/* Copyright (C) 2017 Xenakios This program is free software; you can redistribute it and/or modify it under the terms of version 3 of the GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License (version 3) for more details. www.gnu.org/licenses */ #include "PluginProcessor.h" #include "PluginEditor.h" #include #include #ifdef WIN32 #undef min #undef max #endif int get_optimized_updown(int n, bool up) { int orig_n = n; while (true) { n = orig_n; while (!(n % 11)) n /= 11; while (!(n % 7)) n /= 7; while (!(n % 5)) n /= 5; while (!(n % 3)) n /= 3; while (!(n % 2)) n /= 2; if (n<2) break; if (up) orig_n++; else orig_n--; if (orig_n<4) return 4; }; return orig_n; }; int optimizebufsize(int n) { int n1 = get_optimized_updown(n, false); int n2 = get_optimized_updown(n, true); if ((n - n1)<(n2 - n)) return n1; else return n2; }; inline AudioParameterFloat* make_floatpar(String id, String name, float minv, float maxv, float defv, float step, float skew) { return new AudioParameterFloat(id, name, NormalisableRange(minv, maxv, step, skew), defv); } //============================================================================== PaulstretchpluginAudioProcessor::PaulstretchpluginAudioProcessor() : m_bufferingthread("pspluginprebufferthread") { m_playposinfo.timeInSeconds = 0.0; m_free_filter_envelope = std::make_shared(); m_free_filter_envelope->SetName("Free filter"); m_free_filter_envelope->AddNode({ 0.0,0.75 }); m_free_filter_envelope->AddNode({ 1.0,0.75 }); m_free_filter_envelope->set_reset_nodes(m_free_filter_envelope->get_all_nodes()); m_recbuffer.setSize(2, 44100); m_recbuffer.clear(); if (m_afm->getNumKnownFormats()==0) m_afm->registerBasicFormats(); m_thumb = std::make_unique(512, *m_afm, *m_thumbcache); m_sm_enab_pars[0] = new AudioParameterBool("enab_specmodule0", "Enable harmonics", false); m_sm_enab_pars[1] = new AudioParameterBool("enab_specmodule1", "Enable tonal vs noise", false); m_sm_enab_pars[2] = new AudioParameterBool("enab_specmodule2", "Enable frequency shift", true); m_sm_enab_pars[3] = new AudioParameterBool("enab_specmodule3", "Enable pitch shift", true); m_sm_enab_pars[4] = new AudioParameterBool("enab_specmodule4", "Enable ratios", false); m_sm_enab_pars[5] = new AudioParameterBool("enab_specmodule5", "Enable spread", false); m_sm_enab_pars[6] = new AudioParameterBool("enab_specmodule6", "Enable filter", true); m_sm_enab_pars[7] = new AudioParameterBool("enab_specmodule7", "Enable free filter", true); m_sm_enab_pars[8] = new AudioParameterBool("enab_specmodule8", "Enable compressor", false); m_stretch_source = std::make_unique(2, m_afm,m_sm_enab_pars); m_stretch_source->setOnsetDetection(0.0); m_stretch_source->setLoopingEnabled(true); m_stretch_source->setFFTWindowingType(1); addParameter(make_floatpar("mainvolume0", "Main volume", -24.0, 12.0, -3.0, 0.1, 1.0)); addParameter(make_floatpar("stretchamount0", "Stretch amount", 0.1, 1024.0, 2.0, 0.1, 0.25)); addParameter(make_floatpar("fftsize0", "FFT size", 0.0, 1.0, 0.7, 0.01, 1.0)); addParameter(make_floatpar("pitchshift0", "Pitch shift", -24.0f, 24.0f, 0.0f, 0.1,1.0)); // 3 addParameter(make_floatpar("freqshift0", "Frequency shift", -1000.0f, 1000.0f, 0.0f, 1.0, 1.0)); // 4 addParameter(make_floatpar("playrange_start0", "Sound start", 0.0f, 1.0f, 0.0f, 0.0001,1.0)); // 5 addParameter(make_floatpar("playrange_end0", "Sound end", 0.0f, 1.0f, 1.0f, 0.0001,1.0)); // 6 addParameter(new AudioParameterBool("freeze0", "Freeze", false)); // 7 addParameter(make_floatpar("spread0", "Frequency spread", 0.0f, 1.0f, 0.0f, 0.001,1.0)); // 8 addParameter(make_floatpar("compress0", "Compress", 0.0f, 1.0f, 0.0f, 0.001,1.0)); // 9 addParameter(make_floatpar("loopxfadelen0", "Loop xfade length", 0.0f, 