git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo: subdir: "deps/juce" merged: "b13f9084e" upstream: origin: "https://github.com/essej/JUCE.git" branch: "sono6good" commit: "b13f9084e" git-subrepo: version: "0.4.3" origin: "https://github.com/ingydotnet/git-subrepo.git" commit: "2f68596"
This commit is contained in:
770
deps/juce/modules/juce_dsp/processors/juce_Oversampling.cpp
vendored
Normal file
770
deps/juce/modules/juce_dsp/processors/juce_Oversampling.cpp
vendored
Normal file
@ -0,0 +1,770 @@
|
||||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library.
|
||||
Copyright (c) 2020 - Raw Material Software Limited
|
||||
|
||||
JUCE is an open source library subject to commercial or open-source
|
||||
licensing.
|
||||
|
||||
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
|
||||
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
|
||||
|
||||
End User License Agreement: www.juce.com/juce-6-licence
|
||||
Privacy Policy: www.juce.com/juce-privacy-policy
|
||||
|
||||
Or: You may also use this code under the terms of the GPL v3 (see
|
||||
www.gnu.org/licenses).
|
||||
|
||||
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
||||
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
||||
DISCLAIMED.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
namespace juce
|
||||
{
|
||||
namespace dsp
|
||||
{
|
||||
|
||||
/** Abstract class for the provided oversampling stages used internally in
|
||||
the Oversampling class.
|
||||
*/
|
||||
template <typename SampleType>
|
||||
struct Oversampling<SampleType>::OversamplingStage
|
||||
{
|
||||
OversamplingStage (size_t numChans, size_t newFactor) : numChannels (numChans), factor (newFactor) {}
|
||||
virtual ~OversamplingStage() {}
|
||||
|
||||
//==============================================================================
|
||||
virtual SampleType getLatencyInSamples() const = 0;
|
||||
|
||||
virtual void initProcessing (size_t maximumNumberOfSamplesBeforeOversampling)
|
||||
{
|
||||
buffer.setSize (static_cast<int> (numChannels),
|
||||
static_cast<int> (maximumNumberOfSamplesBeforeOversampling * factor),
|
||||
false, false, true);
|
||||
}
|
||||
|
||||
virtual void reset()
|
||||
{
|
||||
buffer.clear();
|
||||
}
|
||||
|
||||
AudioBlock<SampleType> getProcessedSamples (size_t numSamples)
|
||||
{
|
||||
return AudioBlock<SampleType> (buffer).getSubBlock (0, numSamples);
|
||||
}
|
||||
|
||||
virtual void processSamplesUp (const AudioBlock<const SampleType>&) = 0;
|
||||
virtual void processSamplesDown (AudioBlock<SampleType>&) = 0;
|
||||
|
||||
AudioBuffer<SampleType> buffer;
|
||||
size_t numChannels, factor;
|
||||
};
|
||||
|
||||
|
||||
//==============================================================================
|
||||
/** Dummy oversampling stage class which simply copies and pastes the input
|
||||
signal, which could be equivalent to a "one time" oversampling processing.
