_BITS bits.
* CONST_BITS is defined within each module using these macros,
* and may differ from one module to the next.
*/
#define ONE ((INT32) 1)
#define CONST_SCALE (ONE << CONST_BITS)
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
* thus causing a lot of useless floating-point operations at run time.
*/
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
/* Descale and correctly round an INT32 value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* This macro is used only when the two inputs will actually be no more than
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
* full 32x32 multiply. This provides a useful speedup on many machines.
* Unfortunately there is no way to specify a 16x16->32 multiply portably
* in C, but some C compilers will do the right thing if you provide the
* correct combination of casts.
*/
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
#endif
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
#endif
#ifndef MULTIPLY16C16 /* default definition */
#define MULTIPLY16C16(var,const) ((var) * (const))
#endif
/* Same except both inputs are variables. */
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
#endif
#ifndef MULTIPLY16V16 /* default definition */
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
#endif
#endif

View File

@ -1,269 +1,269 @@
/*
* jddctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the inverse-DCT management logic.
* This code selects a particular IDCT implementation to be used,
* and it performs related housekeeping chores. No code in this file
* is executed per IDCT step, only during output pass setup.
*
* Note that the IDCT routines are responsible for performing coefficient
* dequantization as well as the IDCT proper. This module sets up the
* dequantization multiplier table needed by the IDCT routine.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/*
* The decompressor input side (jdinput.c) saves away the appropriate
* quantization table for each component at the start of the first scan
* involving that component. (This is necessary in order to correctly
* decode files that reuse Q-table slots.)
* When we are ready to make an output pass, the saved Q-table is converted
* to a multiplier table that will actually be used by the IDCT routine.
* The multiplier table contents are IDCT-method-dependent. To support
* application changes in IDCT method between scans, we can remake the
* multiplier tables if necessary.
* In buffered-image mode, the first output pass may occur before any data
* has been seen for some components, and thus before their Q-tables have
* been saved away. To handle this case, multiplier tables are preset
* to zeroes; the result of the IDCT will be a neutral gray level.
*/
/* Private subobject for this module */
typedef struct {
struct jpeg_inverse_dct pub; /* public fields */
/* This array contains the IDCT method code that each multiplier table
* is currently set up for, or -1 if it's not yet set up.
* The actual multiplier tables are pointed to by dct_table in the
* per-component comp_info structures.
*/
int cur_method[MAX_COMPONENTS];
} my_idct_controller;
typedef my_idct_controller * my_idct_ptr;
/* Allocated multiplier tables: big enough for any supported variant */
typedef union {
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
#ifdef DCT_IFAST_SUPPORTED
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
#endif
#ifdef DCT_FLOAT_SUPPORTED
FLOAT_MULT_TYPE float_array[DCTSIZE2];
#endif
} multiplier_table;
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif
/*
* Prepare for an output pass.
* Here we select the proper IDCT routine for each component and build
* a matching multiplier table.
*/
METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
int ci, i;
jpeg_component_info *compptr;
int method = 0;
inverse_DCT_method_ptr method_ptr = NULL;
JQUANT_TBL * qtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Select the proper IDCT routine for this component's scaling */
switch (compptr->DCT_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
case 1:
method_ptr = jpeg_idct_1x1;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 2:
method_ptr = jpeg_idct_2x2;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 4:
method_ptr = jpeg_idct_4x4;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
#endif
case DCTSIZE:
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
method_ptr = jpeg_idct_ifast;
method = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
method_ptr = jpeg_idct_float;
method = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
break;
default:
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
break;
}
idct->pub.inverse_DCT[ci] = method_ptr;
/* Create multiplier table from quant table.
* However, we can skip this if the component is uninteresting
* or if we already built the table. Also, if no quant table
* has yet been saved for the component, we leave the
* multiplier table all-zero; we'll be reading zeroes from the
* coefficient controller's buffer anyway.
*/
if (! compptr->component_needed || idct->cur_method[ci] == method)
continue;
qtbl = compptr->quant_table;
if (qtbl == NULL) /* happens if no data yet for component */
continue;
idct->cur_method[ci] = method;
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
{
/* For LL&M IDCT method, multipliers are equal to raw quantization
* coefficients, but are stored as ints to ensure access efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
}
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* For integer operation, the multiplier table is to be scaled by
* IFAST_SCALE_BITS.
*/
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
for (i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-IFAST_SCALE_BITS);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
*/
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fmtbl[i] = (FLOAT_MULT_TYPE)
((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col]);
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Initialize IDCT manager.
*/
GLOBAL(void)
jinit_inverse_dct (j_decompress_ptr cinfo)
{
my_idct_ptr idct;
int ci;
jpeg_component_info *compptr;
idct = (my_idct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_idct_controller));
cinfo->idct = (struct jpeg_inverse_dct *) idct;
idct->pub.start_pass = start_pass;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate and pre-zero a multiplier table for each component */
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(multiplier_table));
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
/* Mark multiplier table not yet set up for any method */
idct->cur_method[ci] = -1;
}
}
/*
* jddctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the inverse-DCT management logic.
* This code selects a particular IDCT implementation to be used,
* and it performs related housekeeping chores. No code in this file
* is executed per IDCT step, only during output pass setup.
*
* Note that the IDCT routines are responsible for performing coefficient
* dequantization as well as the IDCT proper. This module sets up the
* dequantization multiplier table needed by the IDCT routine.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/*
* The decompressor input side (jdinput.c) saves away the appropriate
* quantization table for each component at the start of the first scan
* involving that component. (This is necessary in order to correctly
* decode files that reuse Q-table slots.)
* When we are ready to make an output pass, the saved Q-table is converted
* to a multiplier table that will actually be used by the IDCT routine.
* The multiplier table contents are IDCT-method-dependent. To support
* application changes in IDCT method between scans, we can remake the
* multiplier tables if necessary.
* In buffered-image mode, the first output pass may occur before any data
* has been seen for some components, and thus before their Q-tables have
* been saved away. To handle this case, multiplier tables are preset
* to zeroes; the result of the IDCT will be a neutral gray level.
*/
/* Private subobject for this module */
typedef struct {
struct jpeg_inverse_dct pub; /* public fields */
/* This array contains the IDCT method code that each multiplier table
* is currently set up for, or -1 if it's not yet set up.
* The actual multiplier tables are pointed to by dct_table in the
* per-component comp_info structures.
*/
int cur_method[MAX_COMPONENTS];
} my_idct_controller;
typedef my_idct_controller * my_idct_ptr;
/* Allocated multiplier tables: big enough for any supported variant */
typedef union {
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
#ifdef DCT_IFAST_SUPPORTED
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
#endif
#ifdef DCT_FLOAT_SUPPORTED
FLOAT_MULT_TYPE float_array[DCTSIZE2];
#endif
} multiplier_table;
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif
/*
* Prepare for an output pass.
* Here we select the proper IDCT routine for each component and build
* a matching multiplier table.
*/
METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
int ci, i;
jpeg_component_info *compptr;
int method = 0;
inverse_DCT_method_ptr method_ptr = NULL;
JQUANT_TBL * qtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Select the proper IDCT routine for this component's scaling */
switch (compptr->DCT_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
case 1:
method_ptr = jpeg_idct_1x1;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 2:
method_ptr = jpeg_idct_2x2;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 4:
method_ptr = jpeg_idct_4x4;
method = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
#endif
case DCTSIZE:
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
method_ptr = jpeg_idct_ifast;
method = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
method_ptr = jpeg_idct_float;
method = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
break;
default:
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
break;
}
idct->pub.inverse_DCT[ci] = method_ptr;
/* Create multiplier table from quant table.
* However, we can skip this if the component is uninteresting
* or if we already built the table. Also, if no quant table
* has yet been saved for the component, we leave the
* multiplier table all-zero; we'll be reading zeroes from the
* coefficient controller's buffer anyway.
*/
if (! compptr->component_needed || idct->cur_method[ci] == method)
continue;
qtbl = compptr->quant_table;
if (qtbl == NULL) /* happens if no data yet for component */
continue;
idct->cur_method[ci] = method;
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
{
/* For LL&M IDCT method, multipliers are equal to raw quantization
* coefficients, but are stored as ints to ensure access efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
}
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* For integer operation, the multiplier table is to be scaled by
* IFAST_SCALE_BITS.
*/
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
for (i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-IFAST_SCALE_BITS);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
*/
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fmtbl[i] = (FLOAT_MULT_TYPE)
((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col]);
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Initialize IDCT manager.
*/
GLOBAL(void)
jinit_inverse_dct (j_decompress_ptr cinfo)
{
my_idct_ptr idct;
int ci;
jpeg_component_info *compptr;
idct = (my_idct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_idct_controller));
cinfo->idct = (struct jpeg_inverse_dct *) idct;
idct->pub.start_pass = start_pass;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate and pre-zero a multiplier table for each component */
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(multiplier_table));
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
/* Mark multiplier table not yet set up for any method */
idct->cur_method[ci] = -1;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,206 +1,206 @@
/*
* jdhuff.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains declarations for Huffman entropy decoding routines
* that are shared between the sequential decoder (jdhuff.c) and the
* progressive decoder (jdphuff.c). No other modules need to see these.
*/
/* Short forms of external names for systems with brain-damaged linkers. */
#ifndef __jdhuff_h__
#define __jdhuff_h__
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_make_d_derived_tbl jMkDDerived
#define jpeg_fill_bit_buffer jFilBitBuf
#define jpeg_huff_decode jHufDecode
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Derived data constructed for each Huffman table */
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
typedef struct {
/* Basic tables: (element [0] of each array is unused) */
INT32 maxcode[18]; /* largest code of length k (-1 if none) */
/* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
INT32 valoffset[17]; /* huffval[] offset for codes of length k */
/* valoffset[k] = huffval[] index of 1st symbol of code length k, less
* the smallest code of length k; so given a code of length k, the
* corresponding symbol is huffval[code + valoffset[k]]
*/
/* Link to public Huffman table (needed only in jpeg_huff_decode) */
JHUFF_TBL *pub;
/* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
* the input data stream. If the next Huffman code is no more
* than HUFF_LOOKAHEAD bits long, we can obtain its length and
* the corresponding symbol directly from these tables.
*/
int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
} d_derived_tbl;
/* Expand a Huffman table definition into the derived format */
EXTERN(void) jpeg_make_d_derived_tbl
JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
d_derived_tbl ** pdtbl));
/*
* Fetching the next N bits from the input stream is a time-critical operation
* for the Huffman decoders. We implement it with a combination of inline
* macros and out-of-line subroutines. Note that N (the number of bits
* demanded at one time) never exceeds 15 for JPEG use.
*
* We read source bytes into get_buffer and dole out bits as needed.
* If get_buffer already contains enough bits, they are fetched in-line
* by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
* bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
* as full as possible (not just to the number of bits needed; this
* prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
* Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
* On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
* at least the requested number of bits --- dummy zeroes are inserted if
* necessary.
*/
typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
#define BIT_BUF_SIZE 32 /* size of buffer in bits */
/* If long is > 32 bits on your machine, and shifting/masking longs is
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
* appropriately should be a win. Unfortunately we can't define the size
* with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
* because not all machines measure sizeof in 8-bit bytes.
*/
typedef struct { /* Bitreading state saved across MCUs */
bit_buf_type get_buffer; /* current bit-extraction buffer */
int bits_left; /* # of unused bits in it */
} bitread_perm_state;
typedef struct { /* Bitreading working state within an MCU */
/* Current data source location */
/* We need a copy, rather than munging the original, in case of suspension */
const JOCTET * next_input_byte; /* => next byte to read from source */
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
/* Bit input buffer --- note these values are kept in register variables,
* not in this struct, inside the inner loops.
*/
bit_buf_type get_buffer; /* current bit-extraction buffer */
int bits_left; /* # of unused bits in it */
/* Pointer needed by jpeg_fill_bit_buffer. */
j_decompress_ptr cinfo; /* back link to decompress master record */
} bitread_working_state;
/* Macros to declare and load/save bitread local variables. */
#define BITREAD_STATE_VARS \
bit_buf_type get_buffer; \
int bits_left; \
bitread_working_state br_state
#define BITREAD_LOAD_STATE(cinfop,permstate) \
br_state.cinfo = cinfop; \
br_state.next_input_byte = cinfop->src->next_input_byte; \
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
get_buffer = permstate.get_buffer; \
bits_left = permstate.bits_left;
#define BITREAD_SAVE_STATE(cinfop,permstate) \
cinfop->src->next_input_byte = br_state.next_input_byte; \
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
permstate.get_buffer = get_buffer; \
permstate.bits_left = bits_left
/*
* These macros provide the in-line portion of bit fetching.
* Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
* before using GET_BITS, PEEK_BITS, or DROP_BITS.
* The variables get_buffer and bits_left are assumed to be locals,
* but the state struct might not be (jpeg_huff_decode needs this).
* CHECK_BIT_BUFFER(state,n,action);
* Ensure there are N bits in get_buffer; if suspend, take action.
* val = GET_BITS(n);
* Fetch next N bits.
* val = PEEK_BITS(n);
* Fetch next N bits without removing them from the buffer.
* DROP_BITS(n);
* Discard next N bits.
* The value N should be a simple variable, not an expression, because it
* is evaluated multiple times.
*/
#define CHECK_BIT_BUFFER(state,nbits,action) \
{ if (bits_left < (nbits)) { \
if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
{ action; } \
get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
#define GET_BITS(nbits) \
(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
#define PEEK_BITS(nbits) \
(((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
#define DROP_BITS(nbits) \
(bits_left -= (nbits))
/* Load up the bit buffer to a depth of at least nbits */
EXTERN(boolean) jpeg_fill_bit_buffer
JPP((bitread_working_state * state, bit_buf_type get_buffer,
int bits_left, int nbits));
/*
* Code for extracting next Huffman-coded symbol from input bit stream.
* Again, this is time-critical and we make the main paths be macros.
*
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
* without looping. Usually, more than 95% of the Huffman codes will be 8
* or fewer bits long. The few overlength codes are handled with a loop,
* which need not be inline code.
*
* Notes about the HUFF_DECODE macro:
* 1. Near the end of the data segment, we may fail to get enough bits
* for a lookahead. In that case, we do it the hard way.
* 2. If the lookahead table contains no entry, the next code must be
* more than HUFF_LOOKAHEAD bits long.
* 3. jpeg_huff_decode returns -1 if forced to suspend.
*/
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
{ int nb, look; \
if (bits_left < HUFF_LOOKAHEAD) { \
if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
get_buffer = state.get_buffer; bits_left = state.bits_left; \
if (bits_left < HUFF_LOOKAHEAD) { \
nb = 1; goto slowlabel; \
} \
} \
look = PEEK_BITS(HUFF_LOOKAHEAD); \
if ((nb = htbl->look_nbits[look]) != 0) { \
DROP_BITS(nb); \
result = htbl->look_sym[look]; \
} else { \
nb = HUFF_LOOKAHEAD+1; \
slowlabel: \
if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
{ failaction; } \
get_buffer = state.get_buffer; bits_left = state.bits_left; \
} \
}
/* Out-of-line case for Huffman code fetching */
EXTERN(int) jpeg_huff_decode
JPP((bitread_working_state * state, bit_buf_type get_buffer,
int bits_left, d_derived_tbl * htbl, int min_bits));
#endif
/*
* jdhuff.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains declarations for Huffman entropy decoding routines
* that are shared between the sequential decoder (jdhuff.c) and the
* progressive decoder (jdphuff.c). No other modules need to see these.
*/
/* Short forms of external names for systems with brain-damaged linkers. */
#ifndef __jdhuff_h__
#define __jdhuff_h__
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_make_d_derived_tbl jMkDDerived
#define jpeg_fill_bit_buffer jFilBitBuf
#define jpeg_huff_decode jHufDecode
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Derived data constructed for each Huffman table */
#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
typedef struct {
/* Basic tables: (element [0] of each array is unused) */
INT32 maxcode[18]; /* largest code of length k (-1 if none) */
/* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
INT32 valoffset[17]; /* huffval[] offset for codes of length k */
/* valoffset[k] = huffval[] index of 1st symbol of code length k, less
* the smallest code of length k; so given a code of length k, the
* corresponding symbol is huffval[code + valoffset[k]]
*/
/* Link to public Huffman table (needed only in jpeg_huff_decode) */
JHUFF_TBL *pub;
/* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
* the input data stream. If the next Huffman code is no more
* than HUFF_LOOKAHEAD bits long, we can obtain its length and
* the corresponding symbol directly from these tables.
*/
int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
} d_derived_tbl;
/* Expand a Huffman table definition into the derived format */
EXTERN(void) jpeg_make_d_derived_tbl
JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
d_derived_tbl ** pdtbl));
/*
* Fetching the next N bits from the input stream is a time-critical operation
* for the Huffman decoders. We implement it with a combination of inline
* macros and out-of-line subroutines. Note that N (the number of bits
* demanded at one time) never exceeds 15 for JPEG use.
*
* We read source bytes into get_buffer and dole out bits as needed.
* If get_buffer already contains enough bits, they are fetched in-line
* by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
* bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
* as full as possible (not just to the number of bits needed; this
* prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
* Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
* On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
* at least the requested number of bits --- dummy zeroes are inserted if
* necessary.
*/
typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
#define BIT_BUF_SIZE 32 /* size of buffer in bits */
/* If long is > 32 bits on your machine, and shifting/masking longs is
* reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
* appropriately should be a win. Unfortunately we can't define the size
* with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
* because not all machines measure sizeof in 8-bit bytes.
*/
typedef struct { /* Bitreading state saved across MCUs */
bit_buf_type get_buffer; /* current bit-extraction buffer */
int bits_left; /* # of unused bits in it */
} bitread_perm_state;
typedef struct { /* Bitreading working state within an MCU */
/* Current data source location */
/* We need a copy, rather than munging the original, in case of suspension */
const JOCTET * next_input_byte; /* => next byte to read from source */
size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
/* Bit input buffer --- note these values are kept in register variables,
* not in this struct, inside the inner loops.
*/
bit_buf_type get_buffer; /* current bit-extraction buffer */
int bits_left; /* # of unused bits in it */
/* Pointer needed by jpeg_fill_bit_buffer. */
j_decompress_ptr cinfo; /* back link to decompress master record */
} bitread_working_state;
/* Macros to declare and load/save bitread local variables. */
#define BITREAD_STATE_VARS \
bit_buf_type get_buffer; \
int bits_left; \
bitread_working_state br_state
#define BITREAD_LOAD_STATE(cinfop,permstate) \
br_state.cinfo = cinfop; \
br_state.next_input_byte = cinfop->src->next_input_byte; \
br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
get_buffer = permstate.get_buffer; \
bits_left = permstate.bits_left;
#define BITREAD_SAVE_STATE(cinfop,permstate) \
cinfop->src->next_input_byte = br_state.next_input_byte; \
cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
permstate.get_buffer = get_buffer; \
permstate.bits_left = bits_left
/*
* These macros provide the in-line portion of bit fetching.
* Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
* before using GET_BITS, PEEK_BITS, or DROP_BITS.
* The variables get_buffer and bits_left are assumed to be locals,
* but the state struct might not be (jpeg_huff_decode needs this).
* CHECK_BIT_BUFFER(state,n,action);
* Ensure there are N bits in get_buffer; if suspend, take action.
* val = GET_BITS(n);
* Fetch next N bits.
* val = PEEK_BITS(n);
* Fetch next N bits without removing them from the buffer.
* DROP_BITS(n);
* Discard next N bits.
* The value N should be a simple variable, not an expression, because it
* is evaluated multiple times.
*/
#define CHECK_BIT_BUFFER(state,nbits,action) \
{ if (bits_left < (nbits)) { \
if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
{ action; } \
get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
#define GET_BITS(nbits) \
(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
#define PEEK_BITS(nbits) \
(((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
#define DROP_BITS(nbits) \
(bits_left -= (nbits))
/* Load up the bit buffer to a depth of at least nbits */
EXTERN(boolean) jpeg_fill_bit_buffer
JPP((bitread_working_state * state, bit_buf_type get_buffer,
int bits_left, int nbits));
/*
* Code for extracting next Huffman-coded symbol from input bit stream.
* Again, this is time-critical and we make the main paths be macros.
*
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
* without looping. Usually, more than 95% of the Huffman codes will be 8
* or fewer bits long. The few overlength codes are handled with a loop,
* which need not be inline code.
*
* Notes about the HUFF_DECODE macro:
* 1. Near the end of the data segment, we may fail to get enough bits
* for a lookahead. In that case, we do it the hard way.
* 2. If the lookahead table contains no entry, the next code must be
* more than HUFF_LOOKAHEAD bits long.
* 3. jpeg_huff_decode returns -1 if forced to suspend.
*/
#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
{ int nb, look; \
if (bits_left < HUFF_LOOKAHEAD) { \
if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
get_buffer = state.get_buffer; bits_left = state.bits_left; \
if (bits_left < HUFF_LOOKAHEAD) { \
nb = 1; goto slowlabel; \
} \
} \
look = PEEK_BITS(HUFF_LOOKAHEAD); \
if ((nb = htbl->look_nbits[look]) != 0) { \
DROP_BITS(nb); \
result = htbl->look_sym[look]; \
} else { \
nb = HUFF_LOOKAHEAD+1; \
slowlabel: \
if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
{ failaction; } \
get_buffer = state.get_buffer; bits_left = state.bits_left; \
} \
}
/* Out-of-line case for Huffman code fetching */
EXTERN(int) jpeg_huff_decode
JPP((bitread_working_state * state, bit_buf_type get_buffer,
int bits_left, d_derived_tbl * htbl, int min_bits));
#endif

