paulxstretch/deps/juce/modules/juce_dsp/widgets/juce_Chorus.h
essej 25bd5d8adb git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo:
  subdir:   "deps/juce"
  merged:   "b13f9084e"
upstream:
  origin:   "https://github.com/essej/JUCE.git"
  branch:   "sono6good"
  commit:   "b13f9084e"
git-subrepo:
  version:  "0.4.3"
  origin:   "https://github.com/ingydotnet/git-subrepo.git"
  commit:   "2f68596"
2022-04-18 17:51:22 -04:00

170 lines
6.3 KiB
C++

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
/**
A simple chorus DSP widget that modulates the delay of a delay line in order to
create sweeping notches in the magnitude frequency response.
This audio effect can be controlled via the speed and depth of the LFO controlling
the frequency response, a mix control, a feedback control, and the centre delay
of the modulation.
Note: To get classic chorus sounds try to use a centre delay time around 7-8 ms
with a low feeback volume and a low depth. This effect can also be used as a
flanger with a lower centre delay time and a lot of feedback, and as a vibrato
effect if the mix value is 1.
@tags{DSP}
*/
template <typename SampleType>
class Chorus
{
public:
//==============================================================================
/** Constructor. */
Chorus();
//==============================================================================
/** Sets the rate (in Hz) of the LFO modulating the chorus delay line. This rate
must be lower than 100 Hz.
*/
void setRate (SampleType newRateHz);
/** Sets the volume of the LFO modulating the chorus delay line (between 0 and 1).
*/
void setDepth (SampleType newDepth);
/** Sets the centre delay in milliseconds of the chorus delay line modulation.
This delay must be between 1 and 100 ms.
*/
void setCentreDelay (SampleType newDelayMs);
/** Sets the feedback volume (between -1 and 1) of the chorus delay line.
Negative values can be used to get specific chorus sounds.
*/
void setFeedback (SampleType newFeedback);
/** Sets the amount of dry and wet signal in the output of the chorus (between 0
for full dry and 1 for full wet).
*/
void setMix (SampleType newMix);
//==============================================================================
/** Initialises the processor. */
void prepare (const ProcessSpec& spec);
/** Resets the internal state variables of the processor. */
void reset();
//==============================================================================
/** Processes the input and output samples supplied in the processing context. */
template <typename ProcessContext>
void process (const ProcessContext& context) noexcept
{
const auto& inputBlock = context.getInputBlock();
auto& outputBlock = context.getOutputBlock();
const auto numChannels = outputBlock.getNumChannels();
const auto numSamples = outputBlock.getNumSamples();
jassert (inputBlock.getNumChannels() == numChannels);
jassert (inputBlock.getNumChannels() == lastOutput.size());
jassert (inputBlock.getNumSamples() == numSamples);
if (context.isBypassed)
{
outputBlock.copyFrom (inputBlock);
return;
}
auto delayValuesBlock = AudioBlock<SampleType>(bufferDelayTimes).getSubBlock (0, numSamples);
auto contextDelay = ProcessContextReplacing<SampleType> (delayValuesBlock);
delayValuesBlock.clear();
osc.process (contextDelay);
delayValuesBlock.multiplyBy (oscVolume);
auto* delaySamples = bufferDelayTimes.getWritePointer (0);
for (size_t i = 0; i < numSamples; ++i)
{
auto lfo = jmax (static_cast<SampleType> (1.0), maximumDelayModulation * delaySamples[i] + centreDelay);
delaySamples[i] = static_cast<SampleType> (lfo * sampleRate / 1000.0);
}
dryWet.pushDrySamples (inputBlock);
for (size_t channel = 0; channel < numChannels; ++channel)
{
auto* inputSamples = inputBlock .getChannelPointer (channel);
auto* outputSamples = outputBlock.getChannelPointer (channel);
for (size_t i = 0; i < numSamples; ++i)
{
auto input = inputSamples[i];
auto output = input - lastOutput[channel];
delay.pushSample ((int) channel, output);
delay.setDelay (delaySamples[i]);
output = delay.popSample ((int) channel);
outputSamples[i] = output;
lastOutput[channel] = output * feedbackVolume[channel].getNextValue();
}
}
dryWet.mixWetSamples (outputBlock);
}
private:
//==============================================================================
void update();
//==============================================================================
Oscillator<SampleType> osc;
DelayLine<SampleType, DelayLineInterpolationTypes::Linear> delay;
SmoothedValue<SampleType, ValueSmoothingTypes::Linear> oscVolume;
std::vector<SmoothedValue<SampleType, ValueSmoothingTypes::Linear>> feedbackVolume { 2 };
DryWetMixer<SampleType> dryWet;
std::vector<SampleType> lastOutput { 2 };
AudioBuffer<SampleType> bufferDelayTimes;
double sampleRate = 44100.0;
SampleType rate = 1.0, depth = 0.25, feedback = 0.0, mix = 0.5,
centreDelay = 7.0;
static constexpr SampleType maxDepth = 1.0,
maxCentreDelayMs = 100.0,
oscVolumeMultiplier = 0.5,
maximumDelayModulation = 20.0;
};
} // namespace dsp
} // namespace juce