|
||||
*/
|
||||
template <typename SampleType>
|
||||
struct OversamplingDummy : public Oversampling<SampleType>::OversamplingStage
|
||||
{
|
||||
using ParentType = typename Oversampling<SampleType>::OversamplingStage;
|
||||
|
||||
OversamplingDummy (size_t numChans) : ParentType (numChans, 1) {}
|
||||
|
||||
//==============================================================================
|
||||
SampleType getLatencyInSamples() const override
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void processSamplesUp (const AudioBlock<const SampleType>& inputBlock) override
|
||||
{
|
||||
jassert (inputBlock.getNumChannels() <= static_cast<size_t> (ParentType::buffer.getNumChannels()));
|
||||
jassert (inputBlock.getNumSamples() * ParentType::factor <= static_cast<size_t> (ParentType::buffer.getNumSamples()));
|
||||
|
||||
for (size_t channel = 0; channel < inputBlock.getNumChannels(); ++channel)
|
||||
ParentType::buffer.copyFrom (static_cast<int> (channel), 0,
|
||||
inputBlock.getChannelPointer (channel), static_cast<int> (inputBlock.getNumSamples()));
|
||||
}
|
||||
|
||||
void processSamplesDown (AudioBlock<SampleType>& outputBlock) override
|
||||
{
|
||||
jassert (outputBlock.getNumChannels() <= static_cast<size_t> (ParentType::buffer.getNumChannels()));
|
||||
jassert (outputBlock.getNumSamples() * ParentType::factor <= static_cast<size_t> (ParentType::buffer.getNumSamples()));
|
||||
|
||||
outputBlock.copyFrom (ParentType::getProcessedSamples (outputBlock.getNumSamples()));
|
||||
}
|
||||
|
||||
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (OversamplingDummy)
|
||||
};
|
||||
|
||||
//==============================================================================
|
||||
/** Oversampling stage class performing 2 times oversampling using the Filter
|
||||
Design FIR Equiripple method. The resulting filter is linear phase,
|
||||
symmetric, and has every two samples but the middle one equal to zero,
|
||||
leading to specific processing optimizations.
|
||||
*/
|
||||
template <typename SampleType>
|
||||
struct Oversampling2TimesEquirippleFIR : public Oversampling<SampleType>::OversamplingStage
|
||||
{
|
||||
using ParentType = typename Oversampling<SampleType>::OversamplingStage;
|
||||
|
||||
Oversampling2TimesEquirippleFIR (size_t numChans,
|
||||
SampleType normalisedTransitionWidthUp,
|
||||
SampleType stopbandAmplitudedBUp,
|
||||
SampleType normalisedTransitionWidthDown,
|
||||
SampleType stopbandAmplitudedBDown)
|
||||
: ParentType (numChans, 2)
|
||||
{
|
||||
coefficientsUp = *FilterDesign<SampleType>::designFIRLowpassHalfBandEquirippleMethod (normalisedTransitionWidthUp, stopbandAmplitudedBUp);
|
||||
coefficientsDown = *FilterDesign<SampleType>::designFIRLowpassHalfBandEquirippleMethod (normalisedTransitionWidthDown, stopbandAmplitudedBDown);
|
||||
|
||||
auto N = coefficientsUp.getFilterOrder() + 1;
|
||||
stateUp.setSize (static_cast<int> (this->numChannels), static_cast<int> (N));
|
||||
|
||||
N = coefficientsDown.getFilterOrder() + 1;
|
||||
auto Ndiv2 = N / 2;
|
||||
auto Ndiv4 = Ndiv2 / 2;
|
||||
|
||||
stateDown.setSize (static_cast<int> (this->numChannels), static_cast<int> (N));
|
||||
stateDown2.setSize (static_cast<int> (this->numChannels), static_cast<int> (Ndiv4 + 1));
|
||||
|
||||
position.resize (static_cast<int> (this->numChannels));
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
SampleType getLatencyInSamples() const override
|
||||
{
|
||||
return static_cast<SampleType> (coefficientsUp.getFilterOrder() + coefficientsDown.getFilterOrder()) * 0.5f;
|
||||
}
|
||||
|
||||
void reset() override
|
||||
{
|
||||
ParentType::reset();
|
||||
|
||||
stateUp.clear();
|
||||
stateDown.clear();
|
||||
stateDown2.clear();
|
||||
|
||||
position.fill (0);
|
||||
}
|
||||
|
||||
void processSamplesUp (const AudioBlock<const SampleType>& inputBlock) override
|
||||
{
|
||||
