paulxstretch/deps/juce/modules/juce_dsp/maths/juce_Matrix.cpp

318 lines
8.8 KiB
C++
Raw Permalink Normal View History

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
template <typename ElementType>
Matrix<ElementType> Matrix<ElementType>::identity (size_t size)
{
Matrix result (size, size);
for (size_t i = 0; i < size; ++i)
result(i, i) = 1;
return result;
}
template <typename ElementType>
Matrix<ElementType> Matrix<ElementType>::toeplitz (const Matrix& vector, size_t size)
{
jassert (vector.isOneColumnVector());
jassert (size <= vector.rows);
Matrix result (size, size);
for (size_t i = 0; i < size; ++i)
result (i, i) = vector (0, 0);
for (size_t i = 1; i < size; ++i)
for (size_t j = i; j < size; ++j)
result (j, j - i) = result (j - i, j) = vector (i, 0);
return result;
}
template <typename ElementType>
Matrix<ElementType> Matrix<ElementType>::hankel (const Matrix& vector, size_t size, size_t offset)
{
jassert(vector.isOneColumnVector());
jassert(vector.rows >= (2 * (size - 1) + 1));
Matrix result (size, size);
for (size_t i = 0; i < size; ++i)
result (i, i) = vector ((2 * i) + offset, 0);
for (size_t i = 1; i < size; ++i)
for (size_t j = i; j < size; ++j)
result (j, j - i) = result (j - i, j) = vector (i + 2 * (j - i) + offset, 0);
return result;
}
//==============================================================================
template <typename ElementType>
Matrix<ElementType>& Matrix<ElementType>::swapColumns (size_t columnOne, size_t columnTwo) noexcept
{
jassert (columnOne < columns && columnTwo < columns);
auto* p = data.getRawDataPointer();
for (size_t i = 0; i < rows; ++i)
{
auto offset = dataAcceleration.getUnchecked (static_cast<int> (i));
std::swap (p[offset + columnOne], p[offset + columnTwo]);
}
return *this;
}
template <typename ElementType>
Matrix<ElementType>& Matrix<ElementType>::swapRows (size_t rowOne, size_t rowTwo) noexcept
{
jassert (rowOne < rows && rowTwo < rows);
auto offset1 = rowOne * columns;
auto offset2 = rowTwo * columns;
auto* p = data.getRawDataPointer();
for (size_t i = 0; i < columns; ++i)
std::swap (p[offset1 + i], p[offset2 + i]);
return *this;
}
//==============================================================================
template <typename ElementType>
Matrix<ElementType> Matrix<ElementType>::operator* (const Matrix<ElementType>& other) const
{
auto n = getNumRows(), m = other.getNumColumns(), p = getNumColumns();
Matrix result (n, m);
jassert (p == other.getNumRows());
size_t offsetMat = 0, offsetlhs = 0;
auto* dst = result.getRawDataPointer();
auto* a = getRawDataPointer();
auto* b = other.getRawDataPointer();
for (size_t i = 0; i < n; ++i)
{
size_t offsetrhs = 0;
for (size_t k = 0; k < p; ++k)
{
auto ak = a[offsetlhs++];
for (size_t j = 0; j < m; ++j)
dst[offsetMat + j] += ak * b[offsetrhs + j];
offsetrhs += m;
}
offsetMat += m;
}
return result;
}
//==============================================================================
template <typename ElementType>
bool Matrix<ElementType>::compare (const Matrix& a, const Matrix& b, ElementType tolerance) noexcept
{
if (a.rows != b.rows || a.columns != b.columns)
