paulxstretch/deps/juce/modules/juce_box2d/box2d/Dynamics/Joints/b2RevoluteJoint.h

205 lines
6.2 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_REVOLUTE_JOINT_H
#define B2_REVOLUTE_JOINT_H
#include "b2Joint.h"
/// Revolute joint definition. This requires defining an
/// anchor point where the bodies are joined. The definition
/// uses local anchor points so that the initial configuration
/// can violate the constraint slightly. You also need to
/// specify the initial relative angle for joint limits. This
/// helps when saving and loading a game.
/// The local anchor points are measured from the body's origin
/// rather than the center of mass because:
/// 1. you might not know where the center of mass will be.
/// 2. if you add/remove shapes from a body and recompute the mass,
/// the joints will be broken.
struct b2RevoluteJointDef : public b2JointDef
{
b2RevoluteJointDef()
{
type = e_revoluteJoint;
localAnchorA.Set(0.0f, 0.0f);
localAnchorB.Set(0.0f, 0.0f);
referenceAngle = 0.0f;
lowerAngle = 0.0f;
upperAngle = 0.0f;
maxMotorTorque = 0.0f;
motorSpeed = 0.0f;
enableLimit = false;
enableMotor = false;
}
/// Initialize the bodies, anchors, and reference angle using a world
/// anchor point.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The bodyB angle minus bodyA angle in the reference state (radians).
float32 referenceAngle;
/// A flag to enable joint limits.
bool enableLimit;
/// The lower angle for the joint limit (radians).
float32 lowerAngle;
/// The upper angle for the joint limit (radians).
float32 upperAngle;
/// A flag to enable the joint motor.
bool enableMotor;
/// The desired motor speed. Usually in radians per second.
float32 motorSpeed;
/// The maximum motor torque used to achieve the desired motor speed.
/// Usually in N-m.
float32 maxMotorTorque;
};
/// A revolute joint constrains two bodies to share a common point while they
/// are free to rotate about the point. The relative rotation about the shared
/// point is the joint angle. You can limit the relative rotation with
/// a joint limit that specifies a lower and upper angle. You can use a motor
/// to drive the relative rotation about the shared point. A maximum motor torque
/// is provided so that infinite forces are not generated.
class b2RevoluteJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Get the reference angle.
float32 GetReferenceAngle() const { return m_referenceAngle; }
/// Get the current joint angle in radians.
float32 GetJointAngle() const;
/// Get the current joint angle speed in radians per second.
float32 GetJointSpeed() const;
/// Is the joint limit enabled?
bool IsLimitEnabled() const;
/// Enable/disable the joint limit.
void EnableLimit(bool flag);
/// Get the lower joint limit in radians.
float32 GetLowerLimit() const;
/// Get the upper joint limit in radians.
float32 GetUpperLimit() const;
/// Set the joint limits in radians.
void SetLimits(float32 lower, float32 upper);
/// Is the joint motor enabled?
bool IsMotorEnabled() const;
/// Enable/disable the joint motor.
void EnableMotor(bool flag);
/// Set the motor speed in radians per second.
void SetMotorSpeed(float32 speed);
/// Get the motor speed in radians per second.
float32 GetMotorSpeed() const;
/// Set the maximum motor torque, usually in N-m.
void SetMaxMotorTorque(float32 torque);
float32 GetMaxMotorTorque() const { return m_maxMotorTorque; }
/// Get the reaction force given the inverse time step.
/// Unit is N.
b2Vec2 GetReactionForce(float32 inv_dt) const;
/// Get the reaction torque due to the joint limit given the inverse time step.
/// Unit is N*m.
float32 GetReactionTorque(float32 inv_dt) const;
/// Get the current motor torque given the inverse time step.
/// Unit is N*m.
float32 GetMotorTorque(float32 inv_dt) const;
/// Dump to b2Log.
void Dump();
protected:
friend class b2Joint;
friend class b2GearJoint;
b2RevoluteJoint(const b2RevoluteJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
b2Vec3 m_impulse;
float32 m_motorImpulse;
bool m_enableMotor;
float32 m_maxMotorTorque;
float32 m_motorSpeed;
bool m_enableLimit;
float32 m_referenceAngle;
float32 m_lowerAngle;
float32 m_upperAngle;
// Solver temp
juce::int32 m_indexA;
juce::int32 m_indexB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Mat33 m_mass; // effective mass for point-to-point constraint.
float32 m_motorMass; // effective mass for motor/limit angular constraint.
b2LimitState m_limitState;
};
inline float32 b2RevoluteJoint::GetMotorSpeed() const
{
return m_motorSpeed;
}
#endif