jassert (inputBlock.getNumChannels() <= static_cast<size_t> (ParentType::buffer.getNumChannels()));
|
||||
jassert (inputBlock.getNumSamples() * ParentType::factor <= static_cast<size_t> (ParentType::buffer.getNumSamples()));
|
||||
|
||||
// Initialization
|
||||
auto fir = coefficientsUp.getRawCoefficients();
|
||||
auto N = coefficientsUp.getFilterOrder() + 1;
|
||||
auto Ndiv2 = N / 2;
|
||||
auto numSamples = inputBlock.getNumSamples();
|
||||
|
||||
// Processing
|
||||
for (size_t channel = 0; channel < inputBlock.getNumChannels(); ++channel)
|
||||
{
|
||||
auto bufferSamples = ParentType::buffer.getWritePointer (static_cast<int> (channel));
|
||||
auto buf = stateUp.getWritePointer (static_cast<int> (channel));
|
||||
auto samples = inputBlock.getChannelPointer (channel);
|
||||
|
||||
for (size_t i = 0; i < numSamples; ++i)
|
||||
{
|
||||
// Input
|
||||
buf[N - 1] = 2 * samples[i];
|
||||
|
||||
// Convolution
|
||||
auto out = static_cast<SampleType> (0.0);
|
||||
|
||||
for (size_t k = 0; k < Ndiv2; k += 2)
|
||||
out += (buf[k] + buf[N - k - 1]) * fir[k];
|
||||
|
||||
// Outputs
|
||||
bufferSamples[i << 1] = out;
|
||||
bufferSamples[(i << 1) + 1] = buf[Ndiv2 + 1] * fir[Ndiv2];
|
||||
|
||||
// Shift data
|
||||
for (size_t k = 0; k < N - 2; k += 2)
|
||||
buf[k] = buf[k + 2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void processSamplesDown (AudioBlock<SampleType>& outputBlock) override
|
||||
{
|
||||
jassert (outputBlock.getNumChannels() <= static_cast<size_t> (ParentType::buffer.getNumChannels()));
|
||||
jassert (outputBlock.getNumSamples() * ParentType::factor <= static_cast<size_t> (ParentType::buffer.getNumSamples()));
|
||||
|
||||
// Initialization
|
||||
auto fir = coefficientsDown.getRawCoefficients();
|
||||
auto N = coefficientsDown.getFilterOrder() + 1;
|
||||
auto Ndiv2 = N / 2;
|
||||
auto Ndiv4 = Ndiv2 / 2;
|
||||
auto numSamples = outputBlock.getNumSamples();
|
||||
|
||||
// Processing
|
||||
for (size_t channel = 0; channel < outputBlock.getNumChannels(); ++channel)
|
||||
{
|
||||
auto bufferSamples = ParentType::buffer.getWritePointer (static_cast<int> (channel));
|
||||
auto buf = stateDown.getWritePointer (static_cast<int> (channel));
|
||||
auto buf2 = stateDown2.getWritePointer (static_cast<int> (channel));
|
||||
auto samples = outputBlock.getChannelPointer (channel);
|
||||
auto pos = position.getUnchecked (static_cast<int> (channel));
|
||||
|
||||
for (size_t i = 0; i < numSamples; ++i)
|
||||
{
|
||||
// Input
|
||||
buf[N - 1] = bufferSamples[i << 1];
|
||||
|
||||
// Convolution
|
||||
auto out = static_cast<SampleType> (0.0);
|
||||
|
||||
for (size_t k = 0; k < Ndiv2; k += 2)
|
||||
out += (buf[k] + buf[N - k - 1]) * fir[k];
|
||||
|
||||
// Output
|
||||
out += buf2[pos] * fir[Ndiv2];
|
||||
buf2[pos] = bufferSamples[(i << 1) + 1];
|
||||
|
||||
samples[i] = out;
|
||||
|
||||
// Shift data
|
||||
for (size_t k = 0; k < N - 2; ++k)
|
||||
buf[k] = buf[k + 2];
|
||||
|
||||
// Circular buffer
|
||||
pos = (pos == 0 ? Ndiv4 : pos - 1);
|
||||
}
|
||||
|
||||
position.setUnchecked (static_cast<int> (channel), pos);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
//==============================================================================
|
||||
FIR::Coefficients<SampleType> coefficientsUp, coefficientsDown;
|
||||
AudioBuffer<SampleType> stateUp, stateDown, stateDown2;
|
||||
Array<size_t> position;
|
||||
|
||||
//==============================================================================
|
||||
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Oversampling2TimesEquirippleFIR)
|
||||
};
|
||||
|
||||
|
||||
//==============================================================================
|
||||
/** Oversampling stage class performing 2 times oversampling using the Filter
|
||||
Design IIR Polyphase Allpass Cascaded method. The resulting filter is minimum
|
||||
phase, and provided with a method to get the exact resulting latency.
