paulxstretch/deps/juce/modules/juce_graphics/geometry/juce_AffineTransform.cpp
essej 25bd5d8adb git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo:
  subdir:   "deps/juce"
  merged:   "b13f9084e"
upstream:
  origin:   "https://github.com/essej/JUCE.git"
  branch:   "sono6good"
  commit:   "b13f9084e"
git-subrepo:
  version:  "0.4.3"
  origin:   "https://github.com/ingydotnet/git-subrepo.git"
  commit:   "2f68596"
2022-04-18 17:51:22 -04:00

281 lines
8.9 KiB
C++

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
AffineTransform::AffineTransform (float m00, float m01, float m02,
float m10, float m11, float m12) noexcept
: mat00 (m00), mat01 (m01), mat02 (m02),
mat10 (m10), mat11 (m11), mat12 (m12)
{
}
bool AffineTransform::operator== (const AffineTransform& other) const noexcept
{
return mat00 == other.mat00
&& mat01 == other.mat01
&& mat02 == other.mat02
&& mat10 == other.mat10
&& mat11 == other.mat11
&& mat12 == other.mat12;
}
bool AffineTransform::operator!= (const AffineTransform& other) const noexcept
{
return ! operator== (other);
}
//==============================================================================
bool AffineTransform::isIdentity() const noexcept
{
return mat01 == 0.0f
&& mat02 == 0.0f
&& mat10 == 0.0f
&& mat12 == 0.0f
&& mat00 == 1.0f
&& mat11 == 1.0f;
}
const AffineTransform AffineTransform::identity (1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
//==============================================================================
AffineTransform AffineTransform::followedBy (const AffineTransform& other) const noexcept
{
return { other.mat00 * mat00 + other.mat01 * mat10,
other.mat00 * mat01 + other.mat01 * mat11,
other.mat00 * mat02 + other.mat01 * mat12 + other.mat02,
other.mat10 * mat00 + other.mat11 * mat10,
other.mat10 * mat01 + other.mat11 * mat11,
other.mat10 * mat02 + other.mat11 * mat12 + other.mat12 };
}
AffineTransform AffineTransform::translated (float dx, float dy) const noexcept
{
return { mat00, mat01, mat02 + dx,
mat10, mat11, mat12 + dy };
}
AffineTransform AffineTransform::translation (float dx, float dy) noexcept
{
return { 1.0f, 0.0f, dx,
0.0f, 1.0f, dy };
}
AffineTransform AffineTransform::withAbsoluteTranslation (float tx, float ty) const noexcept
{
return { mat00, mat01, tx,
mat10, mat11, ty };
}
AffineTransform AffineTransform::rotated (float rad) const noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad * mat00 - sinRad * mat10,
cosRad * mat01 - sinRad * mat11,
cosRad * mat02 - sinRad * mat12,
sinRad * mat00 + cosRad * mat10,
sinRad * mat01 + cosRad * mat11,
sinRad * mat02 + cosRad * mat12 };
}
AffineTransform AffineTransform::rotation (float rad) noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad, -sinRad, 0,
sinRad, cosRad, 0 };
}
AffineTransform AffineTransform::rotation (float rad, float pivotX, float pivotY) noexcept
{
auto cosRad = std::cos (rad);
auto sinRad = std::sin (rad);
return { cosRad, -sinRad, -cosRad * pivotX + sinRad * pivotY + pivotX,
sinRad, cosRad, -sinRad * pivotX + -cosRad * pivotY + pivotY };
}
AffineTransform AffineTransform::rotated (float angle, float pivotX, float pivotY) const noexcept
{
return followedBy (rotation (angle, pivotX, pivotY));
}
AffineTransform AffineTransform::scaled (float factorX, float factorY) const noexcept
{
return { factorX * mat00, factorX * mat01, factorX * mat02,
factorY * mat10, factorY * mat11, factorY * mat12 };
}
AffineTransform AffineTransform::scaled (float factor) const noexcept
{
return { factor * mat00, factor * mat01, factor * mat02,
