/* Copyright (C) 2006-2011 Nasca Octavian Paul Author: Nasca Octavian Paul This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License (version 2) for more details. You should have received a copy of the GNU General Public License (version 2) along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #if PS_USE_VDSP_FFT #define VIMAGE_H // crazy hack needed #include //#include #endif #include "Stretch.h" #include #include FFT::FFT(int nsamples_, bool no_inverse) { nsamples=nsamples_; if (nsamples%2!=0) { nsamples+=1; Logger::writeToLog("WARNING: Odd sample size on FFT::FFT() "+String(nsamples)); }; smp.resize(nsamples); for (int i = 0; i < nsamples; i++) smp[i] = 0.0; freq.resize(nsamples/2+1); for (int i=0;igetBoolValue("fftw_allow_long_planning", false); //double t0 = Time::getMillisecondCounterHiRes(); #if PS_USE_VDSP_FFT int maxlog2N = 1; while ((1 << maxlog2N) < nsamples) ++maxlog2N; log2N = maxlog2N; planfft = vDSP_create_fftsetup(maxlog2N, kFFTRadix2); m_workReal.resize(nsamples,false); m_workImag.resize(nsamples,false); //Logger::writeToLog("fftsize: " + String(nsamples) + " log2N: " + String(log2N)); #elif PS_USE_PFFFT planpffft = pffft_new_setup(nsamples, PFFFT_REAL); m_work.resize(2*nsamples,false); //Logger::writeToLog("fftsize: " + String(nsamples) + " log2N: " + String(log2N)); #else if (allow_long_planning) { //fftwf_plan_with_nthreads(2); planfftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_R2HC,FFTW_MEASURE); if (no_inverse == false) planifftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_HC2R,FFTW_MEASURE); } else { //fftwf_plan_with_nthreads(2); planfftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_R2HC,FFTW_ESTIMATE); //fftwf_plan_with_nthreads(2); if (no_inverse == false) planifftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_HC2R,FFTW_ESTIMATE); } #endif //double t1 = Time::getMillisecondCounterHiRes(); //Logger::writeToLog("Creating FFTW3 plans took "+String(t1-t0)+ "ms"); static int seed = 0; m_randgen = std::mt19937(seed); ++seed; }; FFT::~FFT() { #if PS_USE_VDSP_FFT vDSP_destroy_fftsetup((FFTSetup)planfft); #elif PS_USE_PFFFT if (planpffft) { pffft_destroy_setup(planpffft); } #else fftwf_destroy_plan(planfftw); if (planifftw!=nullptr) fftwf_destroy_plan(planifftw); #endif }; void FFT::smp2freq() { #if PS_USE_VDSP_FFT const int halfsamples = nsamples / 2; COMPLEX_SPLIT A; A.realp = m_workReal.data(); A.imagp = m_workImag.data(); // apply window //vDSP_vmul(gInFIFO, 1, mWindow, 1, gFFTworksp, 1, fftFrameSize); //convert real input to even-odd vDSP_ctoz((COMPLEX*)smp.data(), 2, &A, 1, halfsamples); //memset(ioData->mBuffers[0].mData, 0, ioData->mBuffers[0].mDataByteSize); // forward fft vDSP_fft_zrip((FFTSetup)planfft, &A, 1, log2N, FFT_FORWARD); // result is in split packed complex A.realp[0] is DC, A.imagp[0] is NY, so we zero NY before doing mag^2 A.imagp[0] = 0.0f; //DebugLogC("post fft: %g %g\n", A.realp[fftFrameSize/4], A.imagp[fftFrameSize/4 + 1]); // forward scale const float scale = 0.5f; vDSP_vsmul(A.realp, 1, &scale, A.realp, 1, halfsamples); vDSP_vsmul(A.imagp, 1, &scale, A.imagp, 1, halfsamples); // Absolute square (equivalent to mag^2) vDSP_zvmags(&A, 1, freq.data(), 1, halfsamples); // take square root //vvsqrtf(freq.data(), freq.data(), &halfsamples); for (int i=1; i < halfsamples;i++) { freq[i]=sqrt(freq[i]); } freq[0] = 0.0; #elif PS_USE_PFFFT const int halfsamples = nsamples / 2; auto * databuf = data.data(); pffft_transform_ordered(planpffft, smp.data(), databuf, m_work.data(), PFFFT_FORWARD); data[1] = 0.0f; // compute magnitude FloatVectorOperations::multiply(databuf, databuf, nsamples); for (int k=1, l=2; k < halfsamples; ++k, l+=2) { freq[k] = sqrt(databuf[l] + databuf[l+1]); } freq[0] = 0.0; #else for (int i=0;i=1.0)&&(newrap>=1.0)) rap=newrap; }; void Stretch::do_analyse_inbuf(REALTYPE *smps){ //get the frequencies FloatVectorOperations::copy(infft->smp.data(), old_smps.data(), bufsize); FloatVectorOperations::copy(infft->smp.data()+bufsize, smps, bufsize); FloatVectorOperations::copy(old_freq.data(), infft->freq.data(), bufsize); /* for (int i=0;ismp[i]=old_smps[i]; infft->smp[i+bufsize]=smps[i]; old_freq[i]=infft->freq[i]; }; */ infft->applywindow(window_type); infft->smp2freq(); }; void Stretch::do_next_inbuf_smps(REALTYPE *smps){ FloatVectorOperations::copy(very_old_smps.data(), old_smps.data(), bufsize); FloatVectorOperations::copy(old_smps.data(), new_smps.data(), bufsize); FloatVectorOperations::copy(new_smps.data(), smps, bufsize); /* for (int i=0;i1e-3){ REALTYPE os=0.0,osinc=0.0; REALTYPE osincold=1e-5f; int