|
||||
*/
|
||||
template <typename SampleType>
|
||||
struct Oversampling2TimesPolyphaseIIR : public Oversampling<SampleType>::OversamplingStage
|
||||
{
|
||||
using ParentType = typename Oversampling<SampleType>::OversamplingStage;
|
||||
|
||||
Oversampling2TimesPolyphaseIIR (size_t numChans,
|
||||
SampleType normalisedTransitionWidthUp,
|
||||
SampleType stopbandAmplitudedBUp,
|
||||
SampleType normalisedTransitionWidthDown,
|
||||
SampleType stopbandAmplitudedBDown)
|
||||
: ParentType (numChans, 2)
|
||||
{
|
||||
auto structureUp = FilterDesign<SampleType>::designIIRLowpassHalfBandPolyphaseAllpassMethod (normalisedTransitionWidthUp, stopbandAmplitudedBUp);
|
||||
auto coeffsUp = getCoefficients (structureUp);
|
||||
latency = static_cast<SampleType> (-(coeffsUp.getPhaseForFrequency (0.0001, 1.0)) / (0.0001 * MathConstants<double>::twoPi));
|
||||
|
||||
auto structureDown = FilterDesign<SampleType>::designIIRLowpassHalfBandPolyphaseAllpassMethod (normalisedTransitionWidthDown, stopbandAmplitudedBDown);
|
||||
auto coeffsDown = getCoefficients (structureDown);
|
||||
latency += static_cast<SampleType> (-(coeffsDown.getPhaseForFrequency (0.0001, 1.0)) / (0.0001 * MathConstants<double>::twoPi));
|
||||
|
||||
for (auto i = 0; i < structureUp.directPath.size(); ++i)
|
||||
coefficientsUp.add (structureUp.directPath.getObjectPointer (i)->coefficients[0]);
|
||||
|
||||
for (auto i = 1; i < structureUp.delayedPath.size(); ++i)
|
||||
coefficientsUp.add (structureUp.delayedPath.getObjectPointer (i)->coefficients[0]);
|
||||
|
||||
for (auto i = 0; i < structureDown.directPath.size(); ++i)
|
||||
coefficientsDown.add (structureDown.directPath.getObjectPointer (i)->coefficients[0]);
|
||||
|
||||
for (auto i = 1; i < structureDown.delayedPath.size(); ++i)
|
||||
coefficientsDown.add (structureDown.delayedPath.getObjectPointer (i)->coefficients[0]);
|
||||
|
||||
v1Up.setSize (static_cast<int> (this->numChannels), coefficientsUp.size());
|
||||
v1Down.setSize (static_cast<int> (this->numChannels), coefficientsDown.size());
|
||||
delayDown.resize (static_cast<int> (this->numChannels));
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
SampleType getLatencyInSamples() const override
|
||||
{
|
||||
return latency;
|
||||
}
|
||||
|
||||
void reset() override
|
||||
{
|
||||
ParentType::reset();
|
||||
v1Up.clear();
|
||||
v1Down.clear();
|
||||
delayDown.fill (0);
|
||||
}
|
||||
|
||||
void processSamplesUp (const AudioBlock<const SampleType>& inputBlock) override
|
||||
{
|
||||
jassert (inputBlock.getNumChannels() <= static_cast<size_t> (ParentType::buffer.getNumChannels()));
|
||||
jassert (inputBlock.getNumSamples() * ParentType::factor <= static_cast<size_t> (ParentType::buffer.getNumSamples()));
|
||||
|
||||
// Initialization
|
||||
auto coeffs = coefficientsUp.getRawDataPointer();
|
||||
auto numStages = coefficientsUp.size();
|
||||
auto delayedStages = numStages / 2;
|
||||
auto directStages = numStages - delayedStages;
