paulxstretch/Source/jcdp_envelope.h

692 lines
20 KiB
C++

/*
Copyright (C) 2017 Xenakios
This program is free software; you can redistribute it and/or modify
it under the terms of version 3 of the GNU General Public License
as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License (version 3) for more details.
www.gnu.org/licenses
*/
#ifndef JCDP_ENVELOPE_H
#define JCDP_ENVELOPE_H
#include <vector>
#include <algorithm>
#include <random>
#include "../JuceLibraryCode/JuceHeader.h"
#include "PS_Source/globals.h"
struct envelope_node
{
envelope_node()
: Time(0.0), Value(0.0), ShapeParam1(0.5), ShapeParam2(0.5) {}
envelope_node(double x, double y, double p1=0.5, double p2=0.5)
: Time(x), Value(y),ShapeParam1(p1),ShapeParam2(p2) {}
double Time;
double Value;
int Shape = 0;
double ShapeParam1;
double ShapeParam2;
int Status = 0;
size_t get_hash() const
{
size_t seed = 0;
seed ^= std::hash<double>()(Time) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
seed ^= std::hash<double>()(Value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
seed ^= std::hash<int>()(Shape) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
seed ^= std::hash<double>()(ShapeParam1) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
seed ^= std::hash<double>()(ShapeParam2) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
};
inline bool operator<(const envelope_node& a, const envelope_node& b)
{
return a.Time<b.Time;
}
template<typename T>
inline void appendToMemoryBlock(MemoryBlock& mb, T x)
{
T temp(x);
mb.append((void*)&temp, sizeof(temp));
}
struct grid_entry
{
grid_entry(double v) : m_value(v) {}
double m_value=0.0;
bool m_foo=false;
};
inline double grid_value(const grid_entry& ge)
{
return ge.m_value;
}
inline bool operator<(const grid_entry& a, const grid_entry& b)
{
return a.m_value<b.m_value;
}
using grid_t=std::vector<grid_entry>;
//#define BEZIER_EXPERIMENT
inline double get_shaped_value(double x, int, double p1, double)
{
#ifndef BEZIER_EXPERIMENT
if (p1<0.5)
{
double foo=1.0-(p1*2.0);
return 1.0-pow(1.0-x,1.0+foo*4.0);
}
double foo=(p1-0.5)*2.0;
return pow(x,1.0+foo*4.0);
#else
/*
double pt0=-2.0*p1;
double pt1=2.0*p2;
double pt2=1.0;
return pow(1-x,2.0)*pt0+2*(1-x)*x*pt1+pow(x,2)*pt2;
*/
if (p2<=0.5)
{
if (p1<0.5)
{
double foo=1.0-(p1*2.0);
return 1.0-pow(1.0-x,1.0+foo*4.0);
}
double foo=(p1-0.5)*2.0;
return pow(x,1.0+foo*4.0);
} else
{
if (p1<0.5)
{
if (x<0.5)
{
x*=2.0;
p1*=2.0;
return 0.5*pow(x,p1*4.0);
} else
{
x-=0.5;
x*=2.0;
p1*=2.0;
return 1.0-0.5*pow(1.0-x,p1*4.0);
}
} else
{
if (x<0.5)
{
x*=2.0;
p1-=0.5;
p1*=2.0;
return 0.5-0.5*pow(1.0-x,p1*4.0);
} else
{
x-=0.5;
x*=2.0;
p1-=0.5;
p1*=2.0;
return 0.5+0.5*pow(x,p1*4.0);
}
}
}
return x;
#endif
}
using nodes_t=std::vector<envelope_node>;
inline double GetInterpolatedNodeValue(const nodes_t& m_nodes, double atime, double m_defvalue=0.5)
{
int maxnodeind=(int)m_nodes.size()-1;
if (m_nodes.size()==0) return m_defvalue;
if (m_nodes.size()==1) return m_nodes[0].Value;
if (atime<=m_nodes[0].Time)
return m_nodes[0].Value;
if (atime>m_nodes[maxnodeind].Time)
return m_nodes[maxnodeind].Value;
const envelope_node to_search(atime,0.0);
//to_search.Time=atime;
auto it=std::lower_bound(m_nodes.begin(),m_nodes.end(),to_search,
[](const envelope_node& a, const envelope_node& b)
{ return a.Time<b.Time; } );
if (it==m_nodes.end())
{
return m_defvalue;
}
--it; // lower_bound has returned iterator to point one too far