1.0f, 0.01f, 0.001, 1.0)); // 10 addParameter(new AudioParameterInt("numharmonics0", "Num harmonics", 1, 100, 10)); // 11 addParameter(make_floatpar("harmonicsfreq0", "Harmonics base freq", 1.0, 5000.0, 128.0, 0.1, 0.5)); addParameter(make_floatpar("harmonicsbw0", "Harmonics bandwidth", 0.1f, 200.0f, 25.0f, 0.01, 1.0)); // 13 addParameter(new AudioParameterBool("harmonicsgauss0", "Gaussian harmonics", false)); // 14 addParameter(make_floatpar("octavemixm2_0", "2 octaves down level", 0.0f, 1.0f, 0.0f, 0.001, 1.0)); // 15 addParameter(make_floatpar("octavemixm1_0", "Octave down level", 0.0f, 1.0f, 0.0f, 0.001, 1.0)); // 16 addParameter(make_floatpar("octavemix0_0", "Normal pitch level", 0.0f, 1.0f, 1.0f, 0.001, 1.0)); // 17 addParameter(make_floatpar("octavemix1_0", "1 octave up level", 0.0f, 1.0f, 0.0f, 0.001, 1.0)); // 18 addParameter(make_floatpar("octavemix15_0", "1 octave and fifth up level", 0.0f, 1.0f, 0.0f, 0.001, 1.0)); // 19 addParameter(make_floatpar("octavemix2_0", "2 octaves up level", 0.0f, 1.0f, 0.0f, 0.001, 1.0)); // 20 addParameter(make_floatpar("tonalvsnoisebw_0", "Tonal vs Noise BW", 0.74f, 1.0f, 0.74f, 0.001, 1.0)); // 21 addParameter(make_floatpar("tonalvsnoisepreserve_0", "Tonal vs Noise preserve", -1.0f, 1.0f, 0.5f, 0.001, 1.0)); // 22 auto filt_convertFrom0To1Func = [](float rangemin, float rangemax, float value) { if (value < 0.5f) return jmap(value, 0.0f, 0.5f, 20.0f, 1000.0f); return jmap(value, 0.5f, 1.0f, 1000.0f, 20000.0f); }; auto filt_convertTo0To1Func = [](float rangemin, float rangemax, float value) { if (value < 1000.0f) return jmap(value, 20.0f, 1000.0f, 0.0f, 0.5f); return jmap(value, 1000.0f, 20000.0f, 0.5f, 1.0f); }; addParameter(new AudioParameterFloat("filter_low_0", "Filter low", NormalisableRange(20.0f, 20000.0f, filt_convertFrom0To1Func, filt_convertTo0To1Func), 20.0f)); // 23 addParameter(new AudioParameterFloat("filter_high_0", "Filter high", NormalisableRange(20.0f, 20000.0f, filt_convertFrom0To1Func,filt_convertTo0To1Func), 20000.0f));; // 24 addParameter(make_floatpar("onsetdetect_0", "Onset detection", 0.0f, 1.0f, 0.0f, 0.01, 1.0)); // 25 addParameter(new AudioParameterBool("capture_enabled0", "Capture", false)); // 26 m_outchansparam = new AudioParameterInt("numoutchans0", "Num outs", 2, 8, 2); // 27 addParameter(m_outchansparam); // 27 addParameter(new AudioParameterBool("pause_enabled0", "Pause", false)); // 28 addParameter(new AudioParameterFloat("maxcapturelen_0", "Max capture length", 1.0f, 120.0f, 10.0f)); // 29 addParameter(new AudioParameterBool("passthrough0", "Pass input through", false)); // 30 addParameter(new AudioParameterBool("markdirty0", "Internal (don't use)", false)); // 31 m_inchansparam = new AudioParameterInt("numinchans0", "Num ins", 2, 8, 2); // 32 addParameter(m_inchansparam); // 32 addParameter(new AudioParameterBool("bypass_stretch0", "Bypass stretch", false)); // 33 addParameter(new AudioParameterFloat("freefilter_shiftx_0", "Free filter shift X", -1.0f, 1.0f, 0.0f)); // 34 addParameter(new AudioParameterFloat("freefilter_shifty_0", "Free filter shift Y", -1.0f, 1.0f, 0.0f)); // 35 addParameter(new AudioParameterFloat("freefilter_scaley_0", "Free filter scale Y", -1.0f, 1.0f, 1.0f)); // 36 addParameter(new AudioParameterFloat("freefilter_tilty_0", "Free filter tilt Y", -1.0f, 1.0f, 0.0f)); // 37 addParameter(new AudioParameterInt("freefilter_randomybands0", "Random bands", 2, 128, 16)); // 38 addParameter(new AudioParameterInt("freefilter_randomyrate0", "Random rate", 1, 32, 2)); // 39 addParameter(new AudioParameterFloat("freefilter_randomyamount0", "Random amount", 0.0, 1.0, 0.0)); // 40 for (int i = 0; i < 9; ++i) // 41-49 { addParameter(m_sm_enab_pars[i]); m_sm_enab_pars[i]->addListener(this); } addParameter(make_floatpar("octavemix_extra0_0", "Ratio mix 7 level", 0.0f, 1.0f, 0.0f, 0.001, 1.0)); // 50 addParameter(make_floatpar("octavemix_extra1_0", "Ratio mix 8 level", 0.0f, 1.0f, 0.0f, 0.001, 1.0)); // 51 std::array initialratios{ 0.25,0.5,1.0,2.0,3.0,4.0,1.5,1.0 / 1.5 }; // 52-59 for (int i = 0; i < 8; ++i) { addParameter(make_floatpar("ratiomix_ratio_"+String(i)+"_0", "Ratio mix ratio "+String(i+1), 0.125f, 8.0f, initialratios[i], 0.001, 1.0)); } addParameter(new AudioParameterBool("loop_enabled0", "Loop", true)); // 60 addParameter(new AudioParameterBool("rewind0", "Rewind", false)); // 61 auto dprate_convertFrom0To1Func = [](float rangemin, float rangemax, float value) { if (value < 0.5f) return jmap(value, 0.0f, 0.5f, 0.1f, 1.0f); return jmap(value, 0.5f, 1.0f, 1.0f, 8.0f); }; auto dprate_convertTo0To1Func = [](float rangemin, float rangemax, float value) { if (value < 1.0f) return jmap(value, 0.1f, 1.0f, 0.0f, 0.5f); return jmap(value, 1.0f, 8.0f, 0.5f, 1.0f); }; addParameter(new AudioParameterFloat("dryplayrate0", "Dry playrate", NormalisableRange(0.1f, 8.0f, dprate_convertFrom0To1Func, dprate_convertTo0To1Func), 1.0f)); // 62 auto& pars = getParameters(); for (const auto& p : pars) m_reset_pars.push_back(p->getValue()); setPreBufferAmount(2); startTimer(1, 50); m_show_technical_info = m_propsfile->m_props_file->getBoolValue("showtechnicalinfo", false); } PaulstretchpluginAudioProcessor::~PaulstretchpluginAudioProcessor() { //Logger::writeToLog("PaulX AudioProcessor destroyed"); m_thumb->removeAllChangeListeners(); m_thumb = nullptr; m_bufferingthread.stopThread(1000); } void PaulstretchpluginAudioProcessor::resetParameters() { ScopedLock locker(m_cs); for (int i = 0; i < m_reset_pars.size(); ++i) { if (i!=cpi_main_volume && i!=cpi_passthrough) setParameter(i, m_reset_pars[i]); } } void PaulstretchpluginAudioProcessor::setPreBufferAmount(int x) { int temp = jlimit(0, 5, x); if (temp != m_prebuffer_amount || m_use_backgroundbuffering == false) { m_use_backgroundbuffering = true; m_prebuffer_amount = temp; m_recreate_buffering_source = true; ScopedLock locker(m_cs); m_prebuffering_inited = false; m_cur_num_out_chans = *m_outchansparam; //Logger::writeToLog("Switching to use " + String(m_cur_num_out_chans) + " out channels"); String err; startplay({ *getFloatParameter(cpi_soundstart),*getFloatParameter(cpi_soundend) }, m_cur_num_out_chans, m_curmaxblocksize, err); m_prebuffering_inited = true; } } int PaulstretchpluginAudioProcessor::getPreBufferAmount() { if (m_use_backgroundbuffering == false) return -1; return m_prebuffer_amount; } ValueTree PaulstretchpluginAudioProcessor::getStateTree(bool ignoreoptions, bool ignorefile) { ValueTree paramtree("paulstretch3pluginstate"); storeToTreeProperties(paramtree, nullptr, getParameters()); if (m_current_file != File() && ignorefile == false) { paramtree.setProperty("importedfile", m_current_file.getFullPathName(), nullptr); } auto specorder = m_stretch_source->getSpectrumProcessOrder(); paramtree.setProperty("numspectralstagesb", (int)specorder.size(), nullptr); for (int i = 0; i < specorder.size(); ++i) { paramtree.setProperty("specorderb" + String(i), specorder[i].m_index, nullptr); } if (ignoreoptions == false) { if (m_use_backgroundbuffering) paramtree.setProperty("prebufamount", m_prebuffer_amount, nullptr); else paramtree.setProperty("prebufamount", -1, nullptr); paramtree.setProperty("loadfilewithstate", m_load_file_with_state, nullptr); storeToTreeProperties(paramtree, nullptr, "playwhenhostrunning", m_play_when_host_plays, "capturewhenhostrunning", m_capture_when_host_plays); storeToTreeProperties(paramtree, nullptr, "mutewhilecapturing", m_mute_while_capturing); } storeToTreeProperties(paramtree, nullptr, "tabaindex", m_cur_tab_index); storeToTreeProperties(paramtree, nullptr, "waveviewrange", m_wave_view_range); ValueTree