|
||||
auto numSamples = inputBlock.getNumSamples();
|
||||
|
||||
// Processing
|
||||
for (size_t channel = 0; channel < inputBlock.getNumChannels(); ++channel)
|
||||
{
|
||||
auto bufferSamples = ParentType::buffer.getWritePointer (static_cast<int> (channel));
|
||||
auto lv1 = v1Up.getWritePointer (static_cast<int> (channel));
|
||||
auto samples = inputBlock.getChannelPointer (channel);
|
||||
|
||||
for (size_t i = 0; i < numSamples; ++i)
|
||||
{
|
||||
// Direct path cascaded allpass filters
|
||||
auto input = samples[i];
|
||||
|
||||
for (auto n = 0; n < directStages; ++n)
|
||||
{
|
||||
auto alpha = coeffs[n];
|
||||
auto output = alpha * input + lv1[n];
|
||||
lv1[n] = input - alpha * output;
|
||||
input = output;
|
||||
}
|
||||
|
||||
// Output
|
||||
bufferSamples[i << 1] = input;
|
||||
|
||||
// Delayed path cascaded allpass filters
|
||||
input = samples[i];
|
||||
|
||||
for (auto n = directStages; n < numStages; ++n)
|
||||
{
|
||||
auto alpha = coeffs[n];
|
||||
auto output = alpha * input + lv1[n];
|
||||
lv1[n] = input - alpha * output;
|
||||
input = output;
|
||||
}
|
||||
|
||||
// Output
|
||||
bufferSamples[(i << 1) + 1] = input;
|
||||
}
|
||||
}
|
||||
|
||||
#if JUCE_DSP_ENABLE_SNAP_TO_ZERO
|
||||
snapToZero (true);
|
||||
#endif
|
||||
}
|
||||
|
||||
void processSamplesDown (AudioBlock<SampleType>& outputBlock) override
|
||||
{
|
||||
jassert (outputBlock.getNumChannels() <= static_cast<size_t> (ParentType::buffer.getNumChannels()));
|
||||
jassert (outputBlock.getNumSamples() * ParentType::factor <= static_cast<size_t> (ParentType::buffer.getNumSamples()));
|
||||
|
||||
// Initialization
|
||||
auto coeffs = coefficientsDown.getRawDataPointer();
|
||||
auto numStages = coefficientsDown.size();
|
||||
auto delayedStages = numStages / 2;
|
||||
auto directStages = numStages - delayedStages;
|
||||
auto numSamples = outputBlock.getNumSamples();
|
||||
|
||||
// Processing
|
||||
for (size_t channel = 0; channel < outputBlock.getNumChannels(); ++channel)
|
||||
{
|
||||
auto bufferSamples = ParentType::buffer.getWritePointer (static_cast<int> (channel));
|
||||
auto lv1 = v1Down.getWritePointer (static_cast<int> (channel));
|
||||
auto samples = outputBlock.getChannelPointer (channel);
|
||||
auto delay = delayDown.getUnchecked (static_cast<int> (channel));
|
||||
|
||||
for (size_t i = 0; i < numSamples; ++i)
|
||||
{
|
||||
// Direct path cascaded allpass filters
|
||||
auto input = bufferSamples[i << 1];
|
||||
|
||||
for (auto n = 0; n < directStages; ++n)
|
||||
{
|
||||
auto alpha = coeffs[n];
|
||||
auto output = alpha * input + lv1[n];
|
||||
lv1[n] = input - alpha * output;
|
||||
input = output;
|
||||
}
|
||||
|
||||
auto directOut = input;
|
||||
|
||||
// Delayed path cascaded allpass filters
|
||||
input = bufferSamples[(i << 1) + 1];
|
||||
|
||||
for (auto n = directStages; n < numStages; ++n)
|
||||
{
|
||||
auto alpha = coeffs[n];
|
||||
auto output = alpha * input + lv1[n];