factor * mat10, factor * mat11, factor * mat12 };
}
AffineTransform AffineTransform::scale (float factorX, float factorY) noexcept
{
return { factorX, 0, 0, 0, factorY, 0 };
}
AffineTransform AffineTransform::scale (float factor) noexcept
{
return { factor, 0, 0, 0, factor, 0 };
}
AffineTransform AffineTransform::scaled (float factorX, float factorY,
float pivotX, float pivotY) const noexcept
{
return { factorX * mat00, factorX * mat01, factorX * mat02 + pivotX * (1.0f - factorX),
factorY * mat10, factorY * mat11, factorY * mat12 + pivotY * (1.0f - factorY) };
}
AffineTransform AffineTransform::scale (float factorX, float factorY,
float pivotX, float pivotY) noexcept
{
return { factorX, 0, pivotX * (1.0f - factorX),
0, factorY, pivotY * (1.0f - factorY) };
}
AffineTransform AffineTransform::shear (float shearX, float shearY) noexcept
{
return { 1.0f, shearX, 0,
shearY, 1.0f, 0 };
}
AffineTransform AffineTransform::sheared (float shearX, float shearY) const noexcept
{
return { mat00 + shearX * mat10,
mat01 + shearX * mat11,
mat02 + shearX * mat12,
mat10 + shearY * mat00,
mat11 + shearY * mat01,
mat12 + shearY * mat02 };
}
AffineTransform AffineTransform::verticalFlip (float height) noexcept
{
return { 1.0f, 0.0f, 0.0f,
0.0f, -1.0f, height };
}
AffineTransform AffineTransform::inverted() const noexcept
{
double determinant = getDeterminant();
if (! approximatelyEqual (determinant, 0.0))
{
determinant = 1.0 / determinant;
auto dst00 = (float) ( mat11 * determinant);
auto dst10 = (float) (-mat10 * determinant);
auto dst01 = (float) (-mat01 * determinant);
auto dst11 = (float) ( mat00 * determinant);
return { dst00, dst01, -mat02 * dst00 - mat12 * dst01,
dst10, dst11, -mat02 * dst10 - mat12 * dst11 };
}
// singularity..
return *this;
}
bool AffineTransform::isSingularity() const noexcept
{
return (mat00 * mat11 - mat10 * mat01) == 0.0f;
}
AffineTransform AffineTransform::fromTargetPoints (float x00, float y00,
float x10, float y10,
float x01, float y01) noexcept
{
return { x10 - x00, x01 - x00, x00,
y10 - y00, y01 - y00, y00 };
}
AffineTransform AffineTransform::fromTargetPoints (float sx1, float sy1, float tx1, float ty1,
float sx2, float sy2, float tx2, float ty2,
float sx3, float sy3, float tx3, float ty3) noexcept
{
return fromTargetPoints (sx1, sy1, sx2, sy2, sx3, sy3)
.inverted()
.followedBy (fromTargetPoints (tx1, ty1, tx2, ty2, tx3, ty3));
}
bool AffineTransform::isOnlyTranslation() const noexcept
{
return mat01 == 0.0f
&& mat10 == 0.0f
&& mat00 == 1.0f
&& mat11 == 1.0f;
}
float AffineTransform::getDeterminant() const noexcept
{
return (mat00 * mat11) - (mat01 * mat10);
}
float AffineTransform::getScaleFactor() const noexcept
{
return (std::abs (mat00) + std::abs (mat11)) / 2.0f;
}
//==============================================================================
//==============================================================================
#if JUCE_UNIT_TESTS
class AffineTransformTests : public UnitTest
{
public:
AffineTransformTests()
: UnitTest ("AffineTransform", UnitTestCategories::maths)
{}
void runTest() override
{
beginTest ("Determinant");
{
constexpr float scale1 = 1.5f, scale2 = 1.3f;
auto transform = AffineTransform::scale (scale1)
.followedBy (AffineTransform::rotation (degreesToRadians (72.0f)))
.followedBy (AffineTransform::translation (100.0f, 20.0f))
.followedBy (AffineTransform::scale (scale2));
expect (approximatelyEqual (std::sqrt (std::abs (transform.getDeterminant())), scale1 * scale2));
}
}
};
static AffineTransformTests timeTests;
#endif
} // namespace juce