View File

@ -1,381 +1,381 @@
/*
* jdinput.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains input control logic for the JPEG decompressor.
* These routines are concerned with controlling the decompressor's input
* processing (marker reading and coefficient decoding). The actual input
* reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private state */
typedef struct {
struct jpeg_input_controller pub; /* public fields */
boolean inheaders; /* TRUE until first SOS is reached */
} my_input_controller;
typedef my_input_controller * my_inputctl_ptr;
/* Forward declarations */
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
/*
* Routines to calculate various quantities related to the size of the image.
*/
LOCAL(void)
initial_setup2 (j_decompress_ptr cinfo)
/* Called once, when first SOS marker is reached */
{
int ci;
jpeg_component_info *compptr;
/* Make sure image isn't bigger than I can handle */
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Check that number of components won't exceed internal array sizes */
if (cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
/* Compute maximum sampling factors; check factor validity */
cinfo->max_h_samp_factor = 1;
cinfo->max_v_samp_factor = 1;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
ERREXIT(cinfo, JERR_BAD_SAMPLING);
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
compptr->h_samp_factor);
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
compptr->v_samp_factor);
}
/* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
* In the full decompressor, this will be overridden by jdmaster.c;
* but in the transcoder, jdmaster.c is not used, so we must do it here.
*/
cinfo->min_DCT_scaled_size = DCTSIZE;
/* Compute dimensions of components */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
compptr->DCT_scaled_size = DCTSIZE;
/* Size in DCT blocks */
compptr->width_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) (cinfo->max_h_samp_factor * DCTSIZE));
compptr->height_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) (cinfo->max_v_samp_factor * DCTSIZE));
/* downsampled_width and downsampled_height will also be overridden by
* jdmaster.c if we are doing full decompression. The transcoder library
* doesn't use these values, but the calling application might.
*/
/* Size in samples */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) cinfo->max_h_samp_factor);
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) cinfo->max_v_samp_factor);
/* Mark component needed, until color conversion says otherwise */
compptr->component_needed = TRUE;
/* Mark no quantization table yet saved for component */
compptr->quant_table = NULL;
}
/* Compute number of fully interleaved MCU rows. */
cinfo->total_iMCU_rows = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
/* Decide whether file contains multiple scans */
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
cinfo->inputctl->has_multiple_scans = TRUE;
else
cinfo->inputctl->has_multiple_scans = FALSE;
}
LOCAL(void)
per_scan_setup2 (j_decompress_ptr cinfo)
/* Do computations that are needed before processing a JPEG scan */
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
{
int ci, mcublks, tmp;
jpeg_component_info *compptr;
if (cinfo->comps_in_scan == 1) {
/* Noninterleaved (single-component) scan */
compptr = cinfo->cur_comp_info[0];
/* Overall image size in MCUs */
cinfo->MCUs_per_row = compptr->width_in_blocks;
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
/* For noninterleaved scan, always one block per MCU */
compptr->MCU_width = 1;
compptr->MCU_height = 1;
compptr->MCU_blocks = 1;
compptr->MCU_sample_width = compptr->DCT_scaled_size;
compptr->last_col_width = 1;
/* For noninterleaved scans, it is convenient to define last_row_height
* as the number of block rows present in the last iMCU row.
*/
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (tmp == 0) tmp = compptr->v_samp_factor;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
cinfo->blocks_in_MCU = 1;
cinfo->MCU_membership[0] = 0;
} else {
/* Interleaved (multi-component) scan */
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
MAX_COMPS_IN_SCAN);
/* Overall image size in MCUs */
cinfo->MCUs_per_row = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width,
(long) (cinfo->max_h_samp_factor*DCTSIZE));
cinfo->MCU_rows_in_scan = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
cinfo->blocks_in_MCU = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Sampling factors give # of blocks of component in each MCU */
compptr->MCU_width = compptr->h_samp_factor;
compptr->MCU_height = compptr->v_samp_factor;
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
/* Figure number of non-dummy blocks in last MCU column & row */
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
if (tmp == 0) tmp = compptr->MCU_width;
compptr->last_col_width = tmp;
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
if (tmp == 0) tmp = compptr->MCU_height;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
mcublks = compptr->MCU_blocks;
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
while (mcublks-- > 0) {
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
}
}
}
}
/*
* Save away a copy of the Q-table referenced by each component present
* in the current scan, unless already saved during a prior scan.
*
* In a multiple-scan JPEG file, the encoder could assign different components
* the same Q-table slot number, but change table definitions between scans
* so that each component uses a different Q-table. (The IJG encoder is not
* currently capable of doing this, but other encoders might.) Since we want
* to be able to dequantize all the components at the end of the file, this
* means that we have to save away the table actually used for each component.
* We do this by copying the table at the start of the first scan containing
* the component.
* The JPEG spec prohibits the encoder from changing the contents of a Q-table
* slot between scans of a component using that slot. If the encoder does so
* anyway, this decoder will simply use the Q-table values that were current
* at the start of the first scan for the component.
*
* The decompressor output side looks only at the saved quant tables,
* not at the current Q-table slots.
*/
LOCAL(void)
latch_quant_tables (j_decompress_ptr cinfo)
{
int ci, qtblno;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* No work if we already saved Q-table for this component */
if (compptr->quant_table != NULL)
continue;
/* Make sure specified quantization table is present */
qtblno = compptr->quant_tbl_no;
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
/* OK, save away the quantization table */
qtbl = (JQUANT_TBL *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(JQUANT_TBL));
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
compptr->quant_table = qtbl;
}
}
/*
* Initialize the input modules to read a scan of compressed data.
* The first call to this is done by jdmaster.c after initializing
* the entire decompressor (during jpeg_start_decompress).
* Subsequent calls come from consume_markers, below.
*/
METHODDEF(void)
start_input_pass2 (j_decompress_ptr cinfo)
{
per_scan_setup2(cinfo);
latch_quant_tables(cinfo);
(*cinfo->entropy->start_pass) (cinfo);
(*cinfo->coef->start_input_pass) (cinfo);
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
}
/*
* Finish up after inputting a compressed-data scan.
* This is called by the coefficient controller after it's read all
* the expected data of the scan.
*/
METHODDEF(void)
finish_input_pass (j_decompress_ptr cinfo)
{
cinfo->inputctl->consume_input = consume_markers;
}
/*
* Read JPEG markers before, between, or after compressed-data scans.
* Change state as necessary when a new scan is reached.
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
*
* The consume_input method pointer points either here or to the
* coefficient controller's consume_data routine, depending on whether
* we are reading a compressed data segment or inter-segment markers.
*/
METHODDEF(int)
consume_markers (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
int val;
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
return JPEG_REACHED_EOI;
val = (*cinfo->marker->read_markers) (cinfo);
switch (val) {
case JPEG_REACHED_SOS: /* Found SOS */
if (inputctl->inheaders) { /* 1st SOS */
initial_setup2(cinfo);
inputctl->inheaders = FALSE;
/* Note: start_input_pass must be called by jdmaster.c
* before any more input can be consumed. jdapimin.c is
* responsible for enforcing this sequencing.
*/
} else { /* 2nd or later SOS marker */
if (! inputctl->pub.has_multiple_scans)
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
start_input_pass2(cinfo);
}
break;
case JPEG_REACHED_EOI: /* Found EOI */
inputctl->pub.eoi_reached = TRUE;
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
if (cinfo->marker->saw_SOF)
ERREXIT(cinfo, JERR_SOF_NO_SOS);
} else {
/* Prevent infinite loop in coef ctlr's decompress_data routine
* if user set output_scan_number larger than number of scans.
*/
if (cinfo->output_scan_number > cinfo->input_scan_number)
cinfo->output_scan_number = cinfo->input_scan_number;
}
break;
case JPEG_SUSPENDED:
break;
}
return val;
}
/*
* Reset state to begin a fresh datastream.
*/
METHODDEF(void)
reset_input_controller (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
inputctl->pub.consume_input = consume_markers;
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
inputctl->pub.eoi_reached = FALSE;
inputctl->inheaders = TRUE;
/* Reset other modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->marker->reset_marker_reader) (cinfo);
/* Reset progression state -- would be cleaner if entropy decoder did this */
cinfo->coef_bits = NULL;
}
/*
* Initialize the input controller module.
* This is called only once, when the decompression object is created.
*/
GLOBAL(void)
jinit_input_controller (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl;
/* Create subobject in permanent pool */
inputctl = (my_inputctl_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_input_controller));
cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
/* Initialize method pointers */
inputctl->pub.consume_input = consume_markers;
inputctl->pub.reset_input_controller = reset_input_controller;
inputctl->pub.start_input_pass = start_input_pass2;
inputctl->pub.finish_input_pass = finish_input_pass;
/* Initialize state: can't use reset_input_controller since we don't
* want to try to reset other modules yet.
*/
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
inputctl->pub.eoi_reached = FALSE;
inputctl->inheaders = TRUE;
}
/*
* jdinput.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains input control logic for the JPEG decompressor.
* These routines are concerned with controlling the decompressor's input
* processing (marker reading and coefficient decoding). The actual input
* reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private state */
typedef struct {
struct jpeg_input_controller pub; /* public fields */
boolean inheaders; /* TRUE until first SOS is reached */
} my_input_controller;
typedef my_input_controller * my_inputctl_ptr;
/* Forward declarations */
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
/*
* Routines to calculate various quantities related to the size of the image.
*/
LOCAL(void)
initial_setup2 (j_decompress_ptr cinfo)
/* Called once, when first SOS marker is reached */
{
int ci;
jpeg_component_info *compptr;
/* Make sure image isn't bigger than I can handle */
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Check that number of components won't exceed internal array sizes */
if (cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
/* Compute maximum sampling factors; check factor validity */
cinfo->max_h_samp_factor = 1;
cinfo->max_v_samp_factor = 1;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
ERREXIT(cinfo, JERR_BAD_SAMPLING);
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
compptr->h_samp_factor);
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
compptr->v_samp_factor);
}
/* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
* In the full decompressor, this will be overridden by jdmaster.c;
* but in the transcoder, jdmaster.c is not used, so we must do it here.
*/
cinfo->min_DCT_scaled_size = DCTSIZE;
/* Compute dimensions of components */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
compptr->DCT_scaled_size = DCTSIZE;
/* Size in DCT blocks */
compptr->width_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) (cinfo->max_h_samp_factor * DCTSIZE));
compptr->height_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) (cinfo->max_v_samp_factor * DCTSIZE));
/* downsampled_width and downsampled_height will also be overridden by
* jdmaster.c if we are doing full decompression. The transcoder library
* doesn't use these values, but the calling application might.
*/
/* Size in samples */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) cinfo->max_h_samp_factor);
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) cinfo->max_v_samp_factor);
/* Mark component needed, until color conversion says otherwise */
compptr->component_needed = TRUE;
/* Mark no quantization table yet saved for component */
compptr->quant_table = NULL;
}
/* Compute number of fully interleaved MCU rows. */
cinfo->total_iMCU_rows = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
/* Decide whether file contains multiple scans */
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
cinfo->inputctl->has_multiple_scans = TRUE;
else
cinfo->inputctl->has_multiple_scans = FALSE;
}
LOCAL(void)
per_scan_setup2 (j_decompress_ptr cinfo)
/* Do computations that are needed before processing a JPEG scan */
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
{
int ci, mcublks, tmp;
jpeg_component_info *compptr;
if (cinfo->comps_in_scan == 1) {
/* Noninterleaved (single-component) scan */
compptr = cinfo->cur_comp_info[0];
/* Overall image size in MCUs */
cinfo->MCUs_per_row = compptr->width_in_blocks;
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
/* For noninterleaved scan, always one block per MCU */
compptr->MCU_width = 1;
compptr->MCU_height = 1;
compptr->MCU_blocks = 1;
compptr->MCU_sample_width = compptr->DCT_scaled_size;
compptr->last_col_width = 1;
/* For noninterleaved scans, it is convenient to define last_row_height
* as the number of block rows present in the last iMCU row.
*/
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (tmp == 0) tmp = compptr->v_samp_factor;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
cinfo->blocks_in_MCU = 1;
cinfo->MCU_membership[0] = 0;
} else {
/* Interleaved (multi-component) scan */
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
MAX_COMPS_IN_SCAN);
/* Overall image size in MCUs */
cinfo->MCUs_per_row = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width,
(long) (cinfo->max_h_samp_factor*DCTSIZE));
cinfo->MCU_rows_in_scan = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height,
(long) (cinfo->max_v_samp_factor*DCTSIZE));
cinfo->blocks_in_MCU = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Sampling factors give # of blocks of component in each MCU */
compptr->MCU_width = compptr->h_samp_factor;
compptr->MCU_height = compptr->v_samp_factor;
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
/* Figure number of non-dummy blocks in last MCU column & row */
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
if (tmp == 0) tmp = compptr->MCU_width;
compptr->last_col_width = tmp;
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
if (tmp == 0) tmp = compptr->MCU_height;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
mcublks = compptr->MCU_blocks;
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
while (mcublks-- > 0) {
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
}
}
}
}
/*
* Save away a copy of the Q-table referenced by each component present
* in the current scan, unless already saved during a prior scan.
*
* In a multiple-scan JPEG file, the encoder could assign different components
* the same Q-table slot number, but change table definitions between scans
* so that each component uses a different Q-table. (The IJG encoder is not
* currently capable of doing this, but other encoders might.) Since we want
* to be able to dequantize all the components at the end of the file, this
* means that we have to save away the table actually used for each component.
* We do this by copying the table at the start of the first scan containing
* the component.
* The JPEG spec prohibits the encoder from changing the contents of a Q-table
* slot between scans of a component using that slot. If the encoder does so
* anyway, this decoder will simply use the Q-table values that were current
* at the start of the first scan for the component.
*
* The decompressor output side looks only at the saved quant tables,
* not at the current Q-table slots.
*/
LOCAL(void)
latch_quant_tables (j_decompress_ptr cinfo)
{
int ci, qtblno;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* No work if we already saved Q-table for this component */
if (compptr->quant_table != NULL)
continue;
/* Make sure specified quantization table is present */
qtblno = compptr->quant_tbl_no;
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
/* OK, save away the quantization table */
qtbl = (JQUANT_TBL *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(JQUANT_TBL));
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
compptr->quant_table = qtbl;
}
}
/*
* Initialize the input modules to read a scan of compressed data.
* The first call to this is done by jdmaster.c after initializing
* the entire decompressor (during jpeg_start_decompress).
* Subsequent calls come from consume_markers, below.
*/
METHODDEF(void)
start_input_pass2 (j_decompress_ptr cinfo)
{
per_scan_setup2(cinfo);
latch_quant_tables(cinfo);
(*cinfo->entropy->start_pass) (cinfo);
(*cinfo->coef->start_input_pass) (cinfo);
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
}
/*
* Finish up after inputting a compressed-data scan.
* This is called by the coefficient controller after it's read all
* the expected data of the scan.
*/
METHODDEF(void)
finish_input_pass (j_decompress_ptr cinfo)
{
cinfo->inputctl->consume_input = consume_markers;
}
/*
* Read JPEG markers before, between, or after compressed-data scans.
* Change state as necessary when a new scan is reached.
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
*
* The consume_input method pointer points either here or to the
* coefficient controller's consume_data routine, depending on whether
* we are reading a compressed data segment or inter-segment markers.
*/
METHODDEF(int)
consume_markers (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
int val;
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
return JPEG_REACHED_EOI;
val = (*cinfo->marker->read_markers) (cinfo);
switch (val) {
case JPEG_REACHED_SOS: /* Found SOS */
if (inputctl->inheaders) { /* 1st SOS */
initial_setup2(cinfo);
inputctl->inheaders = FALSE;
/* Note: start_input_pass must be called by jdmaster.c
* before any more input can be consumed. jdapimin.c is
* responsible for enforcing this sequencing.
*/
} else { /* 2nd or later SOS marker */
if (! inputctl->pub.has_multiple_scans)
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
start_input_pass2(cinfo);
}
break;
case JPEG_REACHED_EOI: /* Found EOI */
inputctl->pub.eoi_reached = TRUE;
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
if (cinfo->marker->saw_SOF)
ERREXIT(cinfo, JERR_SOF_NO_SOS);
} else {
/* Prevent infinite loop in coef ctlr's decompress_data routine
* if user set output_scan_number larger than number of scans.
*/
if (cinfo->output_scan_number > cinfo->input_scan_number)
cinfo->output_scan_number = cinfo->input_scan_number;
}
break;
case JPEG_SUSPENDED:
break;
}
return val;
}
/*
* Reset state to begin a fresh datastream.
*/
METHODDEF(void)
reset_input_controller (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
inputctl->pub.consume_input = consume_markers;
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
inputctl->pub.eoi_reached = FALSE;
inputctl->inheaders = TRUE;
/* Reset other modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->marker->reset_marker_reader) (cinfo);
/* Reset progression state -- would be cleaner if entropy decoder did this */
cinfo->coef_bits = NULL;
}
/*
* Initialize the input controller module.
* This is called only once, when the decompression object is created.
*/
GLOBAL(void)
jinit_input_controller (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl;
/* Create subobject in permanent pool */
inputctl = (my_inputctl_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
SIZEOF(my_input_controller));
cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
/* Initialize method pointers */
inputctl->pub.consume_input = consume_markers;
inputctl->pub.reset_input_controller = reset_input_controller;
inputctl->pub.start_input_pass = start_input_pass2;
inputctl->pub.finish_input_pass = finish_input_pass;
/* Initialize state: can't use reset_input_controller since we don't
* want to try to reset other modules yet.
*/
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
inputctl->pub.eoi_reached = FALSE;
inputctl->inheaders = TRUE;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,400 +1,400 @@
/*
* jdmerge.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains code for merged upsampling/color conversion.
*
* This file combines functions from jdsample.c and jdcolor.c;
* read those files first to understand what's going on.
*
* When the chroma components are to be upsampled by simple replication
* (ie, box filtering), we can save some work in color conversion by
* calculating all the output pixels corresponding to a pair of chroma
* samples at one time. In the conversion equations
* R = Y + K1 * Cr
* G = Y + K2 * Cb + K3 * Cr
* B = Y + K4 * Cb
* only the Y term varies among the group of pixels corresponding to a pair
* of chroma samples, so the rest of the terms can be calculated just once.
* At typical sampling ratios, this eliminates half or three-quarters of the
* multiplications needed for color conversion.
*
* This file currently provides implementations for the following cases:
* YCbCr => RGB color conversion only.
* Sampling ratios of 2h1v or 2h2v.
* No scaling needed at upsample time.
* Corner-aligned (non-CCIR601) sampling alignment.
* Other special cases could be added, but in most applications these are
* the only common cases. (For uncommon cases we fall back on the more
* general code in jdsample.c and jdcolor.c.)
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#ifdef UPSAMPLE_MERGING_SUPPORTED
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Pointer to routine to do actual upsampling/conversion of one row group */
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf));
/* Private state for YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
/* For 2:1 vertical sampling, we produce two output rows at a time.
* We need a "spare" row buffer to hold the second output row if the
* application provides just a one-row buffer; we also use the spare
* to discard the dummy last row if the image height is odd.
*/
JSAMPROW spare_row;
boolean spare_full; /* T if spare buffer is occupied */
JDIMENSION out_row_width; /* samples per output row */
JDIMENSION rows_to_go; /* counts rows remaining in image */
} my_upsampler;
typedef my_upsampler * my_upsample_ptr;
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/*
* Initialize tables for YCC->RGB colorspace conversion.
* This is taken directly from jdcolor.c; see that file for more info.
*/
LOCAL(void)
build_ycc_rgb_table2 (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int i;
INT32 x;
SHIFT_TEMPS
upsample->Cr_r_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cb_b_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cr_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
upsample->Cb_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
upsample->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
upsample->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
}
}
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_merged_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Mark the spare buffer empty */
upsample->spare_full = FALSE;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* The control routine just handles the row buffering considerations.
*/
METHODDEF(void)
merged_2v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
/* 2:1 vertical sampling case: may need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
JSAMPROW work_ptrs[2];
JDIMENSION num_rows; /* number of rows returned to caller */
if (upsample->spare_full) {
/* If we have a spare row saved from a previous cycle, just return it. */
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
1, upsample->out_row_width);
num_rows = 1;
upsample->spare_full = FALSE;
} else {
/* Figure number of rows to return to caller. */
num_rows = 2;
/* Not more than the distance to the end of the image. */
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
/* Create output pointer array for upsampler. */
work_ptrs[0] = output_buf[*out_row_ctr];
if (num_rows > 1) {
work_ptrs[1] = output_buf[*out_row_ctr + 1];
} else {
work_ptrs[1] = upsample->spare_row;
upsample->spare_full = TRUE;
}
/* Now do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
}
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (! upsample->spare_full)
(*in_row_group_ctr)++;
}
METHODDEF(void)
merged_1v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION)
/* 1:1 vertical sampling case: much easier, never need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Just do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
output_buf + *out_row_ctr);
/* Adjust counts */
(*out_row_ctr)++;
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by the control routines to do
* the actual upsampling/conversion. One row group is processed per call.
*
* Note: since we may be writing directly into application-supplied buffers,
* we have to be honest about the output width; we can't assume the buffer
* has been rounded up to an even width.
*/
/*
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
*/
METHODDEF(void)
h2v1_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int y, cred, cgreen, cblue;
int cb, cr;
JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr0 = input_buf[0][in_row_group_ctr];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr = output_buf[0];
/* Loop for each pair of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 2 Y values and emit 2 pixels */
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr0);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
}
}
/*
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
*/
METHODDEF(void)
h2v2_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int y, cred, cgreen, cblue;
int cb, cr;
JSAMPROW outptr0, outptr1;
JSAMPROW inptr00, inptr01, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr00 = input_buf[0][in_row_group_ctr*2];
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr0 = output_buf[0];
outptr1 = output_buf[1];
/* Loop for each group of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 4 Y values and emit 4 pixels */
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr00);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
y = GETJSAMPLE(*inptr01);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
}
}
/*
* Module initialization routine for merged upsampling/color conversion.
*
* NB: this is called under the conditions determined by use_merged_upsample()
* in jdmaster.c. That routine MUST correspond to the actual capabilities
* of this module; no safety checks are made here.
*/
GLOBAL(void)
jinit_merged_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample;
upsample = (my_upsample_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_upsampler));
cinfo->upsample = (struct jpeg_upsampler *) upsample;
upsample->pub.start_pass = start_pass_merged_upsample;
upsample->pub.need_context_rows = FALSE;
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
if (cinfo->max_v_samp_factor == 2) {
upsample->pub.upsample = merged_2v_upsample;
upsample->upmethod = h2v2_merged_upsample;
/* Allocate a spare row buffer */
upsample->spare_row = (JSAMPROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
} else {
upsample->pub.upsample = merged_1v_upsample;
upsample->upmethod = h2v1_merged_upsample;
/* No spare row needed */
upsample->spare_row = NULL;
}
build_ycc_rgb_table2(cinfo);
}
#endif /* UPSAMPLE_MERGING_SUPPORTED */
/*
* jdmerge.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains code for merged upsampling/color conversion.
*
* This file combines functions from jdsample.c and jdcolor.c;
* read those files first to understand what's going on.
*
* When the chroma components are to be upsampled by simple replication
* (ie, box filtering), we can save some work in color conversion by
* calculating all the output pixels corresponding to a pair of chroma
* samples at one time. In the conversion equations
* R = Y + K1 * Cr
* G = Y + K2 * Cb + K3 * Cr
* B = Y + K4 * Cb
* only the Y term varies among the group of pixels corresponding to a pair
* of chroma samples, so the rest of the terms can be calculated just once.
* At typical sampling ratios, this eliminates half or three-quarters of the
* multiplications needed for color conversion.
*
* This file currently provides implementations for the following cases:
* YCbCr => RGB color conversion only.
* Sampling ratios of 2h1v or 2h2v.
* No scaling needed at upsample time.
* Corner-aligned (non-CCIR601) sampling alignment.
* Other special cases could be added, but in most applications these are
* the only common cases. (For uncommon cases we fall back on the more
* general code in jdsample.c and jdcolor.c.)
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#ifdef UPSAMPLE_MERGING_SUPPORTED
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Pointer to routine to do actual upsampling/conversion of one row group */
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf));
/* Private state for YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
/* For 2:1 vertical sampling, we produce two output rows at a time.
* We need a "spare" row buffer to hold the second output row if the
* application provides just a one-row buffer; we also use the spare
* to discard the dummy last row if the image height is odd.
*/
JSAMPROW spare_row;
boolean spare_full; /* T if spare buffer is occupied */
JDIMENSION out_row_width; /* samples per output row */
JDIMENSION rows_to_go; /* counts rows remaining in image */
} my_upsampler;
typedef my_upsampler * my_upsample_ptr;
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/*
* Initialize tables for YCC->RGB colorspace conversion.
* This is taken directly from jdcolor.c; see that file for more info.
*/
LOCAL(void)
build_ycc_rgb_table2 (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int i;
INT32 x;
SHIFT_TEMPS
upsample->Cr_r_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cb_b_tab = (int *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cr_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
upsample->Cb_g_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.40200 * x */
upsample->Cr_r_tab[i] = (int)
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
/* Cb=>B value is nearest int to 1.77200 * x */
upsample->Cb_b_tab[i] = (int)
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
/* Cr=>G value is scaled-up -0.71414 * x */
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
/* Cb=>G value is scaled-up -0.34414 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
}
}
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_merged_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Mark the spare buffer empty */
upsample->spare_full = FALSE;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* The control routine just handles the row buffering considerations.
*/
METHODDEF(void)
merged_2v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
/* 2:1 vertical sampling case: may need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
JSAMPROW work_ptrs[2];
JDIMENSION num_rows; /* number of rows returned to caller */
if (upsample->spare_full) {
/* If we have a spare row saved from a previous cycle, just return it. */
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
1, upsample->out_row_width);
num_rows = 1;
upsample->spare_full = FALSE;
} else {
/* Figure number of rows to return to caller. */
num_rows = 2;
/* Not more than the distance to the end of the image. */
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
/* Create output pointer array for upsampler. */
work_ptrs[0] = output_buf[*out_row_ctr];
if (num_rows > 1) {
work_ptrs[1] = output_buf[*out_row_ctr + 1];
} else {
work_ptrs[1] = upsample->spare_row;
upsample->spare_full = TRUE;
}
/* Now do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
}
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (! upsample->spare_full)
(*in_row_group_ctr)++;
}
METHODDEF(void)
merged_1v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION)
/* 1:1 vertical sampling case: much easier, never need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Just do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
output_buf + *out_row_ctr);
/* Adjust counts */
(*out_row_ctr)++;
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by the control routines to do
* the actual upsampling/conversion. One row group is processed per call.
*
* Note: since we may be writing directly into application-supplied buffers,
* we have to be honest about the output width; we can't assume the buffer
* has been rounded up to an even width.
*/
/*
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
*/
METHODDEF(void)
h2v1_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int y, cred, cgreen, cblue;
int cb, cr;
JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr0 = input_buf[0][in_row_group_ctr];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr = output_buf[0];
/* Loop for each pair of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 2 Y values and emit 2 pixels */
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr0);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
}
}
/*
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
*/
METHODDEF(void)
h2v2_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int y, cred, cgreen, cblue;
int cb, cr;
JSAMPROW outptr0, outptr1;
JSAMPROW inptr00, inptr01, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr00 = input_buf[0][in_row_group_ctr*2];
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr0 = output_buf[0];
outptr1 = output_buf[1];
/* Loop for each group of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
/* Fetch 4 Y values and emit 4 pixels */
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cred = Crrtab[cr];
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
y = GETJSAMPLE(*inptr00);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
y = GETJSAMPLE(*inptr01);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
}
}
/*
* Module initialization routine for merged upsampling/color conversion.
*
* NB: this is called under the conditions determined by use_merged_upsample()
* in jdmaster.c. That routine MUST correspond to the actual capabilities
* of this module; no safety checks are made here.
*/
GLOBAL(void)
jinit_merged_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample;
upsample = (my_upsample_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_upsampler));
cinfo->upsample = (struct jpeg_upsampler *) upsample;
upsample->pub.start_pass = start_pass_merged_upsample;
upsample->pub.need_context_rows = FALSE;
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
if (cinfo->max_v_samp_factor == 2) {
upsample->pub.upsample = merged_2v_upsample;
upsample->upmethod = h2v2_merged_upsample;
/* Allocate a spare row buffer */
upsample->spare_row = (JSAMPROW)
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
} else {
upsample->pub.upsample = merged_1v_upsample;
upsample->upmethod = h2v1_merged_upsample;
/* No spare row needed */
upsample->spare_row = NULL;
}
build_ycc_rgb_table2(cinfo);
}
#endif /* UPSAMPLE_MERGING_SUPPORTED */