double t1=it->Time;
double v1=it->Value;
double p1=it->ShapeParam1;
double p2=it->ShapeParam2;
++it; // next envelope point
double tdelta=it->Time-t1;
if (tdelta<0.00001)
tdelta=0.00001;
double vdelta=it->Value-v1;
return v1+vdelta*get_shaped_value(((1.0/tdelta*(atime-t1))),0,p1,p2);
}
inline double interpolate_foo(double atime,double t0, double v0, double t1, double v1, double p1, double p2)
{
double tdelta=t1-t0;
if (tdelta<0.00001)
tdelta=0.00001;
double vdelta=v1-v0;
return v0+vdelta*get_shaped_value(((1.0/tdelta*(atime-t0))),0,p1,p2);
}
class breakpoint_envelope
{
public:
breakpoint_envelope() : m_name("Untitled")
{
m_randbuf.resize(1024);
}
breakpoint_envelope(String name, double minv=0.0, double maxv=1.0)
: m_minvalue(minv), m_maxvalue(maxv), m_name(name)
{
m_defshape=0;
//m_color=RGB(0,255,255);
m_defvalue=0.5;
m_updateopinprogress=false;
m_value_grid={0.0,0.25,0.5,0.75,1.0};
m_randbuf.resize(1024);
}
std::unique_ptr<breakpoint_envelope> duplicate()
{
auto result = std::make_unique<breakpoint_envelope>();
result->m_nodes = m_nodes;
result->m_randbuf = m_randbuf;
result->m_transform_wrap_x = m_transform_wrap_x;
result->m_transform_x_shift = m_transform_x_shift;
return result;
}
void SetName(String Name) { m_name=Name; }
const String& GetName() const { return m_name; }
double GetDefValue() { return m_defvalue; }
void SetDefValue(double value) { m_defvalue=value; }
int GetDefShape() { return m_defshape; }
ValueTree saveState(Identifier id)
{
ValueTree result(id);
for (int i = 0; i < m_nodes.size(); ++i)
{
ValueTree pt_tree("pt");
storeToTreeProperties(pt_tree, nullptr,
"x", m_nodes[i].Time, "y", m_nodes[i].Value, "p1", m_nodes[i].ShapeParam1, "p2", m_nodes[i].ShapeParam2);
result.addChild(pt_tree, -1, nullptr);
}
result.setProperty("wrapxtransform", m_transform_wrap_x, nullptr);
result.setProperty("yrandlerp", m_transform_y_random_linear_interpolation, nullptr);
return result;
}
void restoreState(ValueTree state)
{
if (state.isValid()==false)
return;
m_transform_wrap_x = state.getProperty("wrapxtransform", false);
m_transform_y_random_linear_interpolation = state.getProperty("yrandlerp", false);
int numnodes = state.getNumChildren();
if (numnodes > 0)
{
m_nodes.clear();
for (int i = 0; i < numnodes; ++i)
{
ValueTree pt_tree = state.getChild(i);
double x, y = 0.0;
double p1, p2 = 0.5;
getFromTreeProperties(pt_tree, "x", x, "y", y, "p1", p1, "p2", p2);
m_nodes.emplace_back(x, y, p1,p2);
}
SortNodes();
}
}
MD5 getHash() const
{
MemoryBlock mb;
for (int i = 0; i < m_nodes.size(); ++i)
{
appendToMemoryBlock(mb, m_nodes[i].Time);
appendToMemoryBlock(mb, m_nodes[i].Value);
appendToMemoryBlock(mb, m_nodes[i].ShapeParam1);
appendToMemoryBlock(mb, m_nodes[i].ShapeParam2);
}
return MD5(mb);
}
int GetNumNodes() const { return (int)m_nodes.size(); }
void SetDefShape(int value) { m_defshape=value; }
double getNodeLeftBound(int index, double margin=0.01) const noexcept
{
if (m_nodes.size() == 0)
return 0.0;
if (index == 0)
return 0.0;
return m_nodes[index - 1].Time + margin;
}
double getNodeRightBound(int index, double margin = 0.01) const noexcept
{
if (m_nodes.size() == 0)
return 1.0;
if (index == m_nodes.size()-1)
return 1.0;
return m_nodes[index + 1].Time - margin;
}
const std::vector<envelope_node>& get_all_nodes() const { return m_nodes; }
void set_all_nodes(nodes_t nds) { m_nodes=std::move(nds); }
