paulxstretch/deps/juce/modules/juce_box2d/box2d/Collision/Shapes/b2CircleShape.cpp
essej 25bd5d8adb git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo:
  subdir:   "deps/juce"
  merged:   "b13f9084e"
upstream:
  origin:   "https://github.com/essej/JUCE.git"
  branch:   "sono6good"
  commit:   "b13f9084e"
git-subrepo:
  version:  "0.4.3"
  origin:   "https://github.com/ingydotnet/git-subrepo.git"
  commit:   "2f68596"
2022-04-18 17:51:22 -04:00

101 lines
3.1 KiB
C++

/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "b2CircleShape.h"
using namespace std;
b2Shape* b2CircleShape::Clone(b2BlockAllocator* allocator) const
{
void* mem = allocator->Allocate(sizeof(b2CircleShape));
b2CircleShape* clone = new (mem) b2CircleShape;
*clone = *this;
return clone;
}
int32 b2CircleShape::GetChildCount() const
{
return 1;
}
bool b2CircleShape::TestPoint(const b2Transform& transform, const b2Vec2& p) const
{
b2Vec2 center = transform.p + b2Mul(transform.q, m_p);
b2Vec2 d = p - center;
return b2Dot(d, d) <= m_radius * m_radius;
}
// Collision Detection in Interactive 3D Environments by Gino van den Bergen
// From Section 3.1.2
// x = s + a * r
// norm(x) = radius
bool b2CircleShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input,
const b2Transform& transform, int32 childIndex) const
{
B2_NOT_USED(childIndex);
b2Vec2 position = transform.p + b2Mul(transform.q, m_p);
b2Vec2 s = input.p1 - position;
float32 b = b2Dot(s, s) - m_radius * m_radius;
// Solve quadratic equation.
b2Vec2 r = input.p2 - input.p1;
float32 c = b2Dot(s, r);
float32 rr = b2Dot(r, r);
float32 sigma = c * c - rr * b;
// Check for negative discriminant and short segment.
if (sigma < 0.0f || rr < b2_epsilon)
{
return false;
}
// Find the point of intersection of the line with the circle.
float32 a = -(c + b2Sqrt(sigma));
// Is the intersection point on the segment?
if (0.0f <= a && a <= input.maxFraction * rr)
{
a /= rr;
output->fraction = a;
output->normal = s + a * r;
output->normal.Normalize();
return true;
}
return false;
}
void b2CircleShape::ComputeAABB(b2AABB* aabb, const b2Transform& transform, int32 childIndex) const
{
B2_NOT_USED(childIndex);
b2Vec2 p = transform.p + b2Mul(transform.q, m_p);
aabb->lowerBound.Set(p.x - m_radius, p.y - m_radius);
aabb->upperBound.Set(p.x + m_radius, p.y + m_radius);
}
void b2CircleShape::ComputeMass(b2MassData* massData, float32 density) const
{
massData->mass = density * b2_pi * m_radius * m_radius;
massData->center = m_p;
// inertia about the local origin
massData->I = massData->mass * (0.5f * m_radius * m_radius + b2Dot(m_p, m_p));
}