File diff suppressed because it is too large Load Diff

View File

@ -1,290 +1,290 @@
/*
* jdpostct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the decompression postprocessing controller.
* This controller manages the upsampling, color conversion, and color
* quantization/reduction steps; specifically, it controls the buffering
* between upsample/color conversion and color quantization/reduction.
*
* If no color quantization/reduction is required, then this module has no
* work to do, and it just hands off to the upsample/color conversion code.
* An integrated upsample/convert/quantize process would replace this module
* entirely.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private buffer controller object */
typedef struct {
struct jpeg_d_post_controller pub; /* public fields */
/* Color quantization source buffer: this holds output data from
* the upsample/color conversion step to be passed to the quantizer.
* For two-pass color quantization, we need a full-image buffer;
* for one-pass operation, a strip buffer is sufficient.
*/
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
JDIMENSION strip_height; /* buffer size in rows */
/* for two-pass mode only: */
JDIMENSION starting_row; /* row # of first row in current strip */
JDIMENSION next_row; /* index of next row to fill/empty in strip */
} my_post_controller;
typedef my_post_controller * my_post_ptr;
/* Forward declarations */
METHODDEF(void) post_process_1pass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
#ifdef QUANT_2PASS_SUPPORTED
METHODDEF(void) post_process_prepass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
METHODDEF(void) post_process_2pass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
#endif
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
switch (pass_mode) {
case JBUF_PASS_THRU:
if (cinfo->quantize_colors) {
/* Single-pass processing with color quantization. */
post->pub.post_process_data = post_process_1pass;
/* We could be doing buffered-image output before starting a 2-pass
* color quantization; in that case, jinit_d_post_controller did not
* allocate a strip buffer. Use the virtual-array buffer as workspace.
*/
if (post->buffer == NULL) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
(JDIMENSION) 0, post->strip_height, TRUE);
}
} else {
/* For single-pass processing without color quantization,
* I have no work to do; just call the upsampler directly.
*/
post->pub.post_process_data = cinfo->upsample->upsample;
}
break;
#ifdef QUANT_2PASS_SUPPORTED
case JBUF_SAVE_AND_PASS:
/* First pass of 2-pass quantization */
if (post->whole_image == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
post->pub.post_process_data = post_process_prepass;
break;
case JBUF_CRANK_DEST:
/* Second pass of 2-pass quantization */
if (post->whole_image == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
post->pub.post_process_data = post_process_2pass;
break;
#endif /* QUANT_2PASS_SUPPORTED */
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
post->starting_row = post->next_row = 0;
}
/*
* Process some data in the one-pass (strip buffer) case.
* This is used for color precision reduction as well as one-pass quantization.
*/
METHODDEF(void)
post_process_1pass (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION num_rows, max_rows;
/* Fill the buffer, but not more than what we can dump out in one go. */
/* Note we rely on the upsampler to detect bottom of image. */
max_rows = out_rows_avail - *out_row_ctr;
if (max_rows > post->strip_height)
max_rows = post->strip_height;
num_rows = 0;
(*cinfo->upsample->upsample) (cinfo,
input_buf, in_row_group_ctr, in_row_groups_avail,
post->buffer, &num_rows, max_rows);
/* Quantize and emit data. */
(*cinfo->cquantize->color_quantize) (cinfo,
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
*out_row_ctr += num_rows;
}
#ifdef QUANT_2PASS_SUPPORTED
/*
* Process some data in the first pass of 2-pass quantization.
*/
METHODDEF(void)
post_process_prepass (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY, JDIMENSION *out_row_ctr,
JDIMENSION)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION old_next_row, num_rows;
/* Reposition virtual buffer if at start of strip. */
if (post->next_row == 0) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
post->starting_row, post->strip_height, TRUE);
}
/* Upsample some data (up to a strip height's worth). */
old_next_row = post->next_row;
(*cinfo->upsample->upsample) (cinfo,
input_buf, in_row_group_ctr, in_row_groups_avail,
post->buffer, &post->next_row, post->strip_height);
/* Allow quantizer to scan new data. No data is emitted, */
/* but we advance out_row_ctr so outer loop can tell when we're done. */
if (post->next_row > old_next_row) {
num_rows = post->next_row - old_next_row;
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
(JSAMPARRAY) NULL, (int) num_rows);
*out_row_ctr += num_rows;
}
/* Advance if we filled the strip. */
if (post->next_row >= post->strip_height) {
post->starting_row += post->strip_height;
post->next_row = 0;
}
}
/*
* Process some data in the second pass of 2-pass quantization.
*/
METHODDEF(void)
post_process_2pass (j_decompress_ptr cinfo,
JSAMPIMAGE, JDIMENSION *,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION num_rows, max_rows;
/* Reposition virtual buffer if at start of strip. */
if (post->next_row == 0) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
post->starting_row, post->strip_height, FALSE);
}
/* Determine number of rows to emit. */
num_rows = post->strip_height - post->next_row; /* available in strip */
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
if (num_rows > max_rows)
num_rows = max_rows;
/* We have to check bottom of image here, can't depend on upsampler. */
max_rows = cinfo->output_height - post->starting_row;
if (num_rows > max_rows)
num_rows = max_rows;
/* Quantize and emit data. */
(*cinfo->cquantize->color_quantize) (cinfo,
post->buffer + post->next_row, output_buf + *out_row_ctr,
(int) num_rows);
*out_row_ctr += num_rows;
/* Advance if we filled the strip. */
post->next_row += num_rows;
if (post->next_row >= post->strip_height) {
post->starting_row += post->strip_height;
post->next_row = 0;
}
}
#endif /* QUANT_2PASS_SUPPORTED */
/*
* Initialize postprocessing controller.
*/
GLOBAL(void)
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
my_post_ptr post;
post = (my_post_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_post_controller));
cinfo->post = (struct jpeg_d_post_controller *) post;
post->pub.start_pass = start_pass_dpost;
post->whole_image = NULL; /* flag for no virtual arrays */
post->buffer = NULL; /* flag for no strip buffer */
/* Create the quantization buffer, if needed */
if (cinfo->quantize_colors) {
/* The buffer strip height is max_v_samp_factor, which is typically
* an efficient number of rows for upsampling to return.
* (In the presence of output rescaling, we might want to be smarter?)
*/
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
if (need_full_buffer) {
/* Two-pass color quantization: need full-image storage. */
/* We round up the number of rows to a multiple of the strip height. */
#ifdef QUANT_2PASS_SUPPORTED
post->whole_image = (*cinfo->mem->request_virt_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
cinfo->output_width * cinfo->out_color_components,
(JDIMENSION) jround_up((long) cinfo->output_height,
(long) post->strip_height),
post->strip_height);
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif /* QUANT_2PASS_SUPPORTED */
} else {
/* One-pass color quantization: just make a strip buffer. */
post->buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->output_width * cinfo->out_color_components,
post->strip_height);
}
}
}
/*
* jdpostct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the decompression postprocessing controller.
* This controller manages the upsampling, color conversion, and color
* quantization/reduction steps; specifically, it controls the buffering
* between upsample/color conversion and color quantization/reduction.
*
* If no color quantization/reduction is required, then this module has no
* work to do, and it just hands off to the upsample/color conversion code.
* An integrated upsample/convert/quantize process would replace this module
* entirely.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private buffer controller object */
typedef struct {
struct jpeg_d_post_controller pub; /* public fields */
/* Color quantization source buffer: this holds output data from
* the upsample/color conversion step to be passed to the quantizer.
* For two-pass color quantization, we need a full-image buffer;
* for one-pass operation, a strip buffer is sufficient.
*/
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
JDIMENSION strip_height; /* buffer size in rows */
/* for two-pass mode only: */
JDIMENSION starting_row; /* row # of first row in current strip */
JDIMENSION next_row; /* index of next row to fill/empty in strip */
} my_post_controller;
typedef my_post_controller * my_post_ptr;
/* Forward declarations */
METHODDEF(void) post_process_1pass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
#ifdef QUANT_2PASS_SUPPORTED
METHODDEF(void) post_process_prepass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
METHODDEF(void) post_process_2pass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
#endif
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
switch (pass_mode) {
case JBUF_PASS_THRU:
if (cinfo->quantize_colors) {
/* Single-pass processing with color quantization. */
post->pub.post_process_data = post_process_1pass;
/* We could be doing buffered-image output before starting a 2-pass
* color quantization; in that case, jinit_d_post_controller did not
* allocate a strip buffer. Use the virtual-array buffer as workspace.
*/
if (post->buffer == NULL) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
(JDIMENSION) 0, post->strip_height, TRUE);
}
} else {
/* For single-pass processing without color quantization,
* I have no work to do; just call the upsampler directly.
*/
post->pub.post_process_data = cinfo->upsample->upsample;
}
break;
#ifdef QUANT_2PASS_SUPPORTED
case JBUF_SAVE_AND_PASS:
/* First pass of 2-pass quantization */
if (post->whole_image == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
post->pub.post_process_data = post_process_prepass;
break;
case JBUF_CRANK_DEST:
/* Second pass of 2-pass quantization */
if (post->whole_image == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
post->pub.post_process_data = post_process_2pass;
break;
#endif /* QUANT_2PASS_SUPPORTED */
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
post->starting_row = post->next_row = 0;
}
/*
* Process some data in the one-pass (strip buffer) case.
* This is used for color precision reduction as well as one-pass quantization.
*/
METHODDEF(void)
post_process_1pass (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION num_rows, max_rows;
/* Fill the buffer, but not more than what we can dump out in one go. */
/* Note we rely on the upsampler to detect bottom of image. */
max_rows = out_rows_avail - *out_row_ctr;
if (max_rows > post->strip_height)
max_rows = post->strip_height;
num_rows = 0;
(*cinfo->upsample->upsample) (cinfo,
input_buf, in_row_group_ctr, in_row_groups_avail,
post->buffer, &num_rows, max_rows);
/* Quantize and emit data. */
(*cinfo->cquantize->color_quantize) (cinfo,
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
*out_row_ctr += num_rows;
}
#ifdef QUANT_2PASS_SUPPORTED
/*
* Process some data in the first pass of 2-pass quantization.
*/
METHODDEF(void)
post_process_prepass (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY, JDIMENSION *out_row_ctr,
JDIMENSION)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION old_next_row, num_rows;
/* Reposition virtual buffer if at start of strip. */
if (post->next_row == 0) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
post->starting_row, post->strip_height, TRUE);
}
/* Upsample some data (up to a strip height's worth). */
old_next_row = post->next_row;
(*cinfo->upsample->upsample) (cinfo,
input_buf, in_row_group_ctr, in_row_groups_avail,
post->buffer, &post->next_row, post->strip_height);
/* Allow quantizer to scan new data. No data is emitted, */
/* but we advance out_row_ctr so outer loop can tell when we're done. */
if (post->next_row > old_next_row) {
num_rows = post->next_row - old_next_row;
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
(JSAMPARRAY) NULL, (int) num_rows);
*out_row_ctr += num_rows;
}
/* Advance if we filled the strip. */
if (post->next_row >= post->strip_height) {
post->starting_row += post->strip_height;
post->next_row = 0;
}
}
/*
* Process some data in the second pass of 2-pass quantization.
*/
METHODDEF(void)
post_process_2pass (j_decompress_ptr cinfo,
JSAMPIMAGE, JDIMENSION *,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION num_rows, max_rows;
/* Reposition virtual buffer if at start of strip. */
if (post->next_row == 0) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
post->starting_row, post->strip_height, FALSE);
}
/* Determine number of rows to emit. */
num_rows = post->strip_height - post->next_row; /* available in strip */
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
if (num_rows > max_rows)
num_rows = max_rows;
/* We have to check bottom of image here, can't depend on upsampler. */
max_rows = cinfo->output_height - post->starting_row;
if (num_rows > max_rows)
num_rows = max_rows;
/* Quantize and emit data. */
(*cinfo->cquantize->color_quantize) (cinfo,
post->buffer + post->next_row, output_buf + *out_row_ctr,
(int) num_rows);
*out_row_ctr += num_rows;
/* Advance if we filled the strip. */
post->next_row += num_rows;
if (post->next_row >= post->strip_height) {
post->starting_row += post->strip_height;
post->next_row = 0;
}
}
#endif /* QUANT_2PASS_SUPPORTED */
/*
* Initialize postprocessing controller.
*/
GLOBAL(void)
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
my_post_ptr post;
post = (my_post_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_post_controller));
cinfo->post = (struct jpeg_d_post_controller *) post;
post->pub.start_pass = start_pass_dpost;
post->whole_image = NULL; /* flag for no virtual arrays */
post->buffer = NULL; /* flag for no strip buffer */
/* Create the quantization buffer, if needed */
if (cinfo->quantize_colors) {
/* The buffer strip height is max_v_samp_factor, which is typically
* an efficient number of rows for upsampling to return.
* (In the presence of output rescaling, we might want to be smarter?)
*/
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
if (need_full_buffer) {
/* Two-pass color quantization: need full-image storage. */
/* We round up the number of rows to a multiple of the strip height. */
#ifdef QUANT_2PASS_SUPPORTED
post->whole_image = (*cinfo->mem->request_virt_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
cinfo->output_width * cinfo->out_color_components,
(JDIMENSION) jround_up((long) cinfo->output_height,
(long) post->strip_height),
post->strip_height);
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif /* QUANT_2PASS_SUPPORTED */
} else {
/* One-pass color quantization: just make a strip buffer. */
post->buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->output_width * cinfo->out_color_components,
post->strip_height);
}
}
}

View File

@ -1,478 +1,478 @@
/*
* jdsample.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains upsampling routines.
*
* Upsampling input data is counted in "row groups". A row group
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
* sample rows of each component. Upsampling will normally produce
* max_v_samp_factor pixel rows from each row group (but this could vary
* if the upsampler is applying a scale factor of its own).
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Pointer to routine to upsample a single component */
typedef JMETHOD(void, upsample1_ptr,
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Color conversion buffer. When using separate upsampling and color
* conversion steps, this buffer holds one upsampled row group until it
* has been color converted and output.
* Note: we do not allocate any storage for component(s) which are full-size,
* ie do not need rescaling. The corresponding entry of color_buf[] is
* simply set to point to the input data array, thereby avoiding copying.
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
/* Per-component upsampling method pointers */
upsample1_ptr methods[MAX_COMPONENTS];
int next_row_out; /* counts rows emitted from color_buf */
JDIMENSION rows_to_go; /* counts rows remaining in image */
/* Height of an input row group for each component. */
int rowgroup_height[MAX_COMPONENTS];
/* These arrays save pixel expansion factors so that int_expand need not
* recompute them each time. They are unused for other upsampling methods.
*/
UINT8 h_expand[MAX_COMPONENTS];
UINT8 v_expand[MAX_COMPONENTS];
} my_upsampler2;
typedef my_upsampler2 * my_upsample_ptr2;
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample;
/* Mark the conversion buffer empty */
upsample->next_row_out = cinfo->max_v_samp_factor;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* In this version we upsample each component independently.
* We upsample one row group into the conversion buffer, then apply
* color conversion a row at a time.
*/
METHODDEF(void)
sep_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample;
int ci;
jpeg_component_info * compptr;
JDIMENSION num_rows;
/* Fill the conversion buffer, if it's empty */
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Invoke per-component upsample method. Notice we pass a POINTER
* to color_buf[ci], so that fullsize_upsample can change it.
*/
(*upsample->methods[ci]) (cinfo, compptr,
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
upsample->color_buf + ci);
}
upsample->next_row_out = 0;
}
/* Color-convert and emit rows */
/* How many we have in the buffer: */
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
/* Not more than the distance to the end of the image. Need this test
* in case the image height is not a multiple of max_v_samp_factor:
*/
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
(JDIMENSION) upsample->next_row_out,
output_buf + *out_row_ctr,
(int) num_rows);
