/* ============================================================================== This file is part of the JUCE library. Copyright (c) 2020 - Raw Material Software Limited JUCE is an open source library subject to commercial or open-source licensing. By using JUCE, you agree to the terms of both the JUCE 6 End-User License Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020). End User License Agreement: www.juce.com/juce-6-licence Privacy Policy: www.juce.com/juce-privacy-policy Or: You may also use this code under the terms of the GPL v3 (see www.gnu.org/licenses). JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE DISCLAIMED. ============================================================================== */ namespace juce { struct AllTracksIncludingImplicit { Array items; int numImplicitLeading; // The number of implicit items before the explicit items }; struct Tracks { AllTracksIncludingImplicit columns, rows; }; struct Grid::SizeCalculation { static float getTotalAbsoluteSize (const Array& tracks, Px gapSize) noexcept { float totalCellSize = 0.0f; for (const auto& trackInfo : tracks) if (! trackInfo.isFractional() || trackInfo.isAuto()) totalCellSize += trackInfo.getSize(); float totalGap = tracks.size() > 1 ? static_cast ((tracks.size() - 1) * gapSize.pixels) : 0.0f; return totalCellSize + totalGap; } static float getRelativeUnitSize (float size, float totalAbsolute, const Array& tracks) noexcept { const float totalRelative = jlimit (0.0f, size, size - totalAbsolute); float factorsSum = 0.0f; for (const auto& trackInfo : tracks) if (trackInfo.isFractional()) factorsSum += trackInfo.getSize(); jassert (factorsSum != 0.0f); return totalRelative / factorsSum; } //============================================================================== static float getTotalAbsoluteHeight (const Array& rowTracks, Px rowGap) { return getTotalAbsoluteSize (rowTracks, rowGap); } static float getTotalAbsoluteWidth (const Array& columnTracks, Px columnGap) { return getTotalAbsoluteSize (columnTracks, columnGap); } static float getRelativeWidthUnit (float gridWidth, Px columnGap, const Array& columnTracks) { return getRelativeUnitSize (gridWidth, getTotalAbsoluteWidth (columnTracks, columnGap), columnTracks); } static float getRelativeHeightUnit (float gridHeight, Px rowGap, const Array& rowTracks) { return getRelativeUnitSize (gridHeight, getTotalAbsoluteHeight (rowTracks, rowGap), rowTracks); } //============================================================================== static bool hasAnyFractions (const Array& tracks) { return std::any_of (tracks.begin(), tracks.end(), [] (const auto& t) { return t.isFractional(); }); } void computeSizes (float gridWidth, float gridHeight, Px columnGapToUse, Px rowGapToUse, const Tracks& tracks) { if (hasAnyFractions (tracks.columns.items)) relativeWidthUnit = getRelativeWidthUnit (gridWidth, columnGapToUse, tracks.columns.items); else remainingWidth = gridWidth - getTotalAbsoluteSize (tracks.columns.items, columnGapToUse); if (hasAnyFractions (tracks.rows.items)) relativeHeightUnit = getRelativeHeightUnit (gridHeight, rowGapToUse, tracks.rows.items); else remainingHeight = gridHeight - getTotalAbsoluteSize (tracks.rows.items, rowGapToUse); } float relativeWidthUnit = 0.0f; float relativeHeightUnit = 0.0f; float remainingWidth = 0.0f; float remainingHeight = 0.0f; }; //============================================================================== struct Grid::PlacementHelpers { enum { invalid = -999999 }; static constexpr auto emptyAreaCharacter = "."; //============================================================================== struct LineRange { int start, end; }; struct LineArea { LineRange column, row; }; struct LineInfo { StringArray lineNames; }; struct NamedArea { String name; LineArea lines; }; //============================================================================== static Array getArrayOfLinesFromTracks (const Array& tracks) { // fill line info array Array lines; for (int i = 1; i <= tracks.size(); ++i) { const auto& currentTrack = tracks.getReference (i - 1); if (i == 1) // start line { LineInfo li; li.lineNames.add (currentTrack.getStartLineName()); lines.add (li); } if (i > 1 && i <= tracks.size()) // two lines in between tracks { const auto& prevTrack = tracks.getReference (i - 2); LineInfo li; li.lineNames.add (prevTrack.getEndLineName()); li.lineNames.add (currentTrack.getStartLineName()); lines.add (li); } if (i == tracks.size()) // end line { LineInfo li; li.lineNames.add (currentTrack.getEndLineName()); lines.add (li); } } jassert (lines.size() == tracks.size() + 1); return lines; } //============================================================================== static