void set_reset_nodes(const std::vector<envelope_node>& nodes, bool convertvalues=false)
{
if (convertvalues==false)
m_reset_nodes=nodes;
else
{
if (scaled_to_normalized_func)
{
m_nodes.clear();
for (int i=0;i<nodes.size();++i)
{
envelope_node node=nodes[i];
node.Value=scaled_to_normalized_func(node.Value);
m_nodes.push_back(node);
}
}
}
}
void ResetEnvelope()
{
m_nodes=m_reset_nodes;
m_playoffset=0.0;
}
Colour GetColor()
{
return m_colour;
}
void SetColor(Colour colour)
{
m_colour=colour;
}
void BeginUpdate() // used for doing larger update operations, so can avoid needlessly sorting etc
{
m_updateopinprogress=true;
}
void EndUpdate()
{
m_updateopinprogress=false;
SortNodes();
}
void AddNode(envelope_node newnode)
{
m_nodes.push_back(newnode);
if (!m_updateopinprogress)
SortNodes();
}
void ClearAllNodes()
{
m_nodes.clear();
}
void DeleteNode(int indx)
{
if (indx<0 || indx>m_nodes.size()-1)
return;
m_nodes.erase(m_nodes.begin()+indx);
}
void delete_nodes_in_time_range(double t0, double t1)
{
m_nodes.erase(std::remove_if(std::begin(m_nodes),
std::end(m_nodes),
[t0,t1](const envelope_node& a) { return a.Time>=t0 && a.Time<=t1; } ),
std::end(m_nodes) );
}
template<typename F>
void removePointsConditionally(F predicate)
{
m_nodes.erase(std::remove_if(m_nodes.begin(), m_nodes.end(), predicate), m_nodes.end());
}
envelope_node& GetNodeAtIndex(int indx)
{
if (m_nodes.size()==0)
{
throw(std::length_error("Empty envelope accessed"));
}
if (indx<0)
indx=0;
if (indx>=(int)m_nodes.size())
indx=(int)m_nodes.size()-1;
return m_nodes[indx];
}
const envelope_node& GetNodeAtIndex(int indx) const
{
if (m_nodes.size()==0)
{
throw(std::length_error("Empty envelope accessed"));
}
if (indx<0)
indx=0;
if (indx>=(int)m_nodes.size())
indx=(int)m_nodes.size()-1;
return m_nodes[indx];
}
void SetNodeStatus(int indx, int nstatus)
{
int i=indx;
if (indx<0) i=0;
if (indx>(int)m_nodes.size()-1) i=(int)m_nodes.size()-1;
m_nodes[i].Status=nstatus;
}
void SetNode(int indx, envelope_node anode)
{
int i=indx;
if (indx<0) i=0;
if (indx>(int)m_nodes.size()-1) i=(int)m_nodes.size()-1;
m_nodes[i]=anode;
}
void SetNodeTimeValue(int indx,bool setTime,bool setValue,double atime,double avalue)
{
int i=indx;
if (indx<0) i=0;
if (indx>(int)m_nodes.size()-1) i=(int)m_nodes.size()-1;
if (setTime) m_nodes[i].Time=atime;
if (setValue) m_nodes[i].Value=avalue;
}
double GetInterpolatedNodeValue(double atime)
{
double t0=0.0;
double t1=0.0;
double v0=0.0;
double v1=0.0;
double p1=0.0;
double p2=0.0;
const int maxnodeind=(int)m_nodes.size()-1;
if (m_nodes.size()==0)
return m_defvalue;
if (m_nodes.size()==1)
return m_nodes[0].Value;
if (atime<=m_nodes[0].Time)
{
#ifdef INTERPOLATING_ENVELOPE_BORDERS
t1=m_nodes[0].Time;
t0=0.0-(1.0-m_nodes[maxnodeind].Time);
v0=m_nodes[maxnodeind].Value;
p1=m_nodes[maxnodeind].ShapeParam1;
p2=m_nodes[maxnodeind].ShapeParam2;
v1=m_nodes[0].Value;
return interpolate_foo(atime,t0,v0,t1,v1,p1,p2);
#else
return m_nodes[0].Value;
#endif
}
if (atime>m_nodes[maxnodeind].Time)
{
#ifdef INTERPOLATING_ENVELOPE_BORDERS
t0=m_nodes[maxnodeind].Time;
t1=1.0+(m_nodes[0].Time);
v0=m_nodes[maxnodeind].Value;
v1=m_nodes[0].Value;
p1=m_nodes[maxnodeind].ShapeParam1;
p2=m_nodes[maxnodeind].ShapeParam2;
return interpolate_foo(atime,t0,v0,t1,v1,p1,p2);
#else
return m_nodes.back().Value;
#endif
}
const envelope_node to_search(atime,0.0);
//to_search.Time=atime;
auto it=std::lower_bound(m_nodes.begin(),m_nodes.end(),to_search,