|
||||
lv1[n] = input - alpha * output;
|
||||
input = output;
|
||||
}
|
||||
|
||||
// Output
|
||||
samples[i] = (delay + directOut) * static_cast<SampleType> (0.5);
|
||||
delay = input;
|
||||
}
|
||||
|
||||
delayDown.setUnchecked (static_cast<int> (channel), delay);
|
||||
}
|
||||
|
||||
#if JUCE_DSP_ENABLE_SNAP_TO_ZERO
|
||||
snapToZero (false);
|
||||
#endif
|
||||
}
|
||||
|
||||
void snapToZero (bool snapUpProcessing)
|
||||
{
|
||||
if (snapUpProcessing)
|
||||
{
|
||||
for (auto channel = 0; channel < ParentType::buffer.getNumChannels(); ++channel)
|
||||
{
|
||||
auto lv1 = v1Up.getWritePointer (channel);
|
||||
auto numStages = coefficientsUp.size();
|
||||
|
||||
for (auto n = 0; n < numStages; ++n)
|
||||
util::snapToZero (lv1[n]);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (auto channel = 0; channel < ParentType::buffer.getNumChannels(); ++channel)
|
||||
{
|
||||
auto lv1 = v1Down.getWritePointer (channel);
|
||||
auto numStages = coefficientsDown.size();
|
||||
|
||||
for (auto n = 0; n < numStages; ++n)
|
||||
util::snapToZero (lv1[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
//==============================================================================
|
||||
/** This function calculates the equivalent high order IIR filter of a given
|
||||
polyphase cascaded allpass filters structure.
|
||||
*/
|
||||
IIR::Coefficients<SampleType> getCoefficients (typename FilterDesign<SampleType>::IIRPolyphaseAllpassStructure& structure) const
|
||||
{
|
||||
constexpr auto one = static_cast<SampleType> (1.0);
|
||||
|
||||
Polynomial<SampleType> numerator1 ({ one }), denominator1 ({ one }),
|
||||
numerator2 ({ one }), denominator2 ({ one });
|
||||
|
||||
for (auto* i : structure.directPath)
|
||||
{
|
||||
auto coeffs = i->getRawCoefficients();
|
||||
|
||||
if (i->getFilterOrder() == 1)
|
||||
{
|
||||
numerator1 = numerator1 .getProductWith (Polynomial<SampleType> ({ coeffs[0], coeffs[1] }));
|
||||
denominator1 = denominator1.getProductWith (Polynomial<SampleType> ({ one, coeffs[2] }));
|
||||
}
|
||||
else
|
||||
{
|
||||
numerator1 = numerator1 .getProductWith (Polynomial<SampleType> ({ coeffs[0], coeffs[1], coeffs[2] }));
|
||||
denominator1 = denominator1.getProductWith (Polynomial<SampleType> ({ one, coeffs[3], coeffs[4] }));
|
||||
}
|
||||
}
|
||||
|
||||
for (auto* i : structure.delayedPath)
|
||||
{
|
||||
auto coeffs = i->getRawCoefficients();
|
||||
|
||||
if (i->getFilterOrder() == 1)
|
||||
{
|
||||
numerator2 = numerator2 .getProductWith (Polynomial<SampleType> ({ coeffs[0], coeffs[1] }));
|
||||
denominator2 = denominator2.getProductWith (Polynomial<SampleType> ({ one, coeffs[2] }));
|
||||
}
|
||||
else
|
||||
{
|
||||
numerator2 = numerator2 .getProductWith (Polynomial<SampleType> ({ coeffs[0], coeffs[1], coeffs[2] }));
|
||||
denominator2 = denominator2.getProductWith (Polynomial<SampleType> ({ one, coeffs[3], coeffs[4] }));
|
||||
}
|
||||
}
|
||||
|
||||