int deduceAbsoluteLineNumberFromLineName (GridItem::Property prop, const Array& tracks) { jassert (prop.hasAbsolute()); const auto lines = getArrayOfLinesFromTracks (tracks); int count = 0; for (int i = 0; i < lines.size(); i++) { for (const auto& name : lines.getReference (i).lineNames) { if (prop.getName() == name) { ++count; break; } } if (count == prop.getNumber()) return i + 1; } jassertfalse; return count; } static int deduceAbsoluteLineNumber (GridItem::Property prop, const Array& tracks) { jassert (prop.hasAbsolute()); if (prop.hasName()) return deduceAbsoluteLineNumberFromLineName (prop, tracks); if (prop.getNumber() > 0) return prop.getNumber(); if (prop.getNumber() < 0) return tracks.size() + 2 + prop.getNumber(); // An integer value of 0 is invalid jassertfalse; return 1; } static int deduceAbsoluteLineNumberFromNamedSpan (int startLineNumber, GridItem::Property propertyWithSpan, const Array& tracks) { jassert (propertyWithSpan.hasSpan()); const auto lines = getArrayOfLinesFromTracks (tracks); int count = 0; for (int i = startLineNumber; i < lines.size(); i++) { for (const auto& name : lines.getReference (i).lineNames) { if (propertyWithSpan.getName() == name) { ++count; break; } } if (count == propertyWithSpan.getNumber()) return i + 1; } jassertfalse; return count; } static int deduceAbsoluteLineNumberBasedOnSpan (int startLineNumber, GridItem::Property propertyWithSpan, const Array& tracks) { jassert (propertyWithSpan.hasSpan()); if (propertyWithSpan.hasName()) return deduceAbsoluteLineNumberFromNamedSpan (startLineNumber, propertyWithSpan, tracks); return startLineNumber + propertyWithSpan.getNumber(); } //============================================================================== static LineRange deduceLineRange (GridItem::StartAndEndProperty prop, const Array& tracks) { jassert (! (prop.start.hasAuto() && prop.end.hasAuto())); if (prop.start.hasAbsolute() && prop.end.hasAuto()) { prop.end = GridItem::Span (1); } else if (prop.start.hasAuto() && prop.end.hasAbsolute()) { prop.start = GridItem::Span (1); } auto s = [&]() -> LineRange { if (prop.start.hasAbsolute() && prop.end.hasAbsolute()) { return { deduceAbsoluteLineNumber (prop.start, tracks), deduceAbsoluteLineNumber (prop.end, tracks) }; } if (prop.start.hasAbsolute() && prop.end.hasSpan()) { const auto start = deduceAbsoluteLineNumber (prop.start, tracks); return { start, deduceAbsoluteLineNumberBasedOnSpan (start, prop.end, tracks) }; } if (prop.start.hasSpan() && prop.end.hasAbsolute()) { const auto start = deduceAbsoluteLineNumber (prop.end, tracks); return { start, deduceAbsoluteLineNumberBasedOnSpan (start, prop.start, tracks) }; } // Can't have an item with spans on both start and end. jassertfalse; return {}; }(); // swap if start overtakes end if (s.start > s.end) std::swap (s.start, s.end); else if (s.start == s.end) s.end = s.start + 1; return s; } static LineArea deduceLineArea (const GridItem& item, const Grid& grid, const std::map& namedAreas) { if (item.area.isNotEmpty() && ! grid.templateAreas.isEmpty()) { // Must be a named area! jassert (namedAreas.count (item.area) != 0); return namedAreas.at (item.area); } return { deduceLineRange (item.column, grid.templateColumns), deduceLineRange (item.row, grid.templateRows) }; } //============================================================================== static Array parseAreasProperty (const StringArray& areasStrings) { Array strings; for (const auto& areaString : areasStrings) strings.add (StringArray::fromTokens (areaString, false)); if (strings.size() > 0) { for (auto s : strings) { jassert (s.size() == strings[0].size()); // all rows must have the same number of columns } } return strings; } static NamedArea findArea (Array& stringsArrays) { NamedArea area; for (auto& stringArray : stringsArrays) { for (auto& string : stringArray) { // find anchor if (area.name.isEmpty()) { if (string != emptyAreaCharacter) { area.name = string; area.lines.row.start = stringsArrays.indexOf (stringArray) + 1; // non-zero indexed; area.lines.column.start = stringArray.indexOf (string) + 1; // non-zero indexed; area.lines.row.end = stringsArrays.indexOf (stringArray) + 2; area.lines.column.end = stringArray.indexOf (string) + 2; // mark as visited string = emptyAreaCharacter; } } else { if (string == area.name) { area.lines.row.end = stringsArrays.indexOf (stringArray) + 2; area.lines.column.end = stringArray.indexOf (string) + 2; // mark as visited string = emptyAreaCharacter; } } } } return area; } //============================================================================== static std::map deduceNamedAreas (const StringArray& areasStrings) { auto stringsArrays = parseAreasProperty (areasStrings); std::map areas; for (auto area = findArea (stringsArrays); area.name.isNotEmpty(); area = findArea (stringsArrays)) { if (areas.count (area.name) == 0) areas[area.name] = area.lines; else // Make sure your template-areas property only has one area with the same name and is well-formed jassertfalse; } return areas; } //============================================================================== static float getCoord (int trackNumber, float relativeUnit, Px gap, const Array& tracks) { float c = 0; for (const auto* it = tracks.begin(); it != tracks.begin() + trackNumber; ++it) c += it->getAbsoluteSize (relativeUnit) + static_cast (gap.pixels); return c; } static Rectangle getCellBounds (int columnNumber, int rowNumber, const Tracks& tracks, SizeCalculation calculation, Px columnGap, Px rowGap) { const auto correctedColumn = columnNumber - 1 + tracks.columns.numImplicitLeading; const auto correctedRow = rowNumber - 1 + tracks.rows .numImplicitLeading; jassert (isPositiveAndBelow (correctedColumn, tracks.columns.items.size())); jassert (isPositiveAndBelow (correctedRow, tracks.rows .items.size())); return { getCoord (correctedColumn, calculation.relativeWidthUnit, columnGap, tracks.columns.items), getCoord (correctedRow, calculation.relativeHeightUnit, rowGap, tracks.rows .items), tracks.columns.items.getReference (correctedColumn).getAbsoluteSize (calculation.relativeWidthUnit), tracks.rows .items.getReference (correctedRow) .getAbsoluteSize (calculation.relativeHeightUnit) }; } static Rectangle alignCell (Rectangle area, int columnNumber, int rowNumber, int numberOfColumns, int numberOfRows, SizeCalculation calculation, AlignContent alignContent, JustifyContent justifyContent) { if (alignContent == AlignContent::end) area.setY (area.getY() + calculation.remainingHeight); if (justifyContent == JustifyContent::end) area.setX (area.getX() + calculation.remainingWidth); if (alignContent == AlignContent::center) area.setY (area.getY() + calculation.remainingHeight / 2); if (justifyContent == JustifyContent::center) area.setX (area.getX() + calculation.remainingWidth / 2); if (alignContent == AlignContent::spaceBetween) { const auto shift = ((float) (rowNumber - 1) * (calculation.remainingHeight / float(numberOfRows - 1))); area.setY (area.getY() + shift); } if (justifyContent == JustifyContent::spaceBetween) { const auto shift = ((float) (columnNumber - 1) * (calculation.remainingWidth / float(numberOfColumns - 1))); area.setX (area.getX() + shift); } if (alignContent == AlignContent::spaceEvenly) { const auto shift = ((float) rowNumber * (calculation.remainingHeight / float(numberOfRows + 1))); area.setY (area.getY() + shift); } if (justifyContent == JustifyContent::spaceEvenly) { const auto shift = ((float) columnNumber * (calculation.remainingWidth / float(numberOfColumns + 1))); area.setX (area.getX() + shift); } if (alignContent == AlignContent::spaceAround) { const auto inbetweenShift = calculation.remainingHeight / float(numberOfRows); const auto sidesShift = inbetweenShift / 2; auto shift = (float) (rowNumber - 1) * inbetweenShift + sidesShift; area.setY (area.getY() + shift); } if (justifyContent == JustifyContent::spaceAround) { const auto inbetweenShift = calculation.remainingWidth / float(numberOfColumns); const auto sidesShift = inbetweenShift / 2; auto shift = (float) (columnNumber - 1) * inbetweenShift + sidesShift; area.setX (area.getX() + shift); } return area; } static Rectangle getAreaBounds (PlacementHelpers::LineRange columnRange, PlacementHelpers::LineRange rowRange, const Tracks& tracks, SizeCalculation calculation, AlignContent alignContent, JustifyContent justifyContent, Px columnGap, Px rowGap) { const auto findAlignedCell = [&] (int column, int row) { const auto cell = getCellBounds (column, row, tracks, calculation, columnGap, rowGap); return alignCell (cell, column, row, tracks.columns.items.size(), tracks.rows.items.size(), calculation, alignContent, justifyContent); }; const auto startCell = findAlignedCell (columnRange.start, rowRange.start); const auto endCell = findAlignedCell (columnRange.end - 1, rowRange.end - 1); const auto horizontalRange = startCell.getHorizontalRange().getUnionWith (endCell.getHorizontalRange()); const auto verticalRange = startCell.getVerticalRange() .getUnionWith (endCell.getVerticalRange()); return { horizontalRange.getStart(), verticalRange.getStart(), horizontalRange.getLength(), verticalRange.getLength() }; } }; template static Array operator+ (const Array& a, const Array& b) { auto copy = a; copy.addArray (b); return copy; } //============================================================================== struct Grid::AutoPlacement { using ItemPlacementArray = Array>; //============================================================================== struct OccupancyPlane { struct Cell { int column, row; }; OccupancyPlane (int highestColumnToUse, int highestRowToUse, bool isColumnFirst) : highestCrossDimension (isColumnFirst ? highestRowToUse : highestColumnToUse), columnFirst (isColumnFirst) {} PlacementHelpers::LineArea setCell (Cell cell, int columnSpan, int rowSpan) { for (int i = 0; i < columnSpan; i++) for (int j = 0; j < rowSpan; j++) setCell (cell.column + i, cell.row + j); return { { cell.column, cell.column + columnSpan }, { cell.row, cell.row + rowSpan } }; } PlacementHelpers::LineArea setCell (Cell start, Cell end) { return setCell (start, std::abs (end.column - start.column), std::abs (end.row - start.row)); } Cell nextAvailable (Cell referenceCell, int columnSpan, int rowSpan) { while (isOccupied (referenceCell, columnSpan, rowSpan) || isOutOfBounds (referenceCell, columnSpan, rowSpan)) referenceCell = advance (referenceCell); return referenceCell; } Cell nextAvailableOnRow (Cell referenceCell, int columnSpan, int rowSpan, int rowNumber) { if (columnFirst && (rowNumber + rowSpan) > highestCrossDimension) highestCrossDimension = rowNumber + rowSpan; while (isOccupied (referenceCell, columnSpan, rowSpan) || (referenceCell.row != rowNumber)) referenceCell = advance (referenceCell); return referenceCell; } Cell nextAvailableOnColumn (Cell referenceCell, int columnSpan, int rowSpan, int columnNumber) { if (! columnFirst && (columnNumber + columnSpan) > highestCrossDimension) highestCrossDimension = columnNumber + columnSpan; while (isOccupied (referenceCell, columnSpan, rowSpan) || (referenceCell.column != columnNumber)) referenceCell = advance (referenceCell); return referenceCell; } private: struct SortableCell { int column, row; bool columnFirst; bool operator< (const SortableCell& other) const { if (columnFirst) { if (row == other.row) return column < other.column; return row < other.row; } if (row == other.row) return column < other.column; return row < other.row; } }; void setCell (int column, int row) { occupiedCells.insert ({ column, row, columnFirst }); } bool isOccupied (Cell cell) const { return occupiedCells.count ({ cell.column, cell.row, columnFirst }) > 0; } bool isOccupied (Cell cell, int columnSpan, int rowSpan) const { for (int i = 0; i < columnSpan; i++) for (int j = 0; j < rowSpan; j++) if (isOccupied ({ cell.column + i, cell.row + j })) return true; return false; } bool isOutOfBounds (Cell cell, int columnSpan, int rowSpan) const { const auto crossSpan = columnFirst ? rowSpan : columnSpan; return (getCrossDimension (cell) + crossSpan) > getHighestCrossDimension(); } int getHighestCrossDimension() const { Cell cell { 1, 1 }; if (occupiedCells.size() > 0) cell = { occupiedCells.crbegin()->column, occupiedCells.crbegin()->row }; return std::max (getCrossDimension (cell), highestCrossDimension); } Cell advance (Cell cell) const { if ((getCrossDimension (cell) + 1) >= getHighestCrossDimension()) return fromDimensions (getMainDimension (cell) + 1, 1); return fromDimensions (getMainDimension (cell), getCrossDimension (cell) + 1); } int getMainDimension (Cell cell) const { return columnFirst ? cell.column : cell.row; } int getCrossDimension (Cell cell) const { return columnFirst ? cell.row : cell.column; } Cell fromDimensions (int mainDimension, int crossDimension) const { if (columnFirst) return { mainDimension, crossDimension }; return { crossDimension, mainDimension }; } int highestCrossDimension; bool columnFirst; std::set occupiedCells; }; //============================================================================== static bool isFixed (GridItem::StartAndEndProperty prop) { return prop.start.hasName() || prop.start.hasAbsolute() || prop.end.hasName() || prop.end.hasAbsolute(); } static bool hasFullyFixedPlacement (const GridItem& item) { if (item.area.isNotEmpty()) return true; if (isFixed (item.column) && isFixed (item.row)) return true; return false; } static bool hasPartialFixedPlacement (const GridItem& item) { if (item.area.isNotEmpty()) return false; if (isFixed (item.column) ^ isFixed (item.row)) return true; return false; } static bool hasAutoPlacement (const GridItem& item) { return ! hasFullyFixedPlacement (item) && ! hasPartialFixedPlacement (item); } //============================================================================== static bool hasDenseAutoFlow (AutoFlow autoFlow) { return autoFlow == AutoFlow::columnDense || autoFlow == AutoFlow::rowDense; } static bool isColumnAutoFlow (AutoFlow autoFlow) { return autoFlow == AutoFlow::column || autoFlow == AutoFlow::columnDense; } //============================================================================== static int getSpanFromAuto (GridItem::StartAndEndProperty prop) { if (prop.end.hasSpan()) return prop.end.getNumber(); if (prop.start.hasSpan()) return prop.start.getNumber(); return 1; } //============================================================================== ItemPlacementArray deduceAllItems (Grid& grid) const { const auto namedAreas = PlacementHelpers::deduceNamedAreas (grid.templateAreas); OccupancyPlane plane (jmax (grid.templateColumns.size() + 1, 2), jmax (grid.templateRows.size() + 1, 2), isColumnAutoFlow (grid.autoFlow)); ItemPlacementArray itemPlacementArray; Array sortedItems; for (auto& item : grid.items) sortedItems.add (&item); std::stable_sort (sortedItems.begin(), sortedItems.end(), [] (const GridItem* i1, const GridItem* i2) { return i1->order < i2->order; }); // place fixed items first for (auto* item : sortedItems) { if (hasFullyFixedPlacement (*item)) { const auto a = PlacementHelpers::deduceLineArea (*item, grid, namedAreas); plane.setCell ({ a.column.start, a.row.start }, { a.column.end, a.row.end }); itemPlacementArray.add ({ item, a }); } } OccupancyPlane::Cell lastInsertionCell = { 1, 1 }; for (auto* item : sortedItems) { if (hasPartialFixedPlacement (*item)) { if (isFixed (item->column)) { const auto p = PlacementHelpers::deduceLineRange (item->column, grid.templateColumns); const auto columnSpan = std::abs (p.start - p.end); const auto rowSpan = getSpanFromAuto (item->row); const auto insertionCell = hasDenseAutoFlow (grid.autoFlow) ? OccupancyPlane::Cell { p.start, 1 } : lastInsertionCell; const auto nextAvailableCell = plane.nextAvailableOnColumn (insertionCell, columnSpan, rowSpan, p.start); const auto lineArea = plane.setCell (nextAvailableCell, columnSpan, rowSpan); lastInsertionCell = nextAvailableCell; itemPlacementArray.add ({ item, lineArea }); } else if (isFixed (item->row)) { const auto p = PlacementHelpers::deduceLineRange (item->row, grid.templateRows); const auto columnSpan = getSpanFromAuto (item->column); const auto rowSpan = std::abs (p.start - p.end); const auto insertionCell = hasDenseAutoFlow (grid.autoFlow) ? OccupancyPlane::Cell { 1, p.start } : lastInsertionCell; const auto nextAvailableCell = plane.nextAvailableOnRow (insertionCell, columnSpan, rowSpan, p.start); const auto lineArea = plane.setCell (nextAvailableCell, columnSpan, rowSpan); lastInsertionCell = nextAvailableCell; itemPlacementArray.add ({ item, lineArea }); } } } lastInsertionCell = { 1, 1 }; for (auto* item : sortedItems) { if (hasAutoPlacement (*item)) { const auto columnSpan = getSpanFromAuto (item->column); const auto rowSpan = getSpanFromAuto (item->row); const auto nextAvailableCell = plane.nextAvailable (lastInsertionCell, columnSpan, rowSpan); const auto lineArea = plane.setCell (nextAvailableCell, columnSpan, rowSpan); if (! hasDenseAutoFlow (grid.autoFlow)) lastInsertionCell = nextAvailableCell; itemPlacementArray.add ({ item, lineArea }); } } return itemPlacementArray; } //============================================================================== template static PlacementHelpers::LineRange findFullLineRange (const ItemPlacementArray& items, Accessor&& accessor) { const auto combine = [&accessor] (const auto& acc, const auto& item) { const auto newRange = accessor (item); return PlacementHelpers::LineRange { std::min (acc.start, newRange.start), std::max (acc.end, newRange.end) }; }; return std::accumulate (std::next (items.begin()), items.end(), accessor (*items.begin()), combine); } static PlacementHelpers::LineArea findFullLineArea (const ItemPlacementArray& items) { return { findFullLineRange (items, [] (const auto& item) { return item.second.column; }), findFullLineRange (items, [] (const auto& item) { return item.second.row; }) }; } template static Array repeated (int repeats, const Item& item) { Array result; result.insertMultiple (-1, item, repeats); return result; } static Tracks createImplicitTracks (const Grid& grid, const ItemPlacementArray& items) { const auto fullArea = findFullLineArea (items); const auto leadingColumns = std::max (0, 1 - fullArea.column.start); const auto leadingRows = std::max (0, 1 - fullArea.row.start); const auto trailingColumns = std::max (0, fullArea.column.end - grid.templateColumns.size() - 1); const auto trailingRows = std::max (0, fullArea.row .end - grid.templateRows .size() - 1); return { { repeated (leadingColumns, grid.autoColumns) + grid.templateColumns + repeated (trailingColumns, grid.autoColumns), leadingColumns }, { repeated (leadingRows, grid.autoRows) + grid.templateRows + repeated (trailingRows, grid.autoRows), leadingRows } }; } //============================================================================== static