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
upsample->next_row_out += num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by sep_upsample to upsample pixel values
* of a single component. One row group is processed per call.
*/
/*
* For full-size components, we just make color_buf[ci] point at the
* input buffer, and thus avoid copying any data. Note that this is
* safe only because sep_upsample doesn't declare the input row group
* "consumed" until we are done color converting and emitting it.
*/
METHODDEF(void)
fullsize_upsample (j_decompress_ptr, jpeg_component_info *,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
*output_data_ptr = input_data;
}
/*
* This is a no-op version used for "uninteresting" components.
* These components will not be referenced by color conversion.
*/
METHODDEF(void)
noop_upsample (j_decompress_ptr, jpeg_component_info *,
JSAMPARRAY, JSAMPARRAY * output_data_ptr)
{
*output_data_ptr = NULL; /* safety check */
}
/*
* This version handles any integral sampling ratios.
* This is not used for typical JPEG files, so it need not be fast.
* Nor, for that matter, is it particularly accurate: the algorithm is
* simple replication of the input pixel onto the corresponding output
* pixels. The hi-falutin sampling literature refers to this as a
* "box filter". A box filter tends to introduce visible artifacts,
* so if you are actually going to use 3:1 or 4:1 sampling ratios
* you would be well advised to improve this code.
*/
METHODDEF(void)
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample;
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
JSAMPLE invalue;
int h;
JSAMPROW outend;
int h_expand, v_expand;
int inrow, outrow;
h_expand = upsample->h_expand[compptr->component_index];
v_expand = upsample->v_expand[compptr->component_index];
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
/* Generate one output row with proper horizontal expansion */
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
for (h = h_expand; h > 0; h--) {
*outptr++ = invalue;
}
}
/* Generate any additional output rows by duplicating the first one */
if (v_expand > 1) {
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
v_expand-1, cinfo->output_width);
}
inrow++;
outrow += v_expand;
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info *,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
JSAMPLE invalue;
JSAMPROW outend;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info *,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
JSAMPLE invalue;
JSAMPROW outend;
int inrow, outrow;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
1, cinfo->output_width);
inrow++;
outrow += 2;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
*
* The upsampling algorithm is linear interpolation between pixel centers,
* also known as a "triangle filter". This is a good compromise between
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
* of the way between input pixel centers.
*
* A note about the "bias" calculations: when rounding fractional values to
* integer, we do not want to always round 0.5 up to the next integer.
* If we did that, we'd introduce a noticeable bias towards larger values.
* Instead, this code is arranged so that 0.5 will be rounded up or down at
* alternate pixel locations (a simple ordered dither pattern).
*/
METHODDEF(void)
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
int invalue;
JDIMENSION colctr;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
/* Special case for first column */
invalue = GETJSAMPLE(*inptr++);
*outptr++ = (JSAMPLE) invalue;
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
invalue = GETJSAMPLE(*inptr++) * 3;
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
}
/* Special case for last column */
invalue = GETJSAMPLE(*inptr);
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
*outptr++ = (JSAMPLE) invalue;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
* Again a triangle filter; see comments for h2v1 case, above.
*
* It is OK for us to reference the adjacent input rows because we demanded
* context from the main buffer controller (see initialization code).
*/
METHODDEF(void)
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr0, inptr1, outptr;
#if BITS_IN_JSAMPLE == 8
int thiscolsum, lastcolsum, nextcolsum;
#else
INT32 thiscolsum, lastcolsum, nextcolsum;
#endif
JDIMENSION colctr;
int inrow, outrow, v;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
for (v = 0; v < 2; v++) {
/* inptr0 points to nearest input row, inptr1 points to next nearest */
inptr0 = input_data[inrow];
if (v == 0) /* next nearest is row above */
inptr1 = input_data[inrow-1];
else /* next nearest is row below */
inptr1 = input_data[inrow+1];
outptr = output_data[outrow++];
/* Special case for first column */
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
}
/* Special case for last column */
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
}
inrow++;
}
}
/*
* Module initialization routine for upsampling.
*/
GLOBAL(void)
jinit_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr2 upsample;
int ci;
jpeg_component_info * compptr;
boolean need_buffer, do_fancy;
int h_in_group, v_in_group, h_out_group, v_out_group;
upsample = (my_upsample_ptr2)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_upsampler2));
cinfo->upsample = (struct jpeg_upsampler *) upsample;
upsample->pub.start_pass = start_pass_upsample;
upsample->pub.upsample = sep_upsample;
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
if (cinfo->CCIR601_sampling) /* this isn't supported */
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
* so don't ask for it.
*/
do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
/* Verify we can handle the sampling factors, select per-component methods,
* and create storage as needed.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Compute size of an "input group" after IDCT scaling. This many samples
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
*/
h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
cinfo->min_DCT_scaled_size;
v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
cinfo->min_DCT_scaled_size;
h_out_group = cinfo->max_h_samp_factor;
v_out_group = cinfo->max_v_samp_factor;
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
need_buffer = TRUE;
if (! compptr->component_needed) {
/* Don't bother to upsample an uninteresting component. */
upsample->methods[ci] = noop_upsample;
need_buffer = FALSE;
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
/* Fullsize components can be processed without any work. */
upsample->methods[ci] = fullsize_upsample;
need_buffer = FALSE;
} else if (h_in_group * 2 == h_out_group &&
v_in_group == v_out_group) {
/* Special cases for 2h1v upsampling */
if (do_fancy && compptr->downsampled_width > 2)
upsample->methods[ci] = h2v1_fancy_upsample;
else
upsample->methods[ci] = h2v1_upsample;
} else if (h_in_group * 2 == h_out_group &&
v_in_group * 2 == v_out_group) {
/* Special cases for 2h2v upsampling */
if (do_fancy && compptr->downsampled_width > 2) {
upsample->methods[ci] = h2v2_fancy_upsample;
upsample->pub.need_context_rows = TRUE;
} else
upsample->methods[ci] = h2v2_upsample;
} else if ((h_out_group % h_in_group) == 0 &&
(v_out_group % v_in_group) == 0) {
/* Generic integral-factors upsampling method */
upsample->methods[ci] = int_upsample;
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
} else
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
if (need_buffer) {
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) jround_up((long) cinfo->output_width,
(long) cinfo->max_h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}
}
/*
* jdsample.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains upsampling routines.
*
* Upsampling input data is counted in "row groups". A row group
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
* sample rows of each component. Upsampling will normally produce
* max_v_samp_factor pixel rows from each row group (but this could vary
* if the upsampler is applying a scale factor of its own).
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Pointer to routine to upsample a single component */
typedef JMETHOD(void, upsample1_ptr,
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Color conversion buffer. When using separate upsampling and color
* conversion steps, this buffer holds one upsampled row group until it
* has been color converted and output.
* Note: we do not allocate any storage for component(s) which are full-size,
* ie do not need rescaling. The corresponding entry of color_buf[] is
* simply set to point to the input data array, thereby avoiding copying.
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
/* Per-component upsampling method pointers */
upsample1_ptr methods[MAX_COMPONENTS];
int next_row_out; /* counts rows emitted from color_buf */
JDIMENSION rows_to_go; /* counts rows remaining in image */
/* Height of an input row group for each component. */
int rowgroup_height[MAX_COMPONENTS];
/* These arrays save pixel expansion factors so that int_expand need not
* recompute them each time. They are unused for other upsampling methods.
*/
UINT8 h_expand[MAX_COMPONENTS];
UINT8 v_expand[MAX_COMPONENTS];
} my_upsampler2;
typedef my_upsampler2 * my_upsample_ptr2;
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample;
/* Mark the conversion buffer empty */
upsample->next_row_out = cinfo->max_v_samp_factor;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* In this version we upsample each component independently.
* We upsample one row group into the conversion buffer, then apply
* color conversion a row at a time.
*/
METHODDEF(void)
sep_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample;
int ci;
jpeg_component_info * compptr;
JDIMENSION num_rows;
/* Fill the conversion buffer, if it's empty */
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Invoke per-component upsample method. Notice we pass a POINTER
* to color_buf[ci], so that fullsize_upsample can change it.
*/
(*upsample->methods[ci]) (cinfo, compptr,
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
upsample->color_buf + ci);
}
upsample->next_row_out = 0;
}
/* Color-convert and emit rows */
/* How many we have in the buffer: */
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
/* Not more than the distance to the end of the image. Need this test
* in case the image height is not a multiple of max_v_samp_factor:
*/
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
(JDIMENSION) upsample->next_row_out,
output_buf + *out_row_ctr,
(int) num_rows);
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
upsample->next_row_out += num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by sep_upsample to upsample pixel values
* of a single component. One row group is processed per call.
*/
/*
* For full-size components, we just make color_buf[ci] point at the
* input buffer, and thus avoid copying any data. Note that this is
* safe only because sep_upsample doesn't declare the input row group
* "consumed" until we are done color converting and emitting it.
*/
METHODDEF(void)
fullsize_upsample (j_decompress_ptr, jpeg_component_info *,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
*output_data_ptr = input_data;
}
/*
* This is a no-op version used for "uninteresting" components.
* These components will not be referenced by color conversion.
*/
METHODDEF(void)
noop_upsample (j_decompress_ptr, jpeg_component_info *,
JSAMPARRAY, JSAMPARRAY * output_data_ptr)
{
*output_data_ptr = NULL; /* safety check */
}
/*
* This version handles any integral sampling ratios.
* This is not used for typical JPEG files, so it need not be fast.
* Nor, for that matter, is it particularly accurate: the algorithm is
* simple replication of the input pixel onto the corresponding output
* pixels. The hi-falutin sampling literature refers to this as a
* "box filter". A box filter tends to introduce visible artifacts,
* so if you are actually going to use 3:1 or 4:1 sampling ratios
* you would be well advised to improve this code.
*/
METHODDEF(void)
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
my_upsample_ptr2 upsample = (my_upsample_ptr2) cinfo->upsample;
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
JSAMPLE invalue;
int h;
JSAMPROW outend;
int h_expand, v_expand;
int inrow, outrow;
h_expand = upsample->h_expand[compptr->component_index];
v_expand = upsample->v_expand[compptr->component_index];
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
/* Generate one output row with proper horizontal expansion */
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
for (h = h_expand; h > 0; h--) {
*outptr++ = invalue;
}
}
/* Generate any additional output rows by duplicating the first one */
if (v_expand > 1) {
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
v_expand-1, cinfo->output_width);
}
inrow++;
outrow += v_expand;
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info *,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
JSAMPLE invalue;
JSAMPROW outend;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info *,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
JSAMPLE invalue;
JSAMPROW outend;
int inrow, outrow;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
1, cinfo->output_width);
inrow++;
outrow += 2;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
*
* The upsampling algorithm is linear interpolation between pixel centers,
* also known as a "triangle filter". This is a good compromise between
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
* of the way between input pixel centers.
*
* A note about the "bias" calculations: when rounding fractional values to
* integer, we do not want to always round 0.5 up to the next integer.
* If we did that, we'd introduce a noticeable bias towards larger values.
* Instead, this code is arranged so that 0.5 will be rounded up or down at
* alternate pixel locations (a simple ordered dither pattern).
*/
METHODDEF(void)
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
int invalue;
JDIMENSION colctr;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
/* Special case for first column */
invalue = GETJSAMPLE(*inptr++);
*outptr++ = (JSAMPLE) invalue;
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
invalue = GETJSAMPLE(*inptr++) * 3;
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
}
/* Special case for last column */
invalue = GETJSAMPLE(*inptr);
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
*outptr++ = (JSAMPLE) invalue;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
* Again a triangle filter; see comments for h2v1 case, above.
*
* It is OK for us to reference the adjacent input rows because we demanded
* context from the main buffer controller (see initialization code).
*/
METHODDEF(void)
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr0, inptr1, outptr;
#if BITS_IN_JSAMPLE == 8
int thiscolsum, lastcolsum, nextcolsum;
#else
INT32 thiscolsum, lastcolsum, nextcolsum;
#endif
JDIMENSION colctr;
int inrow, outrow, v;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
for (v = 0; v < 2; v++) {
/* inptr0 points to nearest input row, inptr1 points to next nearest */
inptr0 = input_data[inrow];
if (v == 0) /* next nearest is row above */
inptr1 = input_data[inrow-1];
else /* next nearest is row below */
inptr1 = input_data[inrow+1];
outptr = output_data[outrow++];
/* Special case for first column */
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
}
/* Special case for last column */
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
}
inrow++;
}
}
/*
* Module initialization routine for upsampling.
*/
GLOBAL(void)
jinit_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr2 upsample;
int ci;
jpeg_component_info * compptr;
boolean need_buffer, do_fancy;
int h_in_group, v_in_group, h_out_group, v_out_group;
upsample = (my_upsample_ptr2)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_upsampler2));
cinfo->upsample = (struct jpeg_upsampler *) upsample;
upsample->pub.start_pass = start_pass_upsample;
upsample->pub.upsample = sep_upsample;
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
if (cinfo->CCIR601_sampling) /* this isn't supported */
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
* so don't ask for it.
*/
do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
/* Verify we can handle the sampling factors, select per-component methods,
* and create storage as needed.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Compute size of an "input group" after IDCT scaling. This many samples
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
*/
h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
cinfo->min_DCT_scaled_size;
v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
cinfo->min_DCT_scaled_size;
h_out_group = cinfo->max_h_samp_factor;
v_out_group = cinfo->max_v_samp_factor;
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
need_buffer = TRUE;
if (! compptr->component_needed) {
/* Don't bother to upsample an uninteresting component. */
upsample->methods[ci] = noop_upsample;
need_buffer = FALSE;
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
/* Fullsize components can be processed without any work. */
upsample->methods[ci] = fullsize_upsample;
need_buffer = FALSE;
} else if (h_in_group * 2 == h_out_group &&
v_in_group == v_out_group) {
/* Special cases for 2h1v upsampling */
if (do_fancy && compptr->downsampled_width > 2)
upsample->methods[ci] = h2v1_fancy_upsample;
else
upsample->methods[ci] = h2v1_upsample;
} else if (h_in_group * 2 == h_out_group &&
v_in_group * 2 == v_out_group) {
/* Special cases for 2h2v upsampling */
if (do_fancy && compptr->downsampled_width > 2) {
upsample->methods[ci] = h2v2_fancy_upsample;
upsample->pub.need_context_rows = TRUE;
} else
upsample->methods[ci] = h2v2_upsample;
} else if ((h_out_group % h_in_group) == 0 &&
(v_out_group % v_in_group) == 0) {
/* Generic integral-factors upsampling method */
upsample->methods[ci] = int_upsample;
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
} else
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
if (need_buffer) {
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) jround_up((long) cinfo->output_width,
(long) cinfo->max_h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}
}