[](const envelope_node& a, const envelope_node& b)
{ return a.Time<b.Time; } );
if (it==m_nodes.end())
{
return m_defvalue;
}
--it; // lower_bound has returned iterator to point one too far
t0=it->Time;
v0=it->Value;
p1=it->ShapeParam1;
p2=it->ShapeParam2;
++it; // next envelope point
t1=it->Time;
v1=it->Value;
return interpolate_foo(atime,t0,v0,t1,v1,p1,p2);
}
bool IsSorted() const
{
return std::is_sorted(m_nodes.begin(), m_nodes.end(), []
(const envelope_node& lhs, const envelope_node& rhs)
{
return lhs.Time<rhs.Time;
});
}
void SortNodes()
{
stable_sort(m_nodes.begin(),m_nodes.end(),
[](const envelope_node& a, const envelope_node& b){ return a.Time<b.Time; } );
}
double minimum_value() const { return m_minvalue; }
double maximum_value() const { return m_maxvalue; }
void set_minimum_value(double v) { m_minvalue=v; }
void set_maximum_value(double v) { m_maxvalue=v; }
std::function<double(double)> normalized_to_scaled_func;
std::function<double(double)> scaled_to_normalized_func;
void beginRelativeTransformation()
{
m_old_nodes=m_nodes;
}
void endRelativeTransformation()
{
m_old_nodes.clear();
}
nodes_t& getRelativeTransformBaseNodes()
{
return m_old_nodes;
}
template<typename F>
inline void performRelativeTransformation(F&& f)
{
for (int i = 0; i < m_old_nodes.size(); ++i)
{
envelope_node node = m_old_nodes[i];
f(i, node);
node.ShapeParam1 = jlimit(0.0, 1.0, node.ShapeParam1);
m_nodes[i] = node;
}
}
void adjustEnvelopeSegmentValues(int index, double amount)
{
if (index >= m_old_nodes.size())
{
m_nodes.back().Value = jlimit(0.0,1.0,m_old_nodes.back().Value+amount);
return;
}
m_nodes[index].Value = jlimit(0.0, 1.0, m_old_nodes[index].Value + amount);
m_nodes[index+1].Value = jlimit(0.0, 1.0, m_old_nodes[index+1].Value + amount);
}
const nodes_t& repeater_nodes() const
{
return m_repeater_nodes;
}
void store_repeater_nodes()
{
m_repeater_nodes.clear();
for (int i=0;i<m_nodes.size();++i)
{
if (m_nodes[i].Time>=m_playoffset && m_nodes[i].Time<=m_playoffset+1.0)
{
envelope_node temp=m_nodes[i];
temp.Time-=m_playoffset;
m_repeater_nodes.push_back(temp);
}
}
}
double get_play_offset() const { return m_playoffset; }
//void set_play_offset(double x) { m_playoffset=bound_value(m_mintime,x,m_maxtime); }
//time_range get_play_offset_range() const { return std::make_pair(m_mintime,m_maxtime); }
const grid_t& get_value_grid() const { return m_value_grid; }
void set_value_grid(grid_t g) { m_value_grid=std::move(g); }
template<typename F>
void manipulate(F&& f)
{
nodes_t backup=m_nodes;
if (f(backup)==true)
{
std::swap(backup,m_nodes);
SortNodes();
}
}
template<typename F0, typename F1>
inline void resamplePointToLinearSegments(int point_index,double /*xmin*/, double /*xmax*/, double /*ymin*/, double /*ymax*/,
F0&& handlesegmentfunc, F1&& numsegmentsfunc)
{
if (m_nodes.size() == 0)
return;
envelope_node pt0 = GetNodeAtIndex(point_index);
envelope_node pt1 = GetNodeAtIndex(point_index+1);
double xdiff = pt1.Time - pt0.Time;
if (xdiff > 0.0)
{
int numsegments = numsegmentsfunc(xdiff);
for (int j=0;j<numsegments;++j)
{
double cb_x0 = pt0.Time + xdiff / (numsegments)*j;
double cb_y0 = GetInterpolatedNodeValue(cb_x0);
double cb_x1 = pt0.Time + xdiff / (numsegments)*(j+1);
double cb_y1 = GetInterpolatedNodeValue(cb_x1);
handlesegmentfunc(cb_x0, cb_y0,cb_x1,cb_y1);
}
}
}
double m_transform_x_shift = 0.0;
double m_transform_y_shift = 0.0;