freefilterstate = m_free_filter_envelope->saveState(Identifier("freefilter_envelope")); paramtree.addChild(freefilterstate, -1, nullptr); return paramtree; } void PaulstretchpluginAudioProcessor::setStateFromTree(ValueTree tree) { if (tree.isValid()) { { ScopedLock locker(m_cs); ValueTree freefilterstate = tree.getChildWithName("freefilter_envelope"); m_free_filter_envelope->restoreState(freefilterstate); m_load_file_with_state = tree.getProperty("loadfilewithstate", true); getFromTreeProperties(tree, "playwhenhostrunning", m_play_when_host_plays, "capturewhenhostrunning", m_capture_when_host_plays,"mutewhilecapturing",m_mute_while_capturing); getFromTreeProperties(tree, "tabaindex", m_cur_tab_index); if (tree.hasProperty("numspectralstagesb")) { std::vector old_order = m_stretch_source->getSpectrumProcessOrder(); std::vector new_order; int ordersize = tree.getProperty("numspectralstagesb"); if (ordersize == old_order.size()) { for (int i = 0; i < ordersize; ++i) { int index = tree.getProperty("specorderb" + String(i)); new_order.push_back({ index, old_order[index].m_enabled }); } m_stretch_source->setSpectrumProcessOrder(new_order); } } getFromTreeProperties(tree, "waveviewrange", m_wave_view_range); getFromTreeProperties(tree, getParameters()); } int prebufamt = tree.getProperty("prebufamount", 2); if (prebufamt == -1) m_use_backgroundbuffering = false; else setPreBufferAmount(prebufamt); if (m_load_file_with_state == true) { String fn = tree.getProperty("importedfile"); if (fn.isEmpty() == false) { File f(fn); setAudioFile(f); } } m_state_dirty = true; } } //============================================================================== const String PaulstretchpluginAudioProcessor::getName() const { return JucePlugin_Name; } bool PaulstretchpluginAudioProcessor::acceptsMidi() const { #if JucePlugin_WantsMidiInput return true; #else return false; #endif } bool PaulstretchpluginAudioProcessor::producesMidi() const { #if JucePlugin_ProducesMidiOutput return true; #else return false; #endif } bool PaulstretchpluginAudioProcessor::isMidiEffect() const { #if JucePlugin_IsMidiEffect return true; #else return false; #endif } double PaulstretchpluginAudioProcessor::getTailLengthSeconds() const { return 0.0; //return (double)m_bufamounts[m_prebuffer_amount]/getSampleRate(); } int PaulstretchpluginAudioProcessor::getNumPrograms() { return 1; } int PaulstretchpluginAudioProcessor::getCurrentProgram() { return 0; } void PaulstretchpluginAudioProcessor::setCurrentProgram (int index) { } const String PaulstretchpluginAudioProcessor::getProgramName (int index) { return String(); } void PaulstretchpluginAudioProcessor::changeProgramName (int index, const String& newName) { } void PaulstretchpluginAudioProcessor::parameterValueChanged(int parameterIndex, float newValue) { if (parameterIndex >= cpi_enable_spec_module0 && parameterIndex <= cpi_enable_spec_module8) { m_stretch_source->setSpectralModuleEnabled(parameterIndex - cpi_enable_spec_module0, newValue >= 0.5); } } void PaulstretchpluginAudioProcessor::parameterGestureChanged(int parameterIndex, bool gestureIsStarting) { } void PaulstretchpluginAudioProcessor::setFFTSize(double size) { if (m_prebuffer_amount == 5) m_fft_size_to_use = pow(2, 7.0 + size * 14.5); else m_fft_size_to_use = pow(2, 7.0 + size * 10.0); // chicken out from allowing huge FFT sizes if not enough prebuffering int optim = optimizebufsize(m_fft_size_to_use); m_fft_size_to_use = optim; m_stretch_source->setFFTSize(optim); //Logger::writeToLog(String(m_fft_size_to_use)); } void