View File

@ -1,143 +1,143 @@
/*
* jdtrans.c
*
* Copyright (C) 1995-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains library routines for transcoding decompression,
* that is, reading raw DCT coefficient arrays from an input JPEG file.
* The routines in jdapimin.c will also be needed by a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
/*
* Read the coefficient arrays from a JPEG file.
* jpeg_read_header must be completed before calling this.
*
* The entire image is read into a set of virtual coefficient-block arrays,
* one per component. The return value is a pointer to the array of
* virtual-array descriptors. These can be manipulated directly via the
* JPEG memory manager, or handed off to jpeg_write_coefficients().
* To release the memory occupied by the virtual arrays, call
* jpeg_finish_decompress() when done with the data.
*
* An alternative usage is to simply obtain access to the coefficient arrays
* during a buffered-image-mode decompression operation. This is allowed
* after any jpeg_finish_output() call. The arrays can be accessed until
* jpeg_finish_decompress() is called. (Note that any call to the library
* may reposition the arrays, so don't rely on access_virt_barray() results
* to stay valid across library calls.)
*
* Returns NULL if suspended. This case need be checked only if
* a suspending data source is used.
*/
GLOBAL(jvirt_barray_ptr *)
jpeg_read_coefficients (j_decompress_ptr cinfo)
{
if (cinfo->global_state == DSTATE_READY) {
/* First call: initialize active modules */
transdecode_master_selection(cinfo);
cinfo->global_state = DSTATE_RDCOEFS;
}
if (cinfo->global_state == DSTATE_RDCOEFS) {
/* Absorb whole file into the coef buffer */
for (;;) {
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return NULL;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* startup underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
}
/* Set state so that jpeg_finish_decompress does the right thing */
cinfo->global_state = DSTATE_STOPPING;
}
/* At this point we should be in state DSTATE_STOPPING if being used
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
* to the coefficients during a full buffered-image-mode decompression.
*/
if ((cinfo->global_state == DSTATE_STOPPING ||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
return cinfo->coef->coef_arrays;
}
/* Oops, improper usage */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return NULL; /* keep compiler happy */
}
/*
* Master selection of decompression modules for transcoding.
* This substitutes for jdmaster.c's initialization of the full decompressor.
*/
LOCAL(void)
transdecode_master_selection (j_decompress_ptr cinfo)
{
/* This is effectively a buffered-image operation. */
cinfo->buffered_image = TRUE;
/* Entropy decoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
} else {
if (cinfo->progressive_mode) {
#ifdef D_PROGRESSIVE_SUPPORTED
jinit_phuff_decoder(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else
jinit_huff_decoder(cinfo);
}
/* Always get a full-image coefficient buffer. */
jinit_d_coef_controller(cinfo, TRUE);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Initialize input side of decompressor to consume first scan. */
(*cinfo->inputctl->start_input_pass) (cinfo);
/* Initialize progress monitoring. */
if (cinfo->progress != NULL) {
int nscans;
/* Estimate number of scans to set pass_limit. */
if (cinfo->progressive_mode) {
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
nscans = 2 + 3 * cinfo->num_components;
} else if (cinfo->inputctl->has_multiple_scans) {
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
nscans = cinfo->num_components;
} else {
nscans = 1;
}
cinfo->progress->pass_counter = 0L;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
cinfo->progress->completed_passes = 0;
cinfo->progress->total_passes = 1;
}
}
/*
* jdtrans.c
*
* Copyright (C) 1995-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains library routines for transcoding decompression,
* that is, reading raw DCT coefficient arrays from an input JPEG file.
* The routines in jdapimin.c will also be needed by a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
/*
* Read the coefficient arrays from a JPEG file.
* jpeg_read_header must be completed before calling this.
*
* The entire image is read into a set of virtual coefficient-block arrays,
* one per component. The return value is a pointer to the array of
* virtual-array descriptors. These can be manipulated directly via the
* JPEG memory manager, or handed off to jpeg_write_coefficients().
* To release the memory occupied by the virtual arrays, call
* jpeg_finish_decompress() when done with the data.
*
* An alternative usage is to simply obtain access to the coefficient arrays
* during a buffered-image-mode decompression operation. This is allowed
* after any jpeg_finish_output() call. The arrays can be accessed until
* jpeg_finish_decompress() is called. (Note that any call to the library
* may reposition the arrays, so don't rely on access_virt_barray() results
* to stay valid across library calls.)
*
* Returns NULL if suspended. This case need be checked only if
* a suspending data source is used.
*/
GLOBAL(jvirt_barray_ptr *)
jpeg_read_coefficients (j_decompress_ptr cinfo)
{
if (cinfo->global_state == DSTATE_READY) {
/* First call: initialize active modules */
transdecode_master_selection(cinfo);
cinfo->global_state = DSTATE_RDCOEFS;
}
if (cinfo->global_state == DSTATE_RDCOEFS) {
/* Absorb whole file into the coef buffer */
for (;;) {
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return NULL;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* startup underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
}
/* Set state so that jpeg_finish_decompress does the right thing */
cinfo->global_state = DSTATE_STOPPING;
}
/* At this point we should be in state DSTATE_STOPPING if being used
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
* to the coefficients during a full buffered-image-mode decompression.
*/
if ((cinfo->global_state == DSTATE_STOPPING ||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
return cinfo->coef->coef_arrays;
}
/* Oops, improper usage */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return NULL; /* keep compiler happy */
}
/*
* Master selection of decompression modules for transcoding.
* This substitutes for jdmaster.c's initialization of the full decompressor.
*/
LOCAL(void)
transdecode_master_selection (j_decompress_ptr cinfo)
{
/* This is effectively a buffered-image operation. */
cinfo->buffered_image = TRUE;
/* Entropy decoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code) {
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
} else {
if (cinfo->progressive_mode) {
#ifdef D_PROGRESSIVE_SUPPORTED
jinit_phuff_decoder(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else
jinit_huff_decoder(cinfo);
}
/* Always get a full-image coefficient buffer. */
jinit_d_coef_controller(cinfo, TRUE);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Initialize input side of decompressor to consume first scan. */
(*cinfo->inputctl->start_input_pass) (cinfo);
/* Initialize progress monitoring. */
if (cinfo->progress != NULL) {
int nscans;
/* Estimate number of scans to set pass_limit. */
if (cinfo->progressive_mode) {
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
nscans = 2 + 3 * cinfo->num_components;
} else if (cinfo->inputctl->has_multiple_scans) {
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
nscans = cinfo->num_components;
} else {
nscans = 1;
}
cinfo->progress->pass_counter = 0L;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
cinfo->progress->completed_passes = 0;
cinfo->progress->total_passes = 1;
}
}

View File

@ -1,252 +1,252 @@
/*
* jerror.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains simple error-reporting and trace-message routines.
* These are suitable for Unix-like systems and others where writing to
* stderr is the right thing to do. Many applications will want to replace
* some or all of these routines.
*
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
* you get a Windows-specific hack to display error messages in a dialog box.
* It ain't much, but it beats dropping error messages into the bit bucket,
* which is what happens to output to stderr under most Windows C compilers.
*
* These routines are used by both the compression and decompression code.
*/
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jversion.h"
#include "jerror.h"
#ifdef USE_WINDOWS_MESSAGEBOX
#include <windows.h>
#endif
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
#define EXIT_FAILURE 1
#endif
/*
* Create the message string table.
* We do this from the master message list in jerror.h by re-reading
* jerror.h with a suitable definition for macro JMESSAGE.
* The message table is made an external symbol just in case any applications
* want to refer to it directly.
*/
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_std_message_table jMsgTable
#endif
#define JMESSAGE(code,string) string ,
const char * const jpeg_std_message_table[] = {
#include "jerror.h"
NULL
};
/*
* Error exit handler: must not return to caller.
*
* Applications may override this if they want to get control back after
* an error. Typically one would longjmp somewhere instead of exiting.
* The setjmp buffer can be made a private field within an expanded error
* handler object. Note that the info needed to generate an error message
* is stored in the error object, so you can generate the message now or
* later, at your convenience.
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
* or jpeg_destroy) at some point.
*/
METHODDEF(void)
error_exit (j_common_ptr cinfo)
{
/* Always display the message */
(*cinfo->err->output_message) (cinfo);
/* Let the memory manager delete any temp files before we die */
jpeg_destroy(cinfo);
exit(EXIT_FAILURE);
}
/*
* Actual output of an error or trace message.
* Applications may override this method to send JPEG messages somewhere
* other than stderr.
*
* On Windows, printing to stderr is generally completely useless,
* so we provide optional code to produce an error-dialog popup.
* Most Windows applications will still prefer to override this routine,
* but if they don't, it'll do something at least marginally useful.
*
* NOTE: to use the library in an environment that doesn't support the
* C stdio library, you may have to delete the call to fprintf() entirely,
* not just not use this routine.
*/
METHODDEF(void)
output_message (j_common_ptr cinfo)
{
char buffer[JMSG_LENGTH_MAX];
/* Create the message */
(*cinfo->err->format_message) (cinfo, buffer);
#ifdef USE_WINDOWS_MESSAGEBOX
/* Display it in a message dialog box */
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
MB_OK | MB_ICONERROR);
#else
/* Send it to stderr, adding a newline */
fprintf(stderr, "%s\n", buffer);
#endif
}
/*
* Decide whether to emit a trace or warning message.
* msg_level is one of:
* -1: recoverable corrupt-data warning, may want to abort.
* 0: important advisory messages (always display to user).
* 1: first level of tracing detail.
* 2,3,...: successively more detailed tracing messages.
* An application might override this method if it wanted to abort on warnings
* or change the policy about which messages to display.
*/
METHODDEF(void)
emit_message (j_common_ptr cinfo, int msg_level)
{
struct jpeg_error_mgr * err = cinfo->err;
if (msg_level < 0) {
/* It's a warning message. Since corrupt files may generate many warnings,
* the policy implemented here is to show only the first warning,
* unless trace_level >= 3.
*/
if (err->num_warnings == 0 || err->trace_level >= 3)
(*err->output_message) (cinfo);
/* Always count warnings in num_warnings. */
err->num_warnings++;
} else {
/* It's a trace message. Show it if trace_level >= msg_level. */
if (err->trace_level >= msg_level)
(*err->output_message) (cinfo);
}
}
/*
* Format a message string for the most recent JPEG error or message.
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
* characters. Note that no '\n' character is added to the string.
* Few applications should need to override this method.
*/
METHODDEF(void)
format_message (j_common_ptr cinfo, char * buffer)
{
struct jpeg_error_mgr * err = cinfo->err;
int msg_code = err->msg_code;
const char * msgtext = NULL;
const char * msgptr;
char ch;
boolean isstring;
/* Look up message string in proper table */
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
msgtext = err->jpeg_message_table[msg_code];
} else if (err->addon_message_table != NULL &&
msg_code >= err->first_addon_message &&
msg_code <= err->last_addon_message) {
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
}
/* Defend against bogus message number */
if (msgtext == NULL) {
err->msg_parm.i[0] = msg_code;
msgtext = err->jpeg_message_table[0];
}
/* Check for string parameter, as indicated by %s in the message text */
isstring = FALSE;
msgptr = msgtext;
while ((ch = *msgptr++) != '\0') {
if (ch == '%') {
if (*msgptr == 's') isstring = TRUE;
break;
}
}
/* Format the message into the passed buffer */
if (isstring)
sprintf(buffer, msgtext, err->msg_parm.s);
else
sprintf(buffer, msgtext,
err->msg_parm.i[0], err->msg_parm.i[1],
err->msg_parm.i[2], err->msg_parm.i[3],
err->msg_parm.i[4], err->msg_parm.i[5],
err->msg_parm.i[6], err->msg_parm.i[7]);
}
/*
* Reset error state variables at start of a new image.
* This is called during compression startup to reset trace/error
* processing to default state, without losing any application-specific
* method pointers. An application might possibly want to override
* this method if it has additional error processing state.
*/
METHODDEF(void)
reset_error_mgr (j_common_ptr cinfo)
{
cinfo->err->num_warnings = 0;
/* trace_level is not reset since it is an application-supplied parameter */
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
}
/*
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
* Typical call is:
* struct jpeg_compress_struct cinfo;
* struct jpeg_error_mgr err;
*
* cinfo.err = jpeg_std_error(&err);
* after which the application may override some of the methods.
*/
GLOBAL(struct jpeg_error_mgr *)
jpeg_std_error (struct jpeg_error_mgr * err)
{
err->error_exit = error_exit;
err->emit_message = emit_message;
err->output_message = output_message;
err->format_message = format_message;
err->reset_error_mgr = reset_error_mgr;
err->trace_level = 0; /* default = no tracing */
err->num_warnings = 0; /* no warnings emitted yet */
err->msg_code = 0; /* may be useful as a flag for "no error" */
/* Initialize message table pointers */
err->jpeg_message_table = jpeg_std_message_table;
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
err->addon_message_table = NULL;
err->first_addon_message = 0; /* for safety */
err->last_addon_message = 0;
return err;
}
/*
* jerror.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains simple error-reporting and trace-message routines.
* These are suitable for Unix-like systems and others where writing to
* stderr is the right thing to do. Many applications will want to replace
* some or all of these routines.
*
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
* you get a Windows-specific hack to display error messages in a dialog box.
* It ain't much, but it beats dropping error messages into the bit bucket,
* which is what happens to output to stderr under most Windows C compilers.
*
* These routines are used by both the compression and decompression code.
*/
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jversion.h"
#include "jerror.h"
#ifdef USE_WINDOWS_MESSAGEBOX
#include <windows.h>
#endif
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
#define EXIT_FAILURE 1
#endif
/*
* Create the message string table.
* We do this from the master message list in jerror.h by re-reading
* jerror.h with a suitable definition for macro JMESSAGE.
* The message table is made an external symbol just in case any applications
* want to refer to it directly.
*/
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_std_message_table jMsgTable
#endif
#define JMESSAGE(code,string) string ,
const char * const jpeg_std_message_table[] = {
#include "jerror.h"
NULL
};
/*
* Error exit handler: must not return to caller.
*
* Applications may override this if they want to get control back after
* an error. Typically one would longjmp somewhere instead of exiting.
* The setjmp buffer can be made a private field within an expanded error
* handler object. Note that the info needed to generate an error message
* is stored in the error object, so you can generate the message now or
* later, at your convenience.
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
* or jpeg_destroy) at some point.
*/
METHODDEF(void)
error_exit (j_common_ptr cinfo)
{
/* Always display the message */
(*cinfo->err->output_message) (cinfo);
/* Let the memory manager delete any temp files before we die */
jpeg_destroy(cinfo);
exit(EXIT_FAILURE);
}
/*
* Actual output of an error or trace message.
* Applications may override this method to send JPEG messages somewhere
* other than stderr.
*
* On Windows, printing to stderr is generally completely useless,
* so we provide optional code to produce an error-dialog popup.
* Most Windows applications will still prefer to override this routine,
* but if they don't, it'll do something at least marginally useful.
*
* NOTE: to use the library in an environment that doesn't support the
* C stdio library, you may have to delete the call to fprintf() entirely,
* not just not use this routine.
*/
METHODDEF(void)
output_message (j_common_ptr cinfo)
{
char buffer[JMSG_LENGTH_MAX];
/* Create the message */
(*cinfo->err->format_message) (cinfo, buffer);
#ifdef USE_WINDOWS_MESSAGEBOX
/* Display it in a message dialog box */
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
MB_OK | MB_ICONERROR);
#else
/* Send it to stderr, adding a newline */
fprintf(stderr, "%s\n", buffer);
#endif
}
/*
* Decide whether to emit a trace or warning message.
* msg_level is one of:
* -1: recoverable corrupt-data warning, may want to abort.
* 0: important advisory messages (always display to user).
* 1: first level of tracing detail.
* 2,3,...: successively more detailed tracing messages.
* An application might override this method if it wanted to abort on warnings
* or change the policy about which messages to display.
*/
METHODDEF(void)
emit_message (j_common_ptr cinfo, int msg_level)
{
struct jpeg_error_mgr * err = cinfo->err;
if (msg_level < 0) {
/* It's a warning message. Since corrupt files may generate many warnings,
* the policy implemented here is to show only the first warning,
* unless trace_level >= 3.
*/
if (err->num_warnings == 0 || err->trace_level >= 3)
(*err->output_message) (cinfo);
/* Always count warnings in num_warnings. */
err->num_warnings++;
} else {
/* It's a trace message. Show it if trace_level >= msg_level. */
if (err->trace_level >= msg_level)
(*err->output_message) (cinfo);
}
}
/*
* Format a message string for the most recent JPEG error or message.
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
* characters. Note that no '\n' character is added to the string.
* Few applications should need to override this method.
*/
METHODDEF(void)
format_message (j_common_ptr cinfo, char * buffer)
{
struct jpeg_error_mgr * err = cinfo->err;
int msg_code = err->msg_code;
const char * msgtext = NULL;
const char * msgptr;
char ch;
boolean isstring;
/* Look up message string in proper table */
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
msgtext = err->jpeg_message_table[msg_code];
} else if (err->addon_message_table != NULL &&
msg_code >= err->first_addon_message &&
msg_code <= err->last_addon_message) {
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
}
/* Defend against bogus message number */
if (msgtext == NULL) {
err->msg_parm.i[0] = msg_code;
msgtext = err->jpeg_message_table[0];
}
/* Check for string parameter, as indicated by %s in the message text */
isstring = FALSE;
msgptr = msgtext;
while ((ch = *msgptr++) != '\0') {
if (ch == '%') {
if (*msgptr == 's') isstring = TRUE;
break;
}
}
/* Format the message into the passed buffer */
if (isstring)
sprintf(buffer, msgtext, err->msg_parm.s);
else
sprintf(buffer, msgtext,
err->msg_parm.i[0], err->msg_parm.i[1],
err->msg_parm.i[2], err->msg_parm.i[3],
err->msg_parm.i[4], err->msg_parm.i[5],
err->msg_parm.i[6], err->msg_parm.i[7]);
}
/*
* Reset error state variables at start of a new image.
* This is called during compression startup to reset trace/error
* processing to default state, without losing any application-specific
* method pointers. An application might possibly want to override
* this method if it has additional error processing state.
*/
METHODDEF(void)
reset_error_mgr (j_common_ptr cinfo)
{
cinfo->err->num_warnings = 0;
/* trace_level is not reset since it is an application-supplied parameter */
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
}
/*
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
* Typical call is:
* struct jpeg_compress_struct cinfo;
* struct jpeg_error_mgr err;
*
* cinfo.err = jpeg_std_error(&err);
* after which the application may override some of the methods.
*/
GLOBAL(struct jpeg_error_mgr *)
jpeg_std_error (struct jpeg_error_mgr * err)
{
err->error_exit = error_exit;
err->emit_message = emit_message;
err->output_message = output_message;
err->format_message = format_message;
err->reset_error_mgr = reset_error_mgr;
err->trace_level = 0; /* default = no tracing */
err->num_warnings = 0; /* no warnings emitted yet */
err->msg_code = 0; /* may be useful as a flag for "no error" */
/* Initialize message table pointers */
err->jpeg_message_table = jpeg_std_message_table;
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
err->addon_message_table = NULL;
err->first_addon_message = 0; /* for safety */
err->last_addon_message = 0;
return err;
}