double m_transform_y_scale = 1.0;
double m_transform_y_sinus = 0.0;
double m_transform_y_sinus_freq = 8.0;
double m_transform_y_tilt = 0.0;
double m_transform_y_random_amount = 0.0;
double m_transform_y_random_rate = 2.0;
bool m_transform_y_random_linear_interpolation = false;
int m_transform_y_random_bands = 32;
bool m_transform_wrap_x = false;
double m_min_pt_value = 0.0;
double m_max_pt_value = 0.0;
inline double getTransformedValue(double x)
{
if (isTransformed() == false)
return GetInterpolatedNodeValue(x);
double temp = x-m_transform_x_shift;
if (m_transform_wrap_x == true)
{
temp = fmod(x - m_transform_x_shift, 1.0);
if (temp < 0.0)
temp += 1.0;
}
double v = GetInterpolatedNodeValue(temp);
double center_v = m_minvalue + (m_maxvalue - m_minvalue) / 2.0;
double diff = center_v - v;
double scaled = center_v - m_transform_y_scale * diff;
double shifted = scaled + m_transform_y_shift;
if (m_transform_y_sinus>0.0)
shifted+=m_transform_y_sinus * sin(2*c_PI*(x-m_transform_x_shift)*m_transform_y_sinus_freq);
double tiltline = m_transform_y_tilt-(2.0*m_transform_y_tilt*x);
double tilted = shifted+tiltline;
if (m_transform_y_random_amount > 0.0)
{
if (m_transform_y_random_linear_interpolation == false)
{
int tableindex = jlimit<int>(0, m_randbuf.size() - 1, floor(x * (m_transform_y_random_bands)));
double randamt = jmap(m_randbuf[tableindex], 0.0, 1.0, -m_transform_y_random_amount, m_transform_y_random_amount);
tilted += randamt;
}
else
{
double fracindex = x * m_transform_y_random_bands;
int tableindex0 = jlimit<int>(0, m_randbuf.size() - 1, floor(fracindex));
int tableindex1 = tableindex0 + 1;
double y0 = m_randbuf[tableindex0];
double y1 = m_randbuf[tableindex1];
double interpolated = y0 + (y1 - y0)*fractpart(fracindex);
double randamt = jmap(interpolated, 0.0, 1.0, -m_transform_y_random_amount, m_transform_y_random_amount);
tilted += randamt;
}
}
return jlimit(0.0,1.0,tilted);
}
bool isTransformed() const
{
return m_transform_x_shift != 0.0 || m_transform_y_shift != 0.0
|| m_transform_y_scale!=1.0 || m_transform_y_sinus!=0.0 || m_transform_y_tilt!=0.0
|| m_transform_y_random_amount>0.0;
}
void updateMinMaxValues()
{
double minv = 1.0;
double maxv = 0.0;
for (auto& e : m_nodes)
{
minv = std::min(minv, e.Value);
maxv = std::max(maxv, e.Value);
}
m_minvalue = minv;
m_maxvalue = maxv;
}
void updateRandomState()
{
//Logger::writeToLog("updating envelope random state");
std::uniform_real_distribution<double> dist(0.0,1.0);
for (int i = 0; i < m_transform_y_random_bands+1; ++i)
m_randbuf[i] = dist(m_randgen);
}
private:
nodes_t m_nodes;
double m_playoffset=0.0;
double m_minvalue=0.0;
double m_maxvalue=1.0;
double m_mintime=-2.0;
double m_maxtime=2.0;
int m_defshape;
Colour m_colour;
String m_name;
bool m_updateopinprogress;
double m_defvalue; // "neutral" value to be used for resets and stuff
nodes_t m_reset_nodes;
nodes_t m_old_nodes;
nodes_t m_repeater_nodes;
grid_t m_value_grid;
std::mt19937 m_randgen;
std::vector<double> m_randbuf;
JUCE_LEAK_DETECTOR(breakpoint_envelope)
};
template<typename F, typename... Args>
inline double derivative(const F& f, double x, const Args&... func_args)
{
const double epsilon = std::numeric_limits<double>::epsilon() * 100;
//const double epsilon=0.000001;
return (f(x + epsilon, func_args...) - f(x, func_args...)) / epsilon;
}
using shared_envelope = std::shared_ptr<breakpoint_envelope>;
#endif // JCDP_ENVELOPE_H