/* ============================================================================== This file is part of the JUCE library. Copyright (c) 2020 - Raw Material Software Limited JUCE is an open source library subject to commercial or open-source licensing. By using JUCE, you agree to the terms of both the JUCE 6 End-User License Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020). End User License Agreement: www.juce.com/juce-6-licence Privacy Policy: www.juce.com/juce-privacy-policy Or: You may also use this code under the terms of the GPL v3 (see www.gnu.org/licenses). JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { namespace dsp { /** Generates a signal based on a user-supplied function. @tags{DSP} */ template class Oscillator { public: /** The NumericType is the underlying primitive type used by the SampleType (which could be either a primitive or vector) */ using NumericType = typename SampleTypeHelpers::ElementType::Type; /** Creates an uninitialised oscillator. Call initialise before first use. */ Oscillator() = default; /** Creates an oscillator with a periodic input function (-pi..pi). If lookup table is not zero, then the function will be approximated with a lookup table. */ Oscillator (const std::function& function, size_t lookupTableNumPoints = 0) { initialise (function, lookupTableNumPoints); } /** Returns true if the Oscillator has been initialised. */ bool isInitialised() const noexcept { return static_cast (generator); } /** Initialises the oscillator with a waveform. */ void initialise (const std::function& function, size_t lookupTableNumPoints = 0) { if (lookupTableNumPoints != 0) { auto* table = new LookupTableTransform (function, -MathConstants::pi, MathConstants::pi, lookupTableNumPoints); lookupTable.reset (table); generator = [table] (NumericType x) { return (*table) (x); }; } else { generator = function; } } //============================================================================== /** Sets the frequency of the oscillator. */ void setFrequency (NumericType newFrequency, bool force = false) noexcept { if (force) { frequency.setCurrentAndTargetValue (newFrequency); return; } frequency.setTargetValue (newFrequency); } /** Returns the current frequency of the oscillator. */ NumericType getFrequency() const noexcept { return frequency.getTargetValue(); } //============================================================================== /** Called before processing starts. */ void prepare (const ProcessSpec& spec) noexcept { sampleRate = static_cast (spec.sampleRate); rampBuffer.resize ((int) spec.maximumBlockSize); reset(); } /** Resets the internal state of the oscillator */ void reset() noexcept { phase.reset(); if (sampleRate > 0) frequency.reset (sampleRate, 0.05); } //============================================================================== /** Returns the result of processing a single sample. */ SampleType JUCE_VECTOR_CALLTYPE processSample (SampleType input) noexcept { jassert (isInitialised()); auto increment = MathConstants::twoPi * frequency.getNextValue() / sampleRate; return input + generator (phase.advance (increment) - MathConstants::pi); } /** Processes the input and output buffers supplied in the processing context. */ template void process (const ProcessContext& context) noexcept { jassert (isInitialised()); auto&& outBlock = context.getOutputBlock(); auto&& inBlock = context.getInputBlock(); // this is an output-only processor jassert (outBlock.getNumSamples() <= static_cast (rampBuffer.size())); auto len = outBlock.getNumSamples(); auto numChannels = outBlock.getNumChannels(); auto inputChannels = inBlock.getNumChannels(); auto baseIncrement = MathConstants::twoPi / sampleRate; if (context.isBypassed) context.getOutputBlock().clear(); if (frequency.isSmoothing()) { auto* buffer = rampBuffer.getRawDataPointer(); for (size_t i = 0; i < len; ++i) buffer[i] = phase.advance (baseIncrement * frequency.getNextValue()) - MathConstants::pi; if (! context.isBypassed) { size_t ch; if (context.usesSeparateInputAndOutputBlocks()) { for (ch = 0; ch < jmin (numChannels, inputChannels); ++ch) { auto* dst = outBlock.getChannelPointer (ch); auto* src = inBlock.getChannelPointer (ch); for (size_t i = 0; i < len; ++i) dst[i] = src[i] + generator (buffer[i]); } } else { for (ch = 0; ch < jmin (numChannels, inputChannels); ++ch) { auto* dst = outBlock.getChannelPointer (ch); for (size_t i = 0; i < len; ++i) dst[i] += generator (buffer[i]); } } for (; ch < numChannels; ++ch) { auto* dst = outBlock.getChannelPointer (ch); for (size_t i = 0; i < len; ++i) dst[i] = generator (buffer[i]); } } } else { auto freq = baseIncrement * frequency.getNextValue(); auto p = phase; if (context.isBypassed) { frequency.skip (static_cast (len)); p.advance (freq * static_cast (len)); } else { size_t ch; if (context.usesSeparateInputAndOutputBlocks()) { for (ch = 0; ch < jmin (numChannels, inputChannels); ++ch) { p = phase; auto* dst = outBlock.getChannelPointer (ch); auto* src = inBlock.getChannelPointer (ch); for (size_t i = 0; i < len; ++i) dst[i] = src[i] + generator (p.advance (freq) - MathConstants::pi); } } else { for (ch = 0; ch < jmin (numChannels, inputChannels); ++ch) { p = phase; auto* dst = outBlock.getChannelPointer (ch); for (size_t i = 0; i < len; ++i) dst[i] += generator (p.advance (freq) - MathConstants::pi); } } for (; ch < numChannels; ++ch) { p = phase; auto* dst = outBlock.getChannelPointer (ch); for (size_t i = 0; i < len; ++i) dst[i] = generator (p.advance (freq) - MathConstants::pi); } } phase = p; } } private: //============================================================================== std::function generator; std::unique_ptr> lookupTable; Array rampBuffer; SmoothedValue frequency { static_cast (440.0) }; NumericType sampleRate = 48000.0; Phase phase; }; } // namespace dsp } // namespace juce