View File

@ -1,291 +1,291 @@
/*
* jerror.h
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file defines the error and message codes for the JPEG library.
* Edit this file to add new codes, or to translate the message strings to
* some other language.
* A set of error-reporting macros are defined too. Some applications using
* the JPEG library may wish to include this file to get the error codes
* and/or the macros.
*/
/*
* To define the enum list of message codes, include this file without
* defining macro JMESSAGE. To create a message string table, include it
* again with a suitable JMESSAGE definition (see jerror.c for an example).
*/
#ifndef JMESSAGE
#ifndef JERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code,string)
#endif /* JERROR_H */
#endif /* JMESSAGE */
#ifdef JMAKE_ENUM_LIST
typedef enum {
#define JMESSAGE(code,string) code ,
#endif /* JMAKE_ENUM_LIST */
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
/* For maintenance convenience, list is alphabetical by message code name */
JMESSAGE(JERR_ARITH_NOTIMPL,
"Sorry, there are legal restrictions on arithmetic coding")
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
JMESSAGE(JERR_BAD_LIB_VERSION,
"Wrong JPEG library version: library is %d, caller expects %d")
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
JMESSAGE(JERR_BAD_PROGRESSION,
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
JMESSAGE(JERR_BAD_PROG_SCRIPT,
"Invalid progressive parameters at scan script entry %d")
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
JMESSAGE(JERR_BAD_STRUCT_SIZE,
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
JMESSAGE(JERR_FILE_READ, "Input file read error")
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
"Cannot transcode due to multiple use of quantization table %d")
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
JMESSAGE(JERR_QUANT_COMPONENTS,
"Cannot quantize more than %d color components")
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
JMESSAGE(JERR_TFILE_WRITE,
"Write failed on temporary file --- out of disk space?")
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
JMESSAGE(JMSG_VERSION, JVERSION)
JMESSAGE(JTRC_16BIT_TABLES,
"Caution: quantization tables are too coarse for baseline JPEG")
JMESSAGE(JTRC_ADOBE,
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
JMESSAGE(JTRC_EOI, "End Of Image")
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
"Warning: thumbnail image size does not match data length %u")
JMESSAGE(JTRC_JFIF_EXTENSION,
"JFIF extension marker: type 0x%02x, length %u")
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
JMESSAGE(JTRC_RST, "RST%d")
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
"Smoothing not supported with nonstandard sampling ratios")
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
JMESSAGE(JTRC_SOI, "Start of Image")
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
JMESSAGE(JTRC_THUMB_JPEG,
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_PALETTE,
"JFIF extension marker: palette thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_RGB,
"JFIF extension marker: RGB thumbnail image, length %u")
JMESSAGE(JTRC_UNKNOWN_IDS,
"Unrecognized component IDs %d %d %d, assuming YCbCr")
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
JMESSAGE(JWRN_BOGUS_PROGRESSION,
"Inconsistent progression sequence for component %d coefficient %d")
JMESSAGE(JWRN_EXTRANEOUS_DATA,
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
JMESSAGE(JWRN_MUST_RESYNC,
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
#ifdef JMAKE_ENUM_LIST
JMSG_LASTMSGCODE
} J_MESSAGE_CODE;
#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE
#ifndef JERROR_H
#define JERROR_H
/* Macros to simplify using the error and trace message stuff */
/* The first parameter is either type of cinfo pointer */
/* Fatal errors (print message and exit) */
#define ERREXIT(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT3(cinfo,code,p1,p2,p3) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(cinfo)->err->msg_parm.i[3] = (p4), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXITS(cinfo,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define MAKESTMT(stuff) do { stuff } while (0)
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
#define WARNMS(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
/* Informational/debugging messages */
#define TRACEMS(cinfo,lvl,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS1(cinfo,lvl,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMSS(cinfo,lvl,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#endif /* JERROR_H */
/*
* jerror.h
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file defines the error and message codes for the JPEG library.
* Edit this file to add new codes, or to translate the message strings to
* some other language.
* A set of error-reporting macros are defined too. Some applications using
* the JPEG library may wish to include this file to get the error codes
* and/or the macros.
*/
/*
* To define the enum list of message codes, include this file without
* defining macro JMESSAGE. To create a message string table, include it
* again with a suitable JMESSAGE definition (see jerror.c for an example).
*/
#ifndef JMESSAGE
#ifndef JERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code,string)
#endif /* JERROR_H */
#endif /* JMESSAGE */
#ifdef JMAKE_ENUM_LIST
typedef enum {
#define JMESSAGE(code,string) code ,
#endif /* JMAKE_ENUM_LIST */
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
/* For maintenance convenience, list is alphabetical by message code name */
JMESSAGE(JERR_ARITH_NOTIMPL,
"Sorry, there are legal restrictions on arithmetic coding")
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
JMESSAGE(JERR_BAD_LIB_VERSION,
"Wrong JPEG library version: library is %d, caller expects %d")
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
JMESSAGE(JERR_BAD_PROGRESSION,
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
JMESSAGE(JERR_BAD_PROG_SCRIPT,
"Invalid progressive parameters at scan script entry %d")
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
JMESSAGE(JERR_BAD_STRUCT_SIZE,
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
JMESSAGE(JERR_FILE_READ, "Input file read error")
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
"Cannot transcode due to multiple use of quantization table %d")
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
JMESSAGE(JERR_QUANT_COMPONENTS,
"Cannot quantize more than %d color components")
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
JMESSAGE(JERR_TFILE_WRITE,
"Write failed on temporary file --- out of disk space?")
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
JMESSAGE(JMSG_VERSION, JVERSION)
JMESSAGE(JTRC_16BIT_TABLES,
"Caution: quantization tables are too coarse for baseline JPEG")
JMESSAGE(JTRC_ADOBE,
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
JMESSAGE(JTRC_EOI, "End Of Image")
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
"Warning: thumbnail image size does not match data length %u")
JMESSAGE(JTRC_JFIF_EXTENSION,
"JFIF extension marker: type 0x%02x, length %u")
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
JMESSAGE(JTRC_RST, "RST%d")
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
"Smoothing not supported with nonstandard sampling ratios")
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
JMESSAGE(JTRC_SOI, "Start of Image")
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
JMESSAGE(JTRC_THUMB_JPEG,
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_PALETTE,
"JFIF extension marker: palette thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_RGB,
"JFIF extension marker: RGB thumbnail image, length %u")
JMESSAGE(JTRC_UNKNOWN_IDS,
"Unrecognized component IDs %d %d %d, assuming YCbCr")
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
JMESSAGE(JWRN_BOGUS_PROGRESSION,
"Inconsistent progression sequence for component %d coefficient %d")
JMESSAGE(JWRN_EXTRANEOUS_DATA,
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
JMESSAGE(JWRN_MUST_RESYNC,
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
#ifdef JMAKE_ENUM_LIST
JMSG_LASTMSGCODE
} J_MESSAGE_CODE;
#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE
#ifndef JERROR_H
#define JERROR_H
/* Macros to simplify using the error and trace message stuff */
/* The first parameter is either type of cinfo pointer */
/* Fatal errors (print message and exit) */
#define ERREXIT(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT3(cinfo,code,p1,p2,p3) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(cinfo)->err->msg_parm.i[3] = (p4), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXITS(cinfo,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define MAKESTMT(stuff) do { stuff } while (0)
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
#define WARNMS(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
/* Informational/debugging messages */
#define TRACEMS(cinfo,lvl,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS1(cinfo,lvl,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMSS(cinfo,lvl,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#endif /* JERROR_H */

View File

@ -1,168 +1,168 @@
/*
* jfdctflt.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a floating-point implementation of the
* forward DCT (Discrete Cosine Transform).
*
* This implementation should be more accurate than either of the integer
* DCT implementations. However, it may not give the same results on all
* machines because of differences in roundoff behavior. Speed will depend
* on the hardware's floating point capacity.
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with a fixed-point
* implementation, accuracy is lost due to imprecise representation of the
* scaled quantization values. However, that problem does not arise if
* we use floating point arithmetic.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL(void)
jpeg_fdct_float (FAST_FLOAT * data)
{
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
FAST_FLOAT *dataptr;
int ctr;
/* Pass 1: process rows. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = tmp10 + tmp11; /* phase 3 */
dataptr[4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
dataptr[2] = tmp13 + z1; /* phase 5 */
dataptr[6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[5] = z13 + z2; /* phase 6 */
dataptr[3] = z13 - z2;
dataptr[1] = z11 + z4;
dataptr[7] = z11 - z4;
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
dataptr[DCTSIZE*4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
dataptr[DCTSIZE*6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
dataptr[DCTSIZE*3] = z13 - z2;
dataptr[DCTSIZE*1] = z11 + z4;
dataptr[DCTSIZE*7] = z11 - z4;
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* jfdctflt.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a floating-point implementation of the
* forward DCT (Discrete Cosine Transform).
*
* This implementation should be more accurate than either of the integer
* DCT implementations. However, it may not give the same results on all
* machines because of differences in roundoff behavior. Speed will depend
* on the hardware's floating point capacity.
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with a fixed-point
* implementation, accuracy is lost due to imprecise representation of the
* scaled quantization values. However, that problem does not arise if
* we use floating point arithmetic.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL(void)
jpeg_fdct_float (FAST_FLOAT * data)
{
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
FAST_FLOAT *dataptr;
int ctr;
/* Pass 1: process rows. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = tmp10 + tmp11; /* phase 3 */
dataptr[4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
dataptr[2] = tmp13 + z1; /* phase 5 */
dataptr[6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[5] = z13 + z2; /* phase 6 */
dataptr[3] = z13 - z2;
dataptr[1] = z11 + z4;
dataptr[7] = z11 - z4;
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
dataptr[DCTSIZE*4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
dataptr[DCTSIZE*6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
dataptr[DCTSIZE*3] = z13 - z2;
dataptr[DCTSIZE*1] = z11 + z4;
dataptr[DCTSIZE*7] = z11 - z4;
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_FLOAT_SUPPORTED */

View File

@ -1,224 +1,224 @@
/*
* jfdctfst.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jfdctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* Again to save a few shifts, the intermediate results between pass 1 and
* pass 2 are not upscaled, but are represented only to integral precision.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#define CONST_BITS 8
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
#else
#define FIX_0_382683433 FIX(0.382683433)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_707106781 FIX(0.707106781)
#define FIX_1_306562965 FIX(1.306562965)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL(void)
jpeg_fdct_ifast (DCTELEM * data)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z1, z2, z3, z4, z5, z11, z13;
DCTELEM *dataptr;
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = tmp10 + tmp11; /* phase 3 */
dataptr[4] = tmp10 - tmp11;
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
dataptr[2] = tmp13 + z1; /* phase 5 */
dataptr[6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[5] = z13 + z2; /* phase 6 */
dataptr[3] = z13 - z2;
dataptr[1] = z11 + z4;
dataptr[7] = z11 - z4;
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
dataptr[DCTSIZE*4] = tmp10 - tmp11;
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
dataptr[DCTSIZE*6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
dataptr[DCTSIZE*3] = z13 - z2;
dataptr[DCTSIZE*1] = z11 + z4;
dataptr[DCTSIZE*7] = z11 - z4;
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_IFAST_SUPPORTED */
/*
* jfdctfst.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jfdctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* Again to save a few shifts, the intermediate results between pass 1 and
* pass 2 are not upscaled, but are represented only to integral precision.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#define CONST_BITS 8
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
#else
#define FIX_0_382683433 FIX(0.382683433)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_707106781 FIX(0.707106781)
#define FIX_1_306562965 FIX(1.306562965)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL(void)
jpeg_fdct_ifast (DCTELEM * data)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z1, z2, z3, z4, z5, z11, z13;
DCTELEM *dataptr;
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = tmp10 + tmp11; /* phase 3 */
dataptr[4] = tmp10 - tmp11;
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
dataptr[2] = tmp13 + z1; /* phase 5 */
dataptr[6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[5] = z13 + z2; /* phase 6 */
dataptr[3] = z13 - z2;
dataptr[1] = z11 + z4;
dataptr[7] = z11 - z4;
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
dataptr[DCTSIZE*4] = tmp10 - tmp11;
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
dataptr[DCTSIZE*6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
dataptr[DCTSIZE*3] = z13 - z2;
dataptr[DCTSIZE*1] = z11 + z4;
dataptr[DCTSIZE*7] = z11 - z4;
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_IFAST_SUPPORTED */

View File

@ -1,283 +1,283 @@
/*
* jfdctint.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
* larger than the true DCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D DCT,
* because the y0 and y4 outputs need not be divided by sqrt(N).
* In the IJG code, this factor of 8 is removed by the quantization step
* (in jcdctmgr.c), NOT in this module.
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (For 12-bit sample data, the intermediate
* array is INT32 anyway.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL(void)
jpeg_fdct_islow (DCTELEM * data)
{
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3, z4, z5;
DCTELEM *dataptr;
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS-PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1 = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;
z4 = tmp5 + tmp7;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS+PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1 = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;
z4 = tmp5 + tmp7;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
CONST_BITS+PASS1_BITS);
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_ISLOW_SUPPORTED */
/*
* jfdctint.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
* larger than the true DCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D DCT,
* because the y0 and y4 outputs need not be divided by sqrt(N).
* In the IJG code, this factor of 8 is removed by the quantization step
* (in jcdctmgr.c), NOT in this module.
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (For 12-bit sample data, the intermediate
* array is INT32 anyway.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL(void)
jpeg_fdct_islow (DCTELEM * data)
{
INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3, z4, z5;
DCTELEM *dataptr;
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmp1 = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr[5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS-PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1 = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;
z4 = tmp5 + tmp7;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS+PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1 = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;
z4 = tmp5 + tmp7;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
CONST_BITS+PASS1_BITS);
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_ISLOW_SUPPORTED */