void applySizeForAutoTracks (Tracks& tracks, const ItemPlacementArray& placements) { const auto setSizes = [&placements] (auto& tracksInDirection, const auto& getItem, const auto& getItemSize) { auto& array = tracksInDirection.items; for (int index = 0; index < array.size(); ++index) { if (array.getReference (index).isAuto()) { const auto combiner = [&] (const auto acc, const auto& element) { const auto item = getItem (element.second); const auto isNotSpan = std::abs (item.end - item.start) <= 1; return isNotSpan && item.start == index + 1 - tracksInDirection.numImplicitLeading ? std::max (acc, getItemSize (*element.first)) : acc; }; array.getReference (index).size = std::accumulate (placements.begin(), placements.end(), 0.0f, combiner); } } }; setSizes (tracks.rows, [] (const auto& i) { return i.row; }, [] (const auto& i) { return i.height + i.margin.top + i.margin.bottom; }); setSizes (tracks.columns, [] (const auto& i) { return i.column; }, [] (const auto& i) { return i.width + i.margin.left + i.margin.right; }); } }; //============================================================================== struct Grid::BoxAlignment { static Rectangle alignItem (const GridItem& item, const Grid& grid, Rectangle area) { // if item align is auto, inherit value from grid const auto alignType = item.alignSelf == GridItem::AlignSelf::autoValue ? grid.alignItems : static_cast (item.alignSelf); const auto justifyType = item.justifySelf == GridItem::JustifySelf::autoValue ? grid.justifyItems : static_cast (item.justifySelf); // subtract margin from area area = BorderSize (item.margin.top, item.margin.left, item.margin.bottom, item.margin.right) .subtractedFrom (area); // align and justify auto r = area; if (item.width != (float) GridItem::notAssigned) r.setWidth (item.width); if (item.height != (float) GridItem::notAssigned) r.setHeight (item.height); if (item.maxWidth != (float) GridItem::notAssigned) r.setWidth (jmin (item.maxWidth, r.getWidth())); if (item.minWidth > 0.0f) r.setWidth (jmax (item.minWidth, r.getWidth())); if (item.maxHeight != (float) GridItem::notAssigned) r.setHeight (jmin (item.maxHeight, r.getHeight())); if (item.minHeight > 0.0f) r.setHeight (jmax (item.minHeight, r.getHeight())); if (alignType == AlignItems::start && justifyType == JustifyItems::start) return r; if (alignType == AlignItems::end) r.setY (r.getY() + (area.getHeight() - r.getHeight())); if (justifyType == JustifyItems::end) r.setX (r.getX() + (area.getWidth() - r.getWidth())); if (alignType == AlignItems::center) r.setCentre (r.getCentreX(), area.getCentreY()); if (justifyType == JustifyItems::center) r.setCentre (area.getCentreX(), r.getCentreY()); return r; } }; //============================================================================== Grid::TrackInfo::TrackInfo() noexcept : hasKeyword (true) {} Grid::TrackInfo::TrackInfo (Px sizeInPixels) noexcept : size (static_cast (sizeInPixels.pixels)), isFraction (false) {} Grid::TrackInfo::TrackInfo (Fr fractionOfFreeSpace) noexcept : size ((float)fractionOfFreeSpace.fraction), isFraction (true) {} Grid::TrackInfo::TrackInfo (Px sizeInPixels, const String& endLineNameToUse) noexcept : TrackInfo (sizeInPixels) { endLineName = endLineNameToUse; } Grid::TrackInfo::TrackInfo (Fr fractionOfFreeSpace, const String& endLineNameToUse) noexcept : TrackInfo (fractionOfFreeSpace) { endLineName = endLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Px sizeInPixels) noexcept : TrackInfo (sizeInPixels) { startLineName = startLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Fr fractionOfFreeSpace) noexcept : TrackInfo (fractionOfFreeSpace) { startLineName = startLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Px sizeInPixels, const String& endLineNameToUse) noexcept : TrackInfo (startLineNameToUse, sizeInPixels) { endLineName = endLineNameToUse; } Grid::TrackInfo::TrackInfo (const String& startLineNameToUse, Fr fractionOfFreeSpace, const String& endLineNameToUse) noexcept : TrackInfo (startLineNameToUse, fractionOfFreeSpace) { endLineName = endLineNameToUse; } float Grid::TrackInfo::getAbsoluteSize (float relativeFractionalUnit) const { return isFractional() ? size * relativeFractionalUnit : size; } //============================================================================== void Grid::performLayout (Rectangle targetArea) { const auto itemsAndAreas = AutoPlacement().deduceAllItems (*this); auto implicitTracks = AutoPlacement::createImplicitTracks (*this, itemsAndAreas); AutoPlacement::applySizeForAutoTracks (implicitTracks, itemsAndAreas); SizeCalculation calculation; calculation.computeSizes (targetArea.toFloat().getWidth(), targetArea.toFloat().getHeight(), columnGap, rowGap, implicitTracks); for (auto& itemAndArea : itemsAndAreas) { const auto a = itemAndArea.second; const auto areaBounds = PlacementHelpers::getAreaBounds (a.column, a.row, implicitTracks, calculation, alignContent, justifyContent, columnGap, rowGap); auto* item = itemAndArea.first; item->currentBounds = BoxAlignment::alignItem (*item, *this, areaBounds) + targetArea.toFloat().getPosition(); if (auto* c = item->associatedComponent) c->setBounds (item->currentBounds.toNearestIntEdges()); } } //============================================================================== #if JUCE_UNIT_TESTS struct GridTests : public UnitTest { GridTests() : UnitTest ("Grid", UnitTestCategories::gui) {} void runTest() override { using Fr = Grid::Fr; using Tr = Grid::TrackInfo; using Rect = Rectangle; { Grid grid; grid.templateColumns.add (Tr (1_fr)); grid.templateRows.addArray ({ Tr (20_px), Tr (1_fr) }); grid.items.addArray ({ GridItem().withArea (1, 1), GridItem().withArea (2, 1) }); grid.performLayout (Rectangle (200, 400)); beginTest ("Layout calculation test: 1 column x 2 rows: no gap"); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 200.f, 20.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 20.0f, 200.f, 380.0f)); grid.templateColumns.add (Tr (50_px)); grid.templateRows.add (Tr (2_fr)); grid.items.addArray ( { GridItem().withArea (1, 2), GridItem().withArea (2, 2), GridItem().withArea (3, 1), GridItem().withArea (3, 2) }); grid.performLayout (Rectangle (150, 170)); beginTest ("Layout calculation test: 2 columns x 3 rows: no gap"); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 100.0f, 20.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 20.0f, 100.0f, 50.0f)); expect (grid.items[2].currentBounds == Rect (100.0f, 0.0f, 50.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (100.0f, 20.0f, 50.0f, 50.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 70.0f, 100.0f, 100.0f)); expect (grid.items[5].currentBounds == Rect (100.0f, 70.0f, 50.0f, 100.0f)); grid.columnGap = 20_px; grid.rowGap = 10_px; grid.performLayout (Rectangle (200, 310)); beginTest ("Layout calculation test: 2 columns x 3 rows: rowGap of 10 and columnGap of 20"); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 130.0f, 20.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 30.0f, 130.0f, 90.0f)); expect (grid.items[2].currentBounds == Rect (150.0f, 0.0f, 50.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (150.0f, 30.0f, 50.0f, 90.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 130.0f, 130.0f, 180.0f)); expect (grid.items[5].currentBounds == Rect (150.0f, 130.0f, 50.0f, 180.0f)); } { Grid grid; grid.templateColumns.addArray ({ Tr ("first", 20_px, "in"), Tr ("in", 1_fr, "in"), Tr (20_px, "last") }); grid.templateRows.addArray ({ Tr (1_fr), Tr (20_px)}); { beginTest ("Grid items placement tests: integer and custom ident, counting forward"); GridItem i1, i2, i3, i4, i5; i1.column = { 1, 4 }; i1.row = { 1, 2 }; i2.column = { 1, 3 }; i2.row = { 1, 3 }; i3.column = { "first", "in" }; i3.row = { 2, 3 }; i4.column = { "first", { 2, "in" } }; i4.row = { 1, 2 }; i5.column = { "first", "last" }; i5.row = { 1, 2 }; grid.items.addArray ({ i1, i2, i3, i4, i5 }); grid.performLayout ({ 140, 100 }); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 0.0f, 120.0f, 100.0f)); expect (grid.items[2].currentBounds == Rect (0.0f, 80.0f, 20.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (0.0f, 0.0f, 120.0f, 80.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); } } { Grid grid; grid.templateColumns.addArray ({ Tr ("first", 20_px, "in"), Tr ("in", 1_fr, "in"), Tr (20_px, "last") }); grid.templateRows.addArray ({ Tr (1_fr), Tr (20_px)}); beginTest ("Grid items placement tests: integer and custom ident, counting forward, reversed end and start"); GridItem i1, i2, i3, i4, i5; i1.column = { 4, 1 }; i1.row = { 2, 1 }; i2.column = { 3, 1 }; i2.row = { 3, 1 }; i3.column = { "in", "first" }; i3.row = { 3, 2 }; i4.column = { "first", { 2, "in" } }; i4.row = { 1, 2 }; i5.column = { "last", "first" }; i5.row = { 1, 2 }; grid.items.addArray ({ i1, i2, i3, i4, i5 }); grid.performLayout ({ 140, 100 }); expect (grid.items[0].