maxk=1+(int)(bufsize*500.0/(samplerate*0.5)); int k=0; for (int i=0;ifreq[i]-old_freq[i]; osincold+=old_freq[i]; if (k>=maxk) { k=0; os+=osinc/osincold; osinc=0; }; k++; }; os+=osinc; if (os<0.0) os=0.0; //if (os>1.0) os=1.0; REALTYPE os_strength=(float)(pow(20.0,1.0-onset_detection_sensitivity)-1.0); REALTYPE os_strength_h=os_strength*0.75f; if (os>os_strength_h){ result=(os-os_strength_h)/(os_strength-os_strength_h); if (result>1.0f) result=1.0f; }; if (result>1.0f) result=1.0f; }; return result; }; void Stretch::setBufferSize(int bufsize_) { if (bufsize == 0 || bufsize_ != bufsize) { bufsize = bufsize_; if (bufsize < 8) bufsize = 8; out_buf = floatvector(bufsize); old_freq = floatvector(bufsize); very_old_smps = floatvector(bufsize); new_smps = floatvector(bufsize); old_smps = floatvector(bufsize); old_out_smps = floatvector(bufsize * 2); infft = std::make_unique(bufsize * 2); fft = std::make_unique(bufsize * 2); outfft = std::make_unique(bufsize * 2); } jassert(infft != nullptr && fft != nullptr && outfft != nullptr); fill_container(outfft->smp, 0.0f); for (int i = 0; i 0); REALTYPE onset=0.0; if (bypass){ //for (int i=0;i1e-3) onset=do_detect_onset(); }; //move the buffers if (nsmps!=0){//new data arrived: update the frequency components do_next_inbuf_smps(smps); if (nsmps==get_max_bufsize()) { for (int k=bufsize;k=bufsize) start_pos=bufsize-1; FloatVectorOperations::copy(fft->smp.data(), very_old_smps.data() + start_pos, bufsize-start_pos); FloatVectorOperations::copy(fft->smp.data() + (bufsize - start_pos), old_smps.data() , bufsize); FloatVectorOperations::copy(fft->smp.data() + (2*bufsize - start_pos), new_smps.data() , start_pos); /* for (int i=0;ismp[i]=very_old_smps[i+start_pos]; for (int i=0;ismp[i+bufsize-start_pos]=old_smps[i]; for (int i=0;ismp[i+2*bufsize-start_pos]=new_smps[i]; */ //compute the output spectrum fft->applywindow(window_type); fft->smp2freq(); //for (int i=0;ifreq[i]=fft->freq[i]; FloatVectorOperations::copy(outfft->freq.data(), fft->freq.data(), bufsize); //for (int i=0;ifreq[i]=infft->freq[i]*remained_samples+old_freq[i]*(1.0-remained_samples); process_spectrum(outfft->freq.data()); outfft->freq2smp(); //make the output buffer REALTYPE tmp=(float)(1.0/(float) bufsize*c_PI); REALTYPE hinv_sqrt2=0.853553390593f;//(1.0+1.0/sqrt(2))*0.5; REALTYPE ampfactor=2.0f; //remove the resulted unwanted amplitude modulation (caused by the interference of N and N+1 windowed buffer and compute the output buffer for (int i=0;ismp[i+bufsize]*(1.0-a)+old_out_smps[i]*a); out_buf[i]=(float)(out*(hinv_sqrt2-(1.0-hinv_sqrt2)*cos(i*2.0*tmp))*ampfactor); }; //copy the current output buffer to old buffer //for (int i=0;ismp[i]; FloatVectorOperations::copy(old_out_smps.data(), outfft->smp.data(), 2*bufsize); }; if (!freezing){ long double used_rap=rap*get_stretch_multiplier(c_pos_percents); long double r=1.0/used_rap; if (extra_onset_time_credit>0){ REALTYPE credit_get=(float)(0.5*r);//must be smaller than r extra_onset_time_credit-=credit_get; if (extra_onset_time_credit<0.0) extra_onset_time_credit=0.0; r-=credit_get; }; //long double old_remained_samples_test=remained_samples; remained_samples+=r; //int result=0; if (remained_samples>=1.0){ skip_samples=(int)(floor(remained_samples-1.0)*bufsize); remained_samples=remained_samples-floor(remained_samples); require_new_buffer=true; }else{ require_new_buffer=false; }; }; // long double rf_test=remained_samples-old_remained_samples_test;//this value should be almost like "rf" (for most of the time with the exception of changing the "ri" value) for extremely long stretches (otherwise the shown stretch value is not accurate) //for stretch up to 10^18x "long double" must have at least 64 bits in the fraction part (true for gcc compiler on x86 and macosx) return onset; }; void Stretch::set_onset_detection_sensitivity(REALTYPE detection_sensitivity) { onset_detection_sensitivity = detection_sensitivity; if (detection_sensitivity<1e-3) extra_onset_time_credit = 0.0; } void Stretch::here_is_onset(REALTYPE onset){ if (freezing) return; if (onset>0.5){ require_new_buffer=true; extra_onset_time_credit+=1.0-remained_samples; remained_samples=0.0; skip_samples=0; }; }; int Stretch::get_nsamples(REALTYPE current_pos_percents){ if (bypass) return bufsize; if (freezing) return 0; c_pos_percents=current_pos_percents; return require_new_buffer?bufsize:0; }; int Stretch::get_nsamples_for_fill(){ return get_max_bufsize(); }; int Stretch::get_skip_nsamples(){ if (freezing||bypass) return 0; return skip_samples; }; REALTYPE Stretch::get_stretch_multiplier(REALTYPE /*pos_percents*/){ return 1.0; };