View File

@ -1,242 +1,242 @@
/*
* jidctflt.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a floating-point implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* This implementation should be more accurate than either of the integer
* IDCT implementations. However, it may not give the same results on all
* machines because of differences in roundoff behavior. Speed will depend
* on the hardware's floating point capacity.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with a fixed-point
* implementation, accuracy is lost due to imprecise representation of the
* scaled quantization values. However, that problem does not arise if
* we use floating point arithmetic.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a float result.
*/
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
FAST_FLOAT z5, z10, z11, z12, z13;
JCOEFPTR inptr;
FLOAT_MULT_TYPE * quantptr;
FAST_FLOAT * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = tmp0 + tmp7;
wsptr[DCTSIZE*7] = tmp0 - tmp7;
wsptr[DCTSIZE*1] = tmp1 + tmp6;
wsptr[DCTSIZE*6] = tmp1 - tmp6;
wsptr[DCTSIZE*2] = tmp2 + tmp5;
wsptr[DCTSIZE*5] = tmp2 - tmp5;
wsptr[DCTSIZE*4] = tmp3 + tmp4;
wsptr[DCTSIZE*3] = tmp3 - tmp4;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* And testing floats for zero is relatively expensive, so we don't bother.
*/
/* Even part */
tmp10 = wsptr[0] + wsptr[4];
tmp11 = wsptr[0] - wsptr[4];
tmp13 = wsptr[2] + wsptr[6];
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = wsptr[5] + wsptr[3];
z10 = wsptr[5] - wsptr[3];
z11 = wsptr[1] + wsptr[7];
z12 = wsptr[1] - wsptr[7];
tmp7 = z11 + z13;
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7;
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
& RANGE_MASK];
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
& RANGE_MASK];
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
& RANGE_MASK];
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
& RANGE_MASK];
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* jidctflt.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a floating-point implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* This implementation should be more accurate than either of the integer
* IDCT implementations. However, it may not give the same results on all
* machines because of differences in roundoff behavior. Speed will depend
* on the hardware's floating point capacity.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with a fixed-point
* implementation, accuracy is lost due to imprecise representation of the
* scaled quantization values. However, that problem does not arise if
* we use floating point arithmetic.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a float result.
*/
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
FAST_FLOAT z5, z10, z11, z12, z13;
JCOEFPTR inptr;
FLOAT_MULT_TYPE * quantptr;
FAST_FLOAT * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = tmp0 + tmp7;
wsptr[DCTSIZE*7] = tmp0 - tmp7;
wsptr[DCTSIZE*1] = tmp1 + tmp6;
wsptr[DCTSIZE*6] = tmp1 - tmp6;
wsptr[DCTSIZE*2] = tmp2 + tmp5;
wsptr[DCTSIZE*5] = tmp2 - tmp5;
wsptr[DCTSIZE*4] = tmp3 + tmp4;
wsptr[DCTSIZE*3] = tmp3 - tmp4;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* And testing floats for zero is relatively expensive, so we don't bother.
*/
/* Even part */
tmp10 = wsptr[0] + wsptr[4];
tmp11 = wsptr[0] - wsptr[4];
tmp13 = wsptr[2] + wsptr[6];
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = wsptr[5] + wsptr[3];
z10 = wsptr[5] - wsptr[3];
z11 = wsptr[1] + wsptr[7];
z12 = wsptr[1] - wsptr[7];
tmp7 = z11 + z13;
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7;
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
& RANGE_MASK];
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
& RANGE_MASK];
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
& RANGE_MASK];
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
& RANGE_MASK];
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_FLOAT_SUPPORTED */

View File

@ -1,368 +1,368 @@
/*
* jidctfst.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jidctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* The dequantized coefficients are not integers because the AA&N scaling
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
* so that the first and second IDCT rounds have the same input scaling.
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
* avoid a descaling shift; this compromises accuracy rather drastically
* for small quantization table entries, but it saves a lot of shifts.
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
* so we use a much larger scaling factor to preserve accuracy.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 8
#define PASS1_BITS 2
#else
#define CONST_BITS 8
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
#else
#define FIX_1_082392200 FIX(1.082392200)
#define FIX_1_414213562 FIX(1.414213562)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_613125930 FIX(2.613125930)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
* multiplication will do. For 12-bit data, the multiplier table is
* declared INT32, so a 32-bit multiply will be used.
*/
#if BITS_IN_JSAMPLE == 8
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval) \
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
#endif
/* Like DESCALE, but applies to a DCTELEM and produces an int.
* We assume that int right shift is unsigned if INT32 right shift is.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS DCTELEM ishift_temp;
#if BITS_IN_JSAMPLE == 8
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
#else
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
#endif
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
#ifdef USE_ACCURATE_ROUNDING
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
#else
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
#endif
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z5, z10, z11, z12, z13;
JCOEFPTR inptr;
IFAST_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS /* for DESCALE */
ISHIFT_TEMPS /* for IDESCALE */
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_IFAST_SUPPORTED */
/*
* jidctfst.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jidctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* The dequantized coefficients are not integers because the AA&N scaling
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
* so that the first and second IDCT rounds have the same input scaling.
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
* avoid a descaling shift; this compromises accuracy rather drastically
* for small quantization table entries, but it saves a lot of shifts.
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
* so we use a much larger scaling factor to preserve accuracy.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 8
#define PASS1_BITS 2
#else
#define CONST_BITS 8
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
#else
#define FIX_1_082392200 FIX(1.082392200)
#define FIX_1_414213562 FIX(1.414213562)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_613125930 FIX(2.613125930)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
* multiplication will do. For 12-bit data, the multiplier table is
* declared INT32, so a 32-bit multiply will be used.
*/
#if BITS_IN_JSAMPLE == 8
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval) \
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
#endif
/* Like DESCALE, but applies to a DCTELEM and produces an int.
* We assume that int right shift is unsigned if INT32 right shift is.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS DCTELEM ishift_temp;
#if BITS_IN_JSAMPLE == 8
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
#else
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
#endif
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
#ifdef USE_ACCURATE_ROUNDING
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
#else
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
#endif
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z5, z10, z11, z12, z13;
JCOEFPTR inptr;
IFAST_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS /* for DESCALE */
ISHIFT_TEMPS /* for IDESCALE */
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_IFAST_SUPPORTED */

View File

@ -1,389 +1,389 @@
/*
* jidctint.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
* larger than the true IDCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D IDCT,
* because the y0 and y4 inputs need not be divided by sqrt(N).
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (To scale up 12-bit sample data further, an
* intermediate INT32 array would be needed.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3, z4, z5;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp0 = (z2 + z3) << CONST_BITS;
tmp1 = (z2 - z3) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) wsptr[7];
tmp1 = (INT32) wsptr[5];
tmp2 = (INT32) wsptr[3];
tmp3 = (INT32) wsptr[1];
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_ISLOW_SUPPORTED */
/*
* jidctint.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
* larger than the true IDCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D IDCT,
* because the y0 and y4 inputs need not be divided by sqrt(N).
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (To scale up 12-bit sample data further, an
* intermediate INT32 array would be needed.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3, z4, z5;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp0 = (z2 + z3) << CONST_BITS;
tmp1 = (z2 - z3) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) wsptr[7];
tmp1 = (INT32) wsptr[5];
tmp2 = (INT32) wsptr[3];
tmp3 = (INT32) wsptr[1];
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_ISLOW_SUPPORTED */

View File

@ -1,398 +1,398 @@
/*
* jidctred.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains inverse-DCT routines that produce reduced-size output:
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
*
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
* with an 8-to-4 step that produces the four averages of two adjacent outputs
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
* These steps were derived by computing the corresponding values at the end
* of the normal LL&M code, then simplifying as much as possible.
*
* 1x1 is trivial: just take the DC coefficient divided by 8.
*
* See jidctint.c for additional comments.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef IDCT_SCALING_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling is the same as in jidctint.c. */
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
#else
#define FIX_0_211164243 FIX(0.211164243)
#define FIX_0_509795579 FIX(0.509795579)
#define FIX_0_601344887 FIX(0.601344887)
#define FIX_0_720959822 FIX(0.720959822)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_850430095 FIX(0.850430095)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_061594337 FIX(1.061594337)
#define FIX_1_272758580 FIX(1.272758580)
#define FIX_1_451774981 FIX(1.451774981)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_172734803 FIX(2.172734803)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_624509785 FIX(3.624509785)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 4x4 output block.
*/
GLOBAL(void)
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp2, tmp10, tmp12;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE*4]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
/* Don't bother to process column 4, because second pass won't use it */
if (ctr == DCTSIZE-4)
continue;
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
/* AC terms all zero; we need not examine term 4 for 4x4 output */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= (CONST_BITS+1);
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
tmp10 = tmp0 + tmp2;
tmp12 = tmp0 - tmp2;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
/* Final output stage */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
}
/* Pass 2: process 4 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++) {
outptr = output_buf[ctr] + output_col;
/* It's not clear whether a zero row test is worthwhile here ... */
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
+ MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
tmp10 = tmp0 + tmp2;
tmp12 = tmp0 - tmp2;
/* Odd part */
z1 = (INT32) wsptr[7];
z2 = (INT32) wsptr[5];
z3 = (INT32) wsptr[3];
z4 = (INT32) wsptr[1];
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
/* Final output stage */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 2x2 output block.
*/
GLOBAL(void)
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp10, z1;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE*2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
/* Don't bother to process columns 2,4,6 */
if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
continue;
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
continue;
}
/* Even part */
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp10 = z1 << (CONST_BITS+2);
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
/* Final output stage */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
}
/* Pass 2: process 2 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 2; ctr++) {
outptr = output_buf[ctr] + output_col;
/* It's not clear whether a zero row test is worthwhile here ... */
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
/* Odd part */
tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
+ MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
+ MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
+ MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
/* Final output stage */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3+2)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3+2)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 1x1 output block.
*/
GLOBAL(void)
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
int dcval;
ISLOW_MULT_TYPE * quantptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
SHIFT_TEMPS
/* We hardly need an inverse DCT routine for this: just take the
* average pixel value, which is one-eighth of the DC coefficient.
*/
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
dcval = (int) DESCALE((INT32) dcval, 3);
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
}
#endif /* IDCT_SCALING_SUPPORTED */
/*
* jidctred.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains inverse-DCT routines that produce reduced-size output:
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
*
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
* with an 8-to-4 step that produces the four averages of two adjacent outputs
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
* These steps were derived by computing the corresponding values at the end
* of the normal LL&M code, then simplifying as much as possible.
*
* 1x1 is trivial: just take the DC coefficient divided by 8.
*
* See jidctint.c for additional comments.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef IDCT_SCALING_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling is the same as in jidctint.c. */
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
#else
#define FIX_0_211164243 FIX(0.211164243)
#define FIX_0_509795579 FIX(0.509795579)
#define FIX_0_601344887 FIX(0.601344887)
#define FIX_0_720959822 FIX(0.720959822)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_850430095 FIX(0.850430095)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_061594337 FIX(1.061594337)
#define FIX_1_272758580 FIX(1.272758580)
#define FIX_1_451774981 FIX(1.451774981)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_172734803 FIX(2.172734803)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_624509785 FIX(3.624509785)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 4x4 output block.
*/
GLOBAL(void)
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp2, tmp10, tmp12;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE*4]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
/* Don't bother to process column 4, because second pass won't use it */
if (ctr == DCTSIZE-4)
continue;
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
/* AC terms all zero; we need not examine term 4 for 4x4 output */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= (CONST_BITS+1);
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
tmp10 = tmp0 + tmp2;
tmp12 = tmp0 - tmp2;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
/* Final output stage */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
}
/* Pass 2: process 4 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++) {
outptr = output_buf[ctr] + output_col;
/* It's not clear whether a zero row test is worthwhile here ... */
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
+ MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
tmp10 = tmp0 + tmp2;
tmp12 = tmp0 - tmp2;
/* Odd part */
z1 = (INT32) wsptr[7];
z2 = (INT32) wsptr[5];
z3 = (INT32) wsptr[3];
z4 = (INT32) wsptr[1];
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
/* Final output stage */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 2x2 output block.
*/
GLOBAL(void)
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp10, z1;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE*2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
/* Don't bother to process columns 2,4,6 */
if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
continue;
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
continue;
}
/* Even part */
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp10 = z1 << (CONST_BITS+2);
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
/* Final output stage */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
}
/* Pass 2: process 2 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 2; ctr++) {
outptr = output_buf[ctr] + output_col;
/* It's not clear whether a zero row test is worthwhile here ... */
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
/* Odd part */
tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
+ MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
+ MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
+ MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
/* Final output stage */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3+2)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3+2)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 1x1 output block.
*/
GLOBAL(void)
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
int dcval;
ISLOW_MULT_TYPE * quantptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
SHIFT_TEMPS
/* We hardly need an inverse DCT routine for this: just take the
* average pixel value, which is one-eighth of the DC coefficient.
*/
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
dcval = (int) DESCALE((INT32) dcval, 3);
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
}
#endif /* IDCT_SCALING_SUPPORTED */