return false;
tolerance = std::abs (tolerance);
auto* bPtr = b.begin();
for (auto aValue : a)
if (std::abs (aValue - *bPtr++) > tolerance)
return false;
return true;
}
//==============================================================================
template <typename ElementType>
bool Matrix<ElementType>::solve (Matrix& b) const noexcept
{
auto n = columns;
jassert (n == n && n == b.rows && b.isOneColumnVector());
auto* x = b.getRawDataPointer();
const auto& A = *this;
switch (n)
{
case 1:
{
auto denominator = A (0,0);
if (denominator == 0)
return false;
b (0, 0) /= denominator;
}
break;
case 2:
{
auto denominator = A (0, 0) * A (1, 1) - A (0, 1) * A (1, 0);
if (denominator == 0)
return false;
auto factor = (1 / denominator);
auto b0 = x[0], b1 = x[1];
x[0] = factor * (A (1, 1) * b0 - A (0, 1) * b1);
x[1] = factor * (A (0, 0) * b1 - A (1, 0) * b0);
}
break;
case 3:
{
auto denominator = A (0, 0) * (A (1, 1) * A (2, 2) - A (1, 2) * A (2, 1))
+ A (0, 1) * (A (1, 2) * A (2, 0) - A (1, 0) * A (2, 2))
+ A (0, 2) * (A (1, 0) * A (2, 1) - A (1, 1) * A (2, 0));
if (denominator == 0)
return false;
auto factor = 1 / denominator;
auto b0 = x[0], b1 = x[1], b2 = x[2];
x[0] = ( ( A (0, 1) * A (1, 2) - A (0, 2) * A (1, 1)) * b2
+ (-A (0, 1) * A (2, 2) + A (0, 2) * A (2, 1)) * b1
+ ( A (1, 1) * A (2, 2) - A (1, 2) * A (2, 1)) * b0) * factor;
x[1] = -( ( A (0, 0) * A (1, 2) - A (0, 2) * A (1, 0)) * b2
+ (-A (0, 0) * A (2, 2) + A (0, 2) * A (2, 0)) * b1
+ ( A (1, 0) * A (2, 2) - A (1, 2) * A (2, 0)) * b0) * factor;
x[2] = ( ( A (0, 0) * A (1, 1) - A (0, 1) * A (1, 0)) * b2
+ (-A (0, 0) * A (2, 1) + A (0, 1) * A (2, 0)) * b1
+ ( A (1, 0) * A (2, 1) - A (1, 1) * A (2, 0)) * b0) * factor;
}
break;
default:
{
Matrix<ElementType> M (A);
for (size_t j = 0; j < n; ++j)
{
if (M (j, j) == 0)
{
auto i = j;
while (i < n && M (i, j) == 0)
++i;
if (i == n)
return false;
for (size_t k = 0; k < n; ++k)
M (j, k) += M (i, k);
x[j] += x[i];
}
auto t = 1 / M (j, j);
for (size_t k = 0; k < n; ++k)
M (j, k) *= t;
x[j] *= t;
for (size_t k = j + 1; k < n; ++k)
{
auto u = -M (k, j);
for (size_t l = 0; l < n; ++l)
M (k, l) += u * M (j, l);
x[k] += u * x[j];
}
}
for (int k = static_cast<int> (n) - 2; k >= 0; --k)
for (size_t i = static_cast<size_t> (k) + 1; i < n; ++i)
x[k] -= M (static_cast<size_t> (k), i) * x[i];
}
}
return true;
}
//==============================================================================
template <typename ElementType>
String Matrix<ElementType>::toString() const
{
StringArray entries;
int sizeMax = 0;
auto* p = data.begin();
for (size_t i = 0; i < rows; ++i)
{
for (size_t j = 0; j < columns; ++j)
{
String entry (*p++, 4);
sizeMax = jmax (sizeMax, entry.length());
entries.add (entry);
}
}
sizeMax = ((sizeMax + 1) / 4 + 1) * 4;
MemoryOutputStream result;
auto n = static_cast<size_t> (entries.size());
for (size_t i = 0; i < n; ++i)
{
result << entries[(int) i].paddedRight (' ', sizeMax);
if (i % columns == (columns - 1))
result << newLine;
}
return result.toString();
}
template class Matrix<float>;
template class Matrix<double>;
} // namespace dsp
} // namespace juce