PaulstretchpluginAudioProcessor::startplay(Range playrange, int numoutchans, int maxBlockSize, String& err) { m_stretch_source->setPlayRange(playrange); m_stretch_source->setFreeFilterEnvelope(m_free_filter_envelope); int bufamt = m_bufamounts[m_prebuffer_amount]; if (m_buffering_source != nullptr && numoutchans != m_buffering_source->getNumberOfChannels()) m_recreate_buffering_source = true; if (m_recreate_buffering_source == true) { m_buffering_source = std::make_unique(m_stretch_source.get(), m_bufferingthread, false, bufamt, numoutchans, false); m_recreate_buffering_source = false; } if (m_bufferingthread.isThreadRunning() == false) m_bufferingthread.startThread(); m_stretch_source->setNumOutChannels(numoutchans); m_stretch_source->setFFTSize(m_fft_size_to_use); m_stretch_source->setProcessParameters(&m_ppar); m_last_outpos_pos = 0.0; m_last_in_pos = playrange.getStart()*m_stretch_source->getInfileLengthSeconds(); m_buffering_source->prepareToPlay(maxBlockSize, getSampleRateChecked()); } void PaulstretchpluginAudioProcessor::setParameters(const std::vector& pars) { ScopedLock locker(m_cs); for (int i = 0; i < getNumParameters(); ++i) { if (i(); processor->setStateFromTree(state); int blocksize = 2048; int numoutchans = *processor->getIntParameter(cpi_num_outchans); processor->prepareToPlay(44100.0, blocksize); double t0 = *processor->getFloatParameter(cpi_soundstart); double t1 = *processor->getFloatParameter(cpi_soundend); sanitizeTimeRange(t0, t1); double outsr = processor->getSampleRateChecked(); WavAudioFormat wavformat; FileOutputStream* outstream = outputfiletouse.createOutputStream(); if (outstream == nullptr) return "Could not create output file"; auto writer = wavformat.createWriterFor(outstream, getSampleRateChecked(), numoutchans, 32, StringPairArray(), 0); if (writer == nullptr) { delete outstream; return "Could not create WAV writer"; } auto rendertask = [processor,writer,blocksize,numoutchans, outsr, this]() { AudioBuffer renderbuffer(numoutchans, blocksize); MidiBuffer dummymidi; int64_t outlen = 10 * outsr; int64_t outcounter = 0; AudioSourceChannelInfo asci(renderbuffer); m_offline_render_state = 0; m_offline_render_cancel_requested = false; while (outcounter < outlen) { if (m_offline_render_cancel_requested == true) break; processor->processBlock(renderbuffer, dummymidi); writer->writeFromAudioSampleBuffer(renderbuffer, 0, blocksize); outcounter += blocksize; m_offline_render_state = 100.0 / outlen * outcounter; } m_offline_render_state = 200; delete writer; }; std::thread th(rendertask); th.detach(); return "Rendered OK"; } double PaulstretchpluginAudioProcessor::getSampleRateChecked() { if (m_cur_sr < 1.0 || m_cur_sr>1000000.0) return 44100.0; return m_cur_sr; } void PaulstretchpluginAudioProcessor::prepareToPlay(double sampleRate, int samplesPerBlock) { ++m_prepare_count; ScopedLock locker(m_cs); m_cur_sr = sampleRate; m_curmaxblocksize = samplesPerBlock; m_input_buffer.setSize(getMainBusNumInputChannels(), samplesPerBlock); *getBoolParameter(cpi_rewind) = false; m_lastrewind = false; int numoutchans = *m_outchansparam; if (numoutchans != m_cur_num_out_chans) m_prebuffering_inited = false; if (m_using_memory_buffer == true) { int len = jlimit(100,m_recbuffer.getNumSamples(), int(getSampleRateChecked()*(*getFloatParameter(cpi_max_capture_len)))); m_stretch_source->setAudioBufferAsInputSource(&m_recbuffer, getSampleRateChecked(), len); //m_thumb->reset(m_recbuffer.getNumChannels(), sampleRate, len); } if (m_prebuffering_inited == false) { setFFTSize(*getFloatParameter(cpi_fftsize)); m_stretch_source->setProcessParameters(&m_ppar); m_stretch_source->setFFTWindowingType(1); String err; startplay({ *getFloatParameter(cpi_soundstart),*getFloatParameter(cpi_soundend) }, numoutchans, samplesPerBlock, err); m_cur_num_out_chans = numoutchans; m_prebuffering_inited = true; } else { m_buffering_source->prepareToPlay(samplesPerBlock, getSampleRateChecked()); } } void PaulstretchpluginAudioProcessor::releaseResources() { //m_control->stopplay(); //m_ready_to_play = false; } #ifndef JucePlugin_PreferredChannelConfigurations bool PaulstretchpluginAudioProcessor::isBusesLayoutSupported (const BusesLayout& layouts) const { #if JucePlugin_IsMidiEffect ignoreUnused (layouts); return true; #else // This is the place where you check if the layout is supported. // In this template code we only support mono or stereo. if (layouts.getMainOutputChannelSet() != AudioChannelSet::mono() && layouts.getMainOutputChannelSet() != AudioChannelSet::stereo()) return false; // This checks if the input layout matches the output layout #if ! JucePlugin_IsSynth if (layouts.getMainOutputChannelSet() != layouts.getMainInputChannelSet()) return false; #endif return true; #endif } #endif void copyAudioBufferWrappingPosition(const AudioBuffer& src, AudioBuffer& dest, int destbufpos, int maxdestpos) { for (int i = 0; i < dest.getNumChannels(); ++i) { int channel_to_copy = i % src.getNumChannels(); if (destbufpos + src.getNumSamples() > maxdestpos) { int wrappos = (destbufpos + src.getNumSamples()) % maxdestpos; int partial_len = src.getNumSamples() - wrappos; dest.copyFrom(channel_to_copy, destbufpos, src, channel_to_copy, 0, partial_len); dest.copyFrom(channel_to_copy, partial_len, src, channel_to_copy, 0, wrappos); } else { dest.copyFrom(channel_to_copy, destbufpos, src, channel_to_copy, 0, src.getNumSamples()); } } } /* void PaulstretchpluginAudioProcessor::processBlock (AudioBuffer& buffer, MidiBuffer&) { jassert(false); } */ void PaulstretchpluginAudioProcessor::processBlock (AudioSampleBuffer& buffer, MidiBuffer& midiMessages) { ScopedLock locker(m_cs); const int totalNumInputChannels = getTotalNumInputChannels(); const int totalNumOutputChannels = getTotalNumOutputChannels(); AudioPlayHead* phead = getPlayHead(); if (phead != nullptr) { phead->getCurrentPosition(m_playposinfo); } else m_playposinfo.isPlaying = false; ScopedNoDenormals noDenormals; double srtemp = getSampleRate(); if (srtemp != m_cur_sr) m_cur_sr = srtemp; m_prebufsmoother.setSlope(0.9, srtemp / buffer.getNumSamples()); m_smoothed_prebuffer_ready = m_prebufsmoother.process(m_buffering_source->getPercentReady()); for (int i = 0; i < totalNumInputChannels; ++i) m_input_buffer.copyFrom(i, 0, buffer, i, 0, buffer.getNumSamples()); for (int i = totalNumInputChannels; i < totalNumOutputChannels; ++i) buffer.clear (i, 0, buffer.getNumSamples()); if (m_prebuffering_inited == false) return; if (m_is_recording == true) { if (m_playposinfo.isPlaying == false && m_capture_when_host_plays == true) return; int recbuflenframes = m_max_reclen * getSampleRate(); copyAudioBufferWrappingPosition(buffer, m_recbuffer, m_rec_pos, recbuflenframes); m_thumb->addBlock(m_rec_pos, buffer, 0, buffer.getNumSamples()); m_rec_pos = (m_rec_pos + buffer.getNumSamples()) % recbuflenframes; m_rec_count += buffer.getNumSamples(); if (m_rec_countsetPlayRange({ t0,t1 }); if (m_last_host_playing == false && m_playposinfo.isPlaying) { m_stretch_source->seekPercent(*getFloatParameter(cpi_soundstart)); m_last_host_playing = true; } else if (m_last_host_playing == true && m_playposinfo.isPlaying == false) { m_last_host_playing = false; } if (m_play_when_host_plays == true && m_playposinfo.isPlaying == false) return; m_free_filter_envelope->m_transform_x_shift = *getFloatParameter(cpi_freefilter_shiftx); m_free_filter_envelope->m_transform_y_shift = *getFloatParameter(cpi_freefilter_shifty); m_free_filter_envelope->m_transform_y_scale = *getFloatParameter(cpi_freefilter_scaley); m_free_filter_envelope->m_transform_y_tilt = *getFloatParameter(cpi_freefilter_tilty); m_free_filter_envelope->m_transform_y_random_bands = *getIntParameter(cpi_freefilter_randomy_numbands); m_free_filter_envelope->m_transform_y_random_rate = *getIntParameter(cpi_freefilter_randomy_rate); m_free_filter_envelope->m_transform_y_random_amount = *getFloatParameter(cpi_freefilter_randomy_amount); //m_stretch_source->setSpectralModulesEnabled(m_sm_enab_pars); if (m_stretch_source->isLoopEnabled() != *getBoolParameter(cpi_looping_enabled)) m_stretch_source->setLoopingEnabled(*getBoolParameter(cpi_looping_enabled)); bool rew = *getBoolParameter(cpi_rewind); if (rew != m_lastrewind) { if (rew == true) { *getBoolParameter(cpi_rewind) = false; m_stretch_source->seekPercent(m_stretch_source->getPlayRange().getStart()); } m_lastrewind = rew; } m_stretch_source->setMainVolume(*getFloatParameter(cpi_main_volume)); m_stretch_source->setRate(*getFloatParameter(cpi_stretchamount)); m_stretch_source->setPreviewDry(*getBoolParameter(cpi_bypass_stretch)); m_stretch_source->setDryPlayrate(*getFloatParameter(cpi_dryplayrate)); setFFTSize(*getFloatParameter(cpi_fftsize)); updateStretchParametersFromPluginParameters(m_ppar); m_stretch_source->setOnsetDetection(*getFloatParameter(cpi_onsetdetection)); m_stretch_source->setLoopXFadeLength(*getFloatParameter(cpi_loopxfadelen)); m_stretch_source->setFreezing(getParameter(cpi_freeze)); m_stretch_source->setPaused(getParameter(cpi_pause_enabled)); m_stretch_source->setProcessParameters(&m_ppar); AudioSourceChannelInfo aif(buffer); if (isNonRealtime() || m_use_backgroundbuffering == false) { m_stretch_source->getNextAudioBlock(aif); } else { m_buffering_source->getNextAudioBlock(aif); } if (m_is_recording == false && getParameter(cpi_passthrough) > 0.5f) { for (int i = 0; i < totalNumInputChannels; ++i) { buffer.addFrom(i, 0, m_input_buffer, i, 0, buffer.getNumSamples()); } } for (int i = 0; i < buffer.getNumChannels(); ++i) { for (int j = 0; j < buffer.getNumSamples(); ++j) { float sample = buffer.getSample(i,j); if (std::isnan(sample) || std::isinf(sample)) ++m_abnormal_output_samples; } } } //============================================================================== bool PaulstretchpluginAudioProcessor::hasEditor() const { return true; // (change this to false if you choose to not supply an editor) } AudioProcessorEditor* PaulstretchpluginAudioProcessor::createEditor() { return new PaulstretchpluginAudioProcessorEditor (*this); } //============================================================================== void PaulstretchpluginAudioProcessor::getStateInformation (MemoryBlock& destData) { ValueTree paramtree = getStateTree(false,false); MemoryOutputStream stream(destData,true); paramtree.writeToStream(stream); } void PaulstretchpluginAudioProcessor::setStateInformation (const void* data, int sizeInBytes) { ValueTree tree = ValueTree::readFromData(data, sizeInBytes); setStateFromTree(tree); } void PaulstretchpluginAudioProcessor::setDirty() { toggleBool(getBoolParameter(cpi_markdirty)); } void PaulstretchpluginAudioProcessor::setRecordingEnabled(bool b) { ScopedLock locker(m_cs); int lenbufframes = getSampleRateChecked()*m_max_reclen; if (b == true) { m_using_memory_buffer = true; m_current_file = File(); int numchans = *m_inchansparam; m_recbuffer.setSize(numchans, m_max_reclen*getSampleRateChecked()+4096,false,false,true); m_recbuffer.clear(); m_rec_pos = 0; m_thumb->reset(m_recbuffer.getNumChannels(), getSampleRateChecked(), lenbufframes); m_is_recording = true; m_recorded_range = Range(); m_rec_count = 0; } else { if (m_is_recording == true) { finishRecording(lenbufframes); } } } double PaulstretchpluginAudioProcessor::getRecordingPositionPercent() { if (m_is_recording==false) return 0.0; return 1.0 / m_recbuffer.getNumSamples()*m_rec_pos; } String PaulstretchpluginAudioProcessor::setAudioFile(File f) { auto ai = unique_from_raw(m_afm->createReaderFor(f)); if (ai != nullptr) { if (ai->numChannels > 8) { return "Too many channels in file "+f.getFullPathName(); } if (ai->bitsPerSample>32) { return "Too high bit depth in file " + f.getFullPathName(); } m_thumb->setSource(new FileInputSource(f)); ScopedLock locker(m_cs); m_stretch_source->setAudioFile(f); //Range currange{ *getFloatParameter(cpi_soundstart),*getFloatParameter(cpi_soundend) }; //if (currange.contains(m_stretch_source->getInfilePositionPercent())==false) m_stretch_source->seekPercent(*getFloatParameter(cpi_soundstart)); m_current_file = f; m_current_file_date = m_current_file.getLastModificationTime(); m_using_memory_buffer = false; setDirty(); return String(); } return "Could not open file " + f.getFullPathName(); } Range PaulstretchpluginAudioProcessor::getTimeSelection() { return { *getFloatParameter(cpi_soundstart),*getFloatParameter(cpi_soundend) }; } double PaulstretchpluginAudioProcessor::getPreBufferingPercent() { if (m_buffering_source==nullptr) return 0.0; return m_smoothed_prebuffer_ready; } void PaulstretchpluginAudioProcessor::timerCallback(int id) { if (id == 1) { bool capture = *getBoolParameter(cpi_capture_enabled); if (capture == false && m_max_reclen != *getFloatParameter(cpi_max_capture_len)) { m_max_reclen = *getFloatParameter(cpi_max_capture_len); //Logger::writeToLog("Changing max capture len to " + String(m_max_reclen)); } if (capture == true && m_is_recording == false) { setRecordingEnabled(true); return; } if (capture == false && m_is_recording == true) { setRecordingEnabled(false); return; } if (m_cur_num_out_chans != *m_outchansparam) { jassert(m_curmaxblocksize > 0); ScopedLock locker(m_cs); m_prebuffering_inited = false; m_cur_num_out_chans = *m_outchansparam; //Logger::writeToLog("Switching to use " + String(m_cur_num_out_chans) + " out channels"); String err; startplay({ *getFloatParameter(cpi_soundstart),*getFloatParameter(cpi_soundend) }, m_cur_num_out_chans, m_curmaxblocksize, err); m_prebuffering_inited = true; } } } pointer_sized_int PaulstretchpluginAudioProcessor::handleVstPluginCanDo(int32 index, pointer_sized_int value, void * ptr, float opt) { if (strcmp((char*)ptr, "xenakios") == 0) { if (index == 0 && (void*)value!=nullptr) { double t0 = *getFloatParameter(cpi_soundstart); double t1 = *getFloatParameter(cpi_soundend); double outlen = (t1-t0)*m_stretch_source->getInfileLengthSeconds()*(*getFloatParameter(cpi_stretchamount)); //std::cout << "host requested output length, result " << outlen << "\n"; *((double*)value) = outlen; } if (index == 1 && (void*)value!=nullptr) { String fn(CharPointer_UTF8((char*)value)); //std::cout << "host requested to set audio file " << fn << "\n"; auto err = setAudioFile(File(fn)); if (err.isEmpty()==false) std::cout << err << "\n"; } return 1; } return pointer_sized_int(); } pointer_sized_int PaulstretchpluginAudioProcessor::handleVstManufacturerSpecific(int32 index, pointer_sized_int value, void * ptr, float opt) { return pointer_sized_int(); } void PaulstretchpluginAudioProcessor::finishRecording(int lenrecording) { m_is_recording = false; m_stretch_source->setAudioBufferAsInputSource(&m_recbuffer, getSampleRateChecked(), lenrecording); *getFloatParameter(cpi_soundstart) = 0.0f; *getFloatParameter(cpi_soundend) = jlimit(0.01, 1.0, 1.0 / lenrecording * m_rec_count); } AudioProcessor* JUCE_CALLTYPE createPluginFilter() { return new PaulstretchpluginAudioProcessor(); }