View File

@ -1,197 +1,197 @@
/*
* jinclude.h
*
* Copyright (C) 1991-1994, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file exists to provide a single place to fix any problems with
* including the wrong system include files. (Common problems are taken
* care of by the standard jconfig symbols, but on really weird systems
* you may have to edit this file.)
*
* NOTE: this file is NOT intended to be included by applications using the
* JPEG library. Most applications need only include jpeglib.h.
*/
/* Include auto-config file to find out which system include files we need. */
#ifndef __jinclude_h__
#define __jinclude_h__
#include "jconfig.h" /* auto configuration options */
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
/*
* We need the NULL macro and size_t typedef.
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
* pull in <sys/types.h> as well.
* Note that the core JPEG library does not require <stdio.h>;
* only the default error handler and data source/destination modules do.
* But we must pull it in because of the references to FILE in jpeglib.h.
* You can remove those references if you want to compile without <stdio.h>.
*/
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef NEED_SYS_TYPES_H
#include <sys/types.h>
#endif
#include <stdio.h>
/*
* We need memory copying and zeroing functions, plus strncpy().
* ANSI and System V implementations declare these in <string.h>.
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
* Some systems may declare memset and memcpy in <memory.h>.
*
* NOTE: we assume the size parameters to these functions are of type size_t.
* Change the casts in these macros if not!
*/
#ifdef NEED_BSD_STRINGS
#include <strings.h>
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
#else /* not BSD, assume ANSI/SysV string lib */
#include <string.h>
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
#endif
/*
* In ANSI C, and indeed any rational implementation, size_t is also the
* type returned by sizeof(). However, it seems there are some irrational
* implementations out there, in which sizeof() returns an int even though
* size_t is defined as long or unsigned long. To ensure consistent results
* we always use this SIZEOF() macro in place of using sizeof() directly.
*/
#define SIZEOF(object) ((size_t) sizeof(object))
/*
* The modules that use fread() and fwrite() always invoke them through
* these macros. On some systems you may need to twiddle the argument casts.
* CAUTION: argument order is different from underlying functions!
*/
#define JFREAD(file,buf,sizeofbuf) \
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFWRITE(file,buf,sizeofbuf) \
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
typedef enum { /* JPEG marker codes */
M_SOF0 = 0xc0,
M_SOF1 = 0xc1,
M_SOF2 = 0xc2,
M_SOF3 = 0xc3,
M_SOF5 = 0xc5,
M_SOF6 = 0xc6,
M_SOF7 = 0xc7,
M_JPG = 0xc8,
M_SOF9 = 0xc9,
M_SOF10 = 0xca,
M_SOF11 = 0xcb,
M_SOF13 = 0xcd,
M_SOF14 = 0xce,
M_SOF15 = 0xcf,
M_DHT = 0xc4,
M_DAC = 0xcc,
M_RST0 = 0xd0,
M_RST1 = 0xd1,
M_RST2 = 0xd2,
M_RST3 = 0xd3,
M_RST4 = 0xd4,
M_RST5 = 0xd5,
M_RST6 = 0xd6,
M_RST7 = 0xd7,
M_SOI = 0xd8,
M_EOI = 0xd9,
M_SOS = 0xda,
M_DQT = 0xdb,
M_DNL = 0xdc,
M_DRI = 0xdd,
M_DHP = 0xde,
M_EXP = 0xdf,
M_APP0 = 0xe0,
M_APP1 = 0xe1,
M_APP2 = 0xe2,
M_APP3 = 0xe3,
M_APP4 = 0xe4,
M_APP5 = 0xe5,
M_APP6 = 0xe6,
M_APP7 = 0xe7,
M_APP8 = 0xe8,
M_APP9 = 0xe9,
M_APP10 = 0xea,
M_APP11 = 0xeb,
M_APP12 = 0xec,
M_APP13 = 0xed,
M_APP14 = 0xee,
M_APP15 = 0xef,
M_JPG0 = 0xf0,
M_JPG13 = 0xfd,
M_COM = 0xfe,
M_TEM = 0x01,
M_ERROR = 0x100
} JPEG_MARKER;
/*
* Figure F.12: extend sign bit.
* On some machines, a shift and add will be faster than a table lookup.
*/
#ifdef AVOID_TABLES
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
#else
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
static const int extend_test[16] = /* entry n is 2**(n-1) */
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
#define SHIFTED_BITS_PLUS_ONE(n) (int) (((unsigned int) -1) << n) + 1
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{ 0,
SHIFTED_BITS_PLUS_ONE (1), SHIFTED_BITS_PLUS_ONE (2), SHIFTED_BITS_PLUS_ONE (3), SHIFTED_BITS_PLUS_ONE (4),
SHIFTED_BITS_PLUS_ONE (5), SHIFTED_BITS_PLUS_ONE (6), SHIFTED_BITS_PLUS_ONE (7), SHIFTED_BITS_PLUS_ONE (8),
SHIFTED_BITS_PLUS_ONE (9), SHIFTED_BITS_PLUS_ONE (10), SHIFTED_BITS_PLUS_ONE (11), SHIFTED_BITS_PLUS_ONE (12),
SHIFTED_BITS_PLUS_ONE (13), SHIFTED_BITS_PLUS_ONE (14), SHIFTED_BITS_PLUS_ONE (15) };
#undef SHIFTED_BITS_PLUS_ONE
#endif /* AVOID_TABLES */
#endif
/*
* jinclude.h
*
* Copyright (C) 1991-1994, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file exists to provide a single place to fix any problems with
* including the wrong system include files. (Common problems are taken
* care of by the standard jconfig symbols, but on really weird systems
* you may have to edit this file.)
*
* NOTE: this file is NOT intended to be included by applications using the
* JPEG library. Most applications need only include jpeglib.h.
*/
/* Include auto-config file to find out which system include files we need. */
#ifndef __jinclude_h__
#define __jinclude_h__
#include "jconfig.h" /* auto configuration options */
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
/*
* We need the NULL macro and size_t typedef.
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
* pull in <sys/types.h> as well.
* Note that the core JPEG library does not require <stdio.h>;
* only the default error handler and data source/destination modules do.
* But we must pull it in because of the references to FILE in jpeglib.h.
* You can remove those references if you want to compile without <stdio.h>.
*/
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef NEED_SYS_TYPES_H
#include <sys/types.h>
#endif
#include <stdio.h>
/*
* We need memory copying and zeroing functions, plus strncpy().
* ANSI and System V implementations declare these in <string.h>.
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
* Some systems may declare memset and memcpy in <memory.h>.
*
* NOTE: we assume the size parameters to these functions are of type size_t.
* Change the casts in these macros if not!
*/
#ifdef NEED_BSD_STRINGS
#include <strings.h>
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
#else /* not BSD, assume ANSI/SysV string lib */
#include <string.h>
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
#endif
/*
* In ANSI C, and indeed any rational implementation, size_t is also the
* type returned by sizeof(). However, it seems there are some irrational
* implementations out there, in which sizeof() returns an int even though
* size_t is defined as long or unsigned long. To ensure consistent results
* we always use this SIZEOF() macro in place of using sizeof() directly.
*/
#define SIZEOF(object) ((size_t) sizeof(object))
/*
* The modules that use fread() and fwrite() always invoke them through
* these macros. On some systems you may need to twiddle the argument casts.
* CAUTION: argument order is different from underlying functions!
*/
#define JFREAD(file,buf,sizeofbuf) \
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFWRITE(file,buf,sizeofbuf) \
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
typedef enum { /* JPEG marker codes */
M_SOF0 = 0xc0,
M_SOF1 = 0xc1,
M_SOF2 = 0xc2,
M_SOF3 = 0xc3,
M_SOF5 = 0xc5,
M_SOF6 = 0xc6,
M_SOF7 = 0xc7,
M_JPG = 0xc8,
M_SOF9 = 0xc9,
M_SOF10 = 0xca,
M_SOF11 = 0xcb,
M_SOF13 = 0xcd,
M_SOF14 = 0xce,
M_SOF15 = 0xcf,
M_DHT = 0xc4,
M_DAC = 0xcc,
M_RST0 = 0xd0,
M_RST1 = 0xd1,
M_RST2 = 0xd2,
M_RST3 = 0xd3,
M_RST4 = 0xd4,
M_RST5 = 0xd5,
M_RST6 = 0xd6,
M_RST7 = 0xd7,
M_SOI = 0xd8,
M_EOI = 0xd9,
M_SOS = 0xda,
M_DQT = 0xdb,
M_DNL = 0xdc,
M_DRI = 0xdd,
M_DHP = 0xde,
M_EXP = 0xdf,
M_APP0 = 0xe0,
M_APP1 = 0xe1,
M_APP2 = 0xe2,
M_APP3 = 0xe3,
M_APP4 = 0xe4,
M_APP5 = 0xe5,
M_APP6 = 0xe6,
M_APP7 = 0xe7,
M_APP8 = 0xe8,
M_APP9 = 0xe9,
M_APP10 = 0xea,
M_APP11 = 0xeb,
M_APP12 = 0xec,
M_APP13 = 0xed,
M_APP14 = 0xee,
M_APP15 = 0xef,
M_JPG0 = 0xf0,
M_JPG13 = 0xfd,
M_COM = 0xfe,
M_TEM = 0x01,
M_ERROR = 0x100
} JPEG_MARKER;
/*
* Figure F.12: extend sign bit.
* On some machines, a shift and add will be faster than a table lookup.
*/
#ifdef AVOID_TABLES
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
#else
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
static const int extend_test[16] = /* entry n is 2**(n-1) */
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
#define SHIFTED_BITS_PLUS_ONE(n) (int) (((unsigned int) -1) << n) + 1
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{ 0,
SHIFTED_BITS_PLUS_ONE (1), SHIFTED_BITS_PLUS_ONE (2), SHIFTED_BITS_PLUS_ONE (3), SHIFTED_BITS_PLUS_ONE (4),
SHIFTED_BITS_PLUS_ONE (5), SHIFTED_BITS_PLUS_ONE (6), SHIFTED_BITS_PLUS_ONE (7), SHIFTED_BITS_PLUS_ONE (8),
SHIFTED_BITS_PLUS_ONE (9), SHIFTED_BITS_PLUS_ONE (10), SHIFTED_BITS_PLUS_ONE (11), SHIFTED_BITS_PLUS_ONE (12),
SHIFTED_BITS_PLUS_ONE (13), SHIFTED_BITS_PLUS_ONE (14), SHIFTED_BITS_PLUS_ONE (15) };
#undef SHIFTED_BITS_PLUS_ONE
#endif /* AVOID_TABLES */
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,109 +1,109 @@
/*
* jmemnobs.c
*
* Copyright (C) 1992-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file provides a really simple implementation of the system-
* dependent portion of the JPEG memory manager. This implementation
* assumes that no backing-store files are needed: all required space
* can be obtained from malloc().
* This is very portable in the sense that it'll compile on almost anything,
* but you'd better have lots of main memory (or virtual memory) if you want
* to process big images.
* Note that the max_memory_to_use option is ignored by this implementation.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
#endif
/*
* Memory allocation and freeing are controlled by the regular library
* routines malloc() and free().
*/
GLOBAL(void *)
jpeg_get_small (j_common_ptr , size_t sizeofobject)
{
return (void *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_small (j_common_ptr , void * object, size_t)
{
free(object);
}
/*
* "Large" objects are treated the same as "small" ones.
* NB: although we include FAR keywords in the routine declarations,
* this file won't actually work in 80x86 small/medium model; at least,
* you probably won't be able to process useful-size images in only 64KB.
*/
GLOBAL(void FAR *)
jpeg_get_large (j_common_ptr, size_t sizeofobject)
{
return (void FAR *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_large (j_common_ptr, void FAR * object, size_t)
{
free(object);
}
/*
* This routine computes the total memory space available for allocation.
* Here we always say, "we got all you want bud!"
*/
GLOBAL(long)
jpeg_mem_available (j_common_ptr, long,
long max_bytes_needed, long)
{
return max_bytes_needed;
}
/*
* Backing store (temporary file) management.
* Since jpeg_mem_available always promised the moon,
* this should never be called and we can just error out.
*/
GLOBAL(void)
jpeg_open_backing_store (j_common_ptr cinfo, struct backing_store_struct *,
long )
{
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
}
/*
* These routines take care of any system-dependent initialization and
* cleanup required. Here, there isn't any.
*/
GLOBAL(long)
jpeg_mem_init (j_common_ptr)
{
return 0; /* just set max_memory_to_use to 0 */
}
GLOBAL(void)
jpeg_mem_term (j_common_ptr)
{
/* no work */
}
/*
* jmemnobs.c
*
* Copyright (C) 1992-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file provides a really simple implementation of the system-
* dependent portion of the JPEG memory manager. This implementation
* assumes that no backing-store files are needed: all required space
* can be obtained from malloc().
* This is very portable in the sense that it'll compile on almost anything,
* but you'd better have lots of main memory (or virtual memory) if you want
* to process big images.
* Note that the max_memory_to_use option is ignored by this implementation.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
#endif
/*
* Memory allocation and freeing are controlled by the regular library
* routines malloc() and free().
*/
GLOBAL(void *)
jpeg_get_small (j_common_ptr , size_t sizeofobject)
{
return (void *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_small (j_common_ptr , void * object, size_t)
{
free(object);
}
/*
* "Large" objects are treated the same as "small" ones.
* NB: although we include FAR keywords in the routine declarations,
* this file won't actually work in 80x86 small/medium model; at least,
* you probably won't be able to process useful-size images in only 64KB.
*/
GLOBAL(void FAR *)
jpeg_get_large (j_common_ptr, size_t sizeofobject)
{
return (void FAR *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_large (j_common_ptr, void FAR * object, size_t)
{
free(object);
}
/*
* This routine computes the total memory space available for allocation.
* Here we always say, "we got all you want bud!"
*/
GLOBAL(long)
jpeg_mem_available (j_common_ptr, long,
long max_bytes_needed, long)
{
return max_bytes_needed;
}
/*
* Backing store (temporary file) management.
* Since jpeg_mem_available always promised the moon,
* this should never be called and we can just error out.
*/
GLOBAL(void)
jpeg_open_backing_store (j_common_ptr cinfo, struct backing_store_struct *,
long )
{
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
}
/*
* These routines take care of any system-dependent initialization and
* cleanup required. Here, there isn't any.
*/
GLOBAL(long)
jpeg_mem_init (j_common_ptr)
{
return 0; /* just set max_memory_to_use to 0 */
}
GLOBAL(void)
jpeg_mem_term (j_common_ptr)
{
/* no work */
}

View File

@ -1,203 +1,203 @@
/*
* jmemsys.h
*
* Copyright (C) 1992-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file defines the interface between the system-independent
* and system-dependent portions of the JPEG memory manager. No other
* modules need include it. (The system-independent portion is jmemmgr.c;
* there are several different versions of the system-dependent portion.)
*
* This file works as-is for the system-dependent memory managers supplied
* in the IJG distribution. You may need to modify it if you write a
* custom memory manager. If system-dependent changes are needed in
* this file, the best method is to #ifdef them based on a configuration
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
* and USE_MAC_MEMMGR.
*/
#ifndef __jmemsys_h__
#define __jmemsys_h__
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_get_small jGetSmall
#define jpeg_free_small jFreeSmall
#define jpeg_get_large jGetLarge
#define jpeg_free_large jFreeLarge
#define jpeg_mem_available jMemAvail
#define jpeg_open_backing_store jOpenBackStore
#define jpeg_mem_init jMemInit
#define jpeg_mem_term jMemTerm
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/*
* These two functions are used to allocate and release small chunks of
* memory. (Typically the total amount requested through jpeg_get_small is
* no more than 20K or so; this will be requested in chunks of a few K each.)
* Behavior should be the same as for the standard library functions malloc
* and free; in particular, jpeg_get_small must return NULL on failure.
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
* size of the object being freed, just in case it's needed.
* On an 80x86 machine using small-data memory model, these manage near heap.
*/
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
size_t sizeofobject));
/*
* These two functions are used to allocate and release large chunks of
* memory (up to the total free space designated by jpeg_mem_available).
* The interface is the same as above, except that on an 80x86 machine,
* far pointers are used. On most other machines these are identical to
* the jpeg_get/free_small routines; but we keep them separate anyway,
* in case a different allocation strategy is desirable for large chunks.
*/
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
size_t sizeofobject));
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
size_t sizeofobject));
/*
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
* matter, but that case should never come into play). This macro is needed
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
* On those machines, we expect that jconfig.h will provide a proper value.
* On machines with 32-bit flat address spaces, any large constant may be used.
*
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
* size_t and will be a multiple of sizeof(align_type).
*/
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
#define MAX_ALLOC_CHUNK 1000000000L
#endif
/*
* This routine computes the total space still available for allocation by
* jpeg_get_large. If more space than this is needed, backing store will be
* used. NOTE: any memory already allocated must not be counted.
*
* There is a minimum space requirement, corresponding to the minimum
* feasible buffer sizes; jmemmgr.c will request that much space even if
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
* all working storage in memory, is also passed in case it is useful.
* Finally, the total space already allocated is passed. If no better
* method is available, cinfo->mem->max_memory_to_use - already_allocated
* is often a suitable calculation.
*
* It is OK for jpeg_mem_available to underestimate the space available
* (that'll just lead to more backing-store access than is really necessary).
* However, an overestimate will lead to failure. Hence it's wise to subtract
* a slop factor from the true available space. 5% should be enough.
*
* On machines with lots of virtual memory, any large constant may be returned.
* Conversely, zero may be returned to always use the minimum amount of memory.
*/
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
long min_bytes_needed,
long max_bytes_needed,
long already_allocated));
/*
* This structure holds whatever state is needed to access a single
* backing-store object. The read/write/close method pointers are called
* by jmemmgr.c to manipulate the backing-store object; all other fields
* are private to the system-dependent backing store routines.
*/
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
typedef unsigned short XMSH; /* type of extended-memory handles */
typedef unsigned short EMSH; /* type of expanded-memory handles */
typedef union {
short file_handle; /* DOS file handle if it's a temp file */
XMSH xms_handle; /* handle if it's a chunk of XMS */
EMSH ems_handle; /* handle if it's a chunk of EMS */
} handle_union;
#endif /* USE_MSDOS_MEMMGR */
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
#include <Files.h>
#endif /* USE_MAC_MEMMGR */
//typedef struct backing_store_struct * backing_store_ptr;
typedef struct backing_store_struct {
/* Methods for reading/writing/closing this backing-store object */
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
struct backing_store_struct *info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
struct backing_store_struct *info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
struct backing_store_struct *info));
/* Private fields for system-dependent backing-store management */
#ifdef USE_MSDOS_MEMMGR
/* For the MS-DOS manager (jmemdos.c), we need: */
handle_union handle; /* reference to backing-store storage object */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
#ifdef USE_MAC_MEMMGR
/* For the Mac manager (jmemmac.c), we need: */
short temp_file; /* file reference number to temp file */
FSSpec tempSpec; /* the FSSpec for the temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
/* For a typical implementation with temp files, we need: */
FILE * temp_file; /* stdio reference to temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
#endif
#endif
} backing_store_info;
/*
* Initial opening of a backing-store object. This must fill in the
* read/write/close pointers in the object. The read/write routines
* may take an error exit if the specified maximum file size is exceeded.
* (If jpeg_mem_available always returns a large value, this routine can
* just take an error exit.)
*/
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
struct backing_store_struct *info,
long total_bytes_needed));
/*
* These routines take care of any system-dependent initialization and
* cleanup required. jpeg_mem_init will be called before anything is
* allocated (and, therefore, nothing in cinfo is of use except the error
* manager pointer). It should return a suitable default value for
* max_memory_to_use; this may subsequently be overridden by the surrounding
* application. (Note that max_memory_to_use is only important if
* jpeg_mem_available chooses to consult it ... no one else will.)
* jpeg_mem_term may assume that all requested memory has been freed and that
* all opened backing-store objects have been closed.
*/
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
#endif
/*
* jmemsys.h
*
* Copyright (C) 1992-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file defines the interface between the system-independent
* and system-dependent portions of the JPEG memory manager. No other
* modules need include it. (The system-independent portion is jmemmgr.c;
* there are several different versions of the system-dependent portion.)
*
* This file works as-is for the system-dependent memory managers supplied
* in the IJG distribution. You may need to modify it if you write a
* custom memory manager. If system-dependent changes are needed in
* this file, the best method is to #ifdef them based on a configuration
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
* and USE_MAC_MEMMGR.
*/
#ifndef __jmemsys_h__
#define __jmemsys_h__
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_get_small jGetSmall
#define jpeg_free_small jFreeSmall
#define jpeg_get_large jGetLarge
#define jpeg_free_large jFreeLarge
#define jpeg_mem_available jMemAvail
#define jpeg_open_backing_store jOpenBackStore
#define jpeg_mem_init jMemInit
#define jpeg_mem_term jMemTerm
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/*
* These two functions are used to allocate and release small chunks of
* memory. (Typically the total amount requested through jpeg_get_small is
* no more than 20K or so; this will be requested in chunks of a few K each.)
* Behavior should be the same as for the standard library functions malloc
* and free; in particular, jpeg_get_small must return NULL on failure.
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
* size of the object being freed, just in case it's needed.
* On an 80x86 machine using small-data memory model, these manage near heap.
*/
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
size_t sizeofobject));
/*
* These two functions are used to allocate and release large chunks of
* memory (up to the total free space designated by jpeg_mem_available).
* The interface is the same as above, except that on an 80x86 machine,
* far pointers are used. On most other machines these are identical to
* the jpeg_get/free_small routines; but we keep them separate anyway,
* in case a different allocation strategy is desirable for large chunks.
*/
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
size_t sizeofobject));
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
size_t sizeofobject));
/*
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
* matter, but that case should never come into play). This macro is needed
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
* On those machines, we expect that jconfig.h will provide a proper value.
* On machines with 32-bit flat address spaces, any large constant may be used.
*
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
* size_t and will be a multiple of sizeof(align_type).
*/
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
#define MAX_ALLOC_CHUNK 1000000000L
#endif
/*
* This routine computes the total space still available for allocation by
* jpeg_get_large. If more space than this is needed, backing store will be
* used. NOTE: any memory already allocated must not be counted.
*
* There is a minimum space requirement, corresponding to the minimum
* feasible buffer sizes; jmemmgr.c will request that much space even if
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
* all working storage in memory, is also passed in case it is useful.
* Finally, the total space already allocated is passed. If no better
* method is available, cinfo->mem->max_memory_to_use - already_allocated
* is often a suitable calculation.
*
* It is OK for jpeg_mem_available to underestimate the space available
* (that'll just lead to more backing-store access than is really necessary).
* However, an overestimate will lead to failure. Hence it's wise to subtract
* a slop factor from the true available space. 5% should be enough.
*
* On machines with lots of virtual memory, any large constant may be returned.
* Conversely, zero may be returned to always use the minimum amount of memory.
*/
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
long min_bytes_needed,
long max_bytes_needed,
long already_allocated));
/*
* This structure holds whatever state is needed to access a single
* backing-store object. The read/write/close method pointers are called
* by jmemmgr.c to manipulate the backing-store object; all other fields
* are private to the system-dependent backing store routines.
*/
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
typedef unsigned short XMSH; /* type of extended-memory handles */
typedef unsigned short EMSH; /* type of expanded-memory handles */
typedef union {
short file_handle; /* DOS file handle if it's a temp file */
XMSH xms_handle; /* handle if it's a chunk of XMS */
EMSH ems_handle; /* handle if it's a chunk of EMS */
} handle_union;
#endif /* USE_MSDOS_MEMMGR */
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
#include <Files.h>
#endif /* USE_MAC_MEMMGR */
//typedef struct backing_store_struct * backing_store_ptr;
typedef struct backing_store_struct {
/* Methods for reading/writing/closing this backing-store object */
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
struct backing_store_struct *info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
struct backing_store_struct *info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
struct backing_store_struct *info));
/* Private fields for system-dependent backing-store management */
#ifdef USE_MSDOS_MEMMGR
/* For the MS-DOS manager (jmemdos.c), we need: */
handle_union handle; /* reference to backing-store storage object */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
#ifdef USE_MAC_MEMMGR
/* For the Mac manager (jmemmac.c), we need: */
short temp_file; /* file reference number to temp file */
FSSpec tempSpec; /* the FSSpec for the temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
/* For a typical implementation with temp files, we need: */
FILE * temp_file; /* stdio reference to temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
#endif
#endif
} backing_store_info;
/*
* Initial opening of a backing-store object. This must fill in the
* read/write/close pointers in the object. The read/write routines
* may take an error exit if the specified maximum file size is exceeded.
* (If jpeg_mem_available always returns a large value, this routine can
* just take an error exit.)
*/
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
struct backing_store_struct *info,
long total_bytes_needed));
/*
* These routines take care of any system-dependent initialization and
* cleanup required. jpeg_mem_init will be called before anything is
* allocated (and, therefore, nothing in cinfo is of use except the error
* manager pointer). It should return a suitable default value for
* max_memory_to_use; this may subsequently be overridden by the surrounding
* application. (Note that max_memory_to_use is only important if
* jpeg_mem_available chooses to consult it ... no one else will.)
* jpeg_mem_term may assume that all requested memory has been freed and that
* all opened backing-store objects have been closed.
*/
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
#endif

Some files were not shown because too many files have changed in this diff Show More