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 0.0f, 120.0f, 100.0f)); expect (grid.items[2].currentBounds == Rect (0.0f, 80.0f, 20.0f, 20.0f)); expect (grid.items[3].currentBounds == Rect (0.0f, 0.0f, 120.0f, 80.0f)); expect (grid.items[4].currentBounds == Rect (0.0f, 0.0f, 140.0f, 80.0f)); } { Grid grid; grid.templateColumns = { Tr ("first", 20_px, "in"), Tr ("in", 1_fr, "in"), Tr (20_px, "last") }; grid.templateRows = { Tr (1_fr), Tr (20_px) }; beginTest ("Grid items placement tests: integer, counting backward"); grid.items = { GridItem{}.withColumn ({ -2, -1 }).withRow ({ 1, 3 }), GridItem{}.withColumn ({ -10, -1 }).withRow ({ 1, -1 }) }; grid.performLayout ({ 140, 100 }); expect (grid.items[0].currentBounds == Rect (120.0f, 0.0f, 20.0f, 100.0f)); expect (grid.items[1].currentBounds == Rect (0.0f, 0.0f, 140.0f, 100.0f)); } { beginTest ("Grid items placement tests: areas"); Grid grid; grid.templateColumns = { Tr (50_px), Tr (100_px), Tr (Fr (1_fr)), Tr (50_px) }; grid.templateRows = { Tr (50_px), Tr (1_fr), Tr (50_px) }; grid.templateAreas = { "header header header header", "main main . sidebar", "footer footer footer footer" }; grid.items.addArray ({ GridItem().withArea ("header"), GridItem().withArea ("main"), GridItem().withArea ("sidebar"), GridItem().withArea ("footer"), }); grid.performLayout ({ 300, 150 }); expect (grid.items[0].currentBounds == Rect (0.f, 0.f, 300.f, 50.f)); expect (grid.items[1].currentBounds == Rect (0.f, 50.f, 150.f, 50.f)); expect (grid.items[2].currentBounds == Rect (250.f, 50.f, 50.f, 50.f)); expect (grid.items[3].currentBounds == Rect (0.f, 100.f, 300.f, 50.f)); } { beginTest ("Grid implicit rows and columns: triggered by areas"); Grid grid; grid.templateColumns = { Tr (50_px), Tr (100_px), Tr (1_fr), Tr (50_px) }; grid.templateRows = { Tr (50_px), Tr (1_fr), Tr (50_px) }; grid.autoRows = Tr (30_px); grid.autoColumns = Tr (30_px); grid.templateAreas = { "header header header header header", "main main . sidebar sidebar", "footer footer footer footer footer", "sub sub sub sub sub"}; grid.items.addArray ({ GridItem().withArea ("header"), GridItem().withArea ("main"), GridItem().withArea ("sidebar"), GridItem().withArea ("footer"), GridItem().withArea ("sub"), }); grid.performLayout ({ 330, 180 }); expect (grid.items[0].currentBounds == Rect (0.f, 0.f, 330.f, 50.f)); expect (grid.items[1].currentBounds == Rect (0.f, 50.f, 150.f, 50.f)); expect (grid.items[2].currentBounds == Rect (250.f, 50.f, 80.f, 50.f)); expect (grid.items[3].currentBounds == Rect (0.f, 100.f, 330.f, 50.f)); expect (grid.items[4].currentBounds == Rect (0.f, 150.f, 330.f, 30.f)); } { beginTest ("Grid implicit rows and columns: triggered by areas"); Grid grid; grid.templateColumns = { Tr (50_px), Tr (100_px), Tr (1_fr), Tr (50_px) }; grid.templateRows = { Tr (50_px), Tr (1_fr), Tr (50_px) }; grid.autoRows = Tr (1_fr); grid.autoColumns = Tr (1_fr); grid.templateAreas = { "header header header header", "main main . sidebar", "footer footer footer footer" }; grid.items.addArray ({ GridItem().withArea ("header"), GridItem().withArea ("main"), GridItem().withArea ("sidebar"), GridItem().withArea ("footer"), GridItem().withArea (4, 5, 6, 7) }); grid.performLayout ({ 350, 250 }); expect (grid.items[0].currentBounds == Rect (0.f, 0.f, 250.f, 50.f)); expect (grid.items[1].currentBounds == Rect (0.f, 50.f, 150.f, 50.f)); expect (grid.items[2].currentBounds == Rect (200.f, 50.f, 50.f, 50.f)); expect (grid.items[3].currentBounds == Rect (0.f, 100.f, 250.f, 50.f)); expect (grid.items[4].currentBounds == Rect (250.f, 150.f, 100.f, 100.f)); } { beginTest ("Grid implicit rows and columns: triggered by out-of-bounds indices"); Grid grid; grid.templateColumns = { Tr (1_fr), Tr (1_fr) }; grid.templateRows = { Tr (60_px), Tr (60_px) }; grid.autoColumns = Tr (20_px); grid.autoRows = Tr (1_fr); grid.items = { GridItem{}.withColumn ({ 5, 8 }).withRow ({ -5, -4 }), GridItem{}.withColumn ({ 4, 7 }).withRow ({ -4, -3 }), GridItem{}.withColumn ({ -2, -1 }).withRow ({ 4, 5 }) }; grid.performLayout ({ 500, 400 }); // -3 -2 -1 // 1 2 3 4 5 6 7 8 // -5 +---+---+---+---+---+---+---+ 0 // | | | | | 0 | 0 | 0 | // -4 +---+---+---+---+---+---+---+ 70 // | | | | 1 | 1 | 1 | | // -3 1 +---+---+---+---+---+---+---+ 140 // | x | x | | | | | | // -2 2 +---+---+---+---+---+---+---+ 200 y positions // | x | x | | | | | | // -1 3 +---+---+---+---+---+---+---+ 260 // | | | | | | | | // 4 +---+---+---+---+---+---+---+ 330 // | | 2 | | | | | | // 5 +---+---+---+---+---+---+---+ 400 // // 0 200 400 420 440 460 480 500 // x positions // // The cells marked "x" are the explicit cells specified by the template rows // and columns. // // The cells marked 0/1/2 correspond to the GridItems at those indices in the // items array. // // Note that negative indices count back from the last explicit line // number in that direction, so "2" and "-2" both correspond to the same line. expect (grid.items[0].currentBounds == Rect (440.0f, 0.0f, 60.0f, 70.0f)); expect (grid.items[1].currentBounds == Rect (420.0f, 70.0f, 60.0f, 70.0f)); expect (grid.items[2].currentBounds == Rect (200.0f, 330.0f, 200.0f, 70.0f)); } } }; static GridTests gridUnitTests; #endif } // namespace juce