auto numeratorf1 = numerator1.getProductWith (denominator2);
|
||||
auto numeratorf2 = numerator2.getProductWith (denominator1);
|
||||
auto numerator = numeratorf1.getSumWith (numeratorf2);
|
||||
auto denominator = denominator1.getProductWith (denominator2);
|
||||
|
||||
IIR::Coefficients<SampleType> coeffs;
|
||||
|
||||
coeffs.coefficients.clear();
|
||||
auto inversion = one / denominator[0];
|
||||
|
||||
for (int i = 0; i <= numerator.getOrder(); ++i)
|
||||
coeffs.coefficients.add (numerator[i] * inversion);
|
||||
|
||||
for (int i = 1; i <= denominator.getOrder(); ++i)
|
||||
coeffs.coefficients.add (denominator[i] * inversion);
|
||||
|
||||
return coeffs;
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
Array<SampleType> coefficientsUp, coefficientsDown;
|
||||
SampleType latency;
|
||||
|
||||
AudioBuffer<SampleType> v1Up, v1Down;
|
||||
Array<SampleType> delayDown;
|
||||
|
||||
//==============================================================================
|
||||
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Oversampling2TimesPolyphaseIIR)
|
||||
};
|
||||
|
||||
|
||||
//==============================================================================
|
||||
template <typename SampleType>
|
||||
Oversampling<SampleType>::Oversampling (size_t newNumChannels)
|
||||
: numChannels (newNumChannels)
|
||||
{
|
||||
jassert (numChannels > 0);
|
||||
|
||||
addDummyOversamplingStage();
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
Oversampling<SampleType>::Oversampling (size_t newNumChannels, size_t newFactor,
|
||||
FilterType newType, bool isMaximumQuality,
|
||||
bool useIntegerLatency)
|
||||
: numChannels (newNumChannels), shouldUseIntegerLatency (useIntegerLatency)
|
||||
{
|
||||
jassert (isPositiveAndBelow (newFactor, 5) && numChannels > 0);
|
||||
|
||||
if (newFactor == 0)
|
||||
{
|
||||
addDummyOversamplingStage();
|
||||
}
|
||||
else if (newType == FilterType::filterHalfBandPolyphaseIIR)
|
||||
{
|
||||
for (size_t n = 0; n < newFactor; ++n)
|
||||
{
|
||||
auto twUp = (isMaximumQuality ? 0.10f : 0.12f) * (n == 0 ? 0.5f : 1.0f);
|
||||
auto twDown = (isMaximumQuality ? 0.12f : 0.15f) * (n == 0 ? 0.5f : 1.0f);
|
||||
|
||||
auto gaindBStartUp = (isMaximumQuality ? -90.0f : -70.0f);
|
||||
auto gaindBStartDown = (isMaximumQuality ? -75.0f : -60.0f);
|
||||
auto gaindBFactorUp = (isMaximumQuality ? 10.0f : 8.0f);
|
||||
auto gaindBFactorDown = (isMaximumQuality ? 10.0f : 8.0f);
|
||||
|
||||
addOversamplingStage (FilterType::filterHalfBandPolyphaseIIR,
|
||||
twUp, gaindBStartUp + gaindBFactorUp * (float) n,
|
||||
twDown, gaindBStartDown + gaindBFactorDown * (float) n);
|
||||
}
|
||||
}
|
||||
else if (newType == FilterType::filterHalfBandFIREquiripple)
|
||||
{
|
||||
for (size_t n = 0; n < newFactor; ++n)
|
||||
{
|
||||
auto twUp = (isMaximumQuality ? 0.10f : 0.12f) * (n == 0 ? 0.5f : 1.0f);
|
||||
auto twDown = (isMaximumQuality ? 0.12f : 0.15f) * (n == 0 ? 0.5f : 1.0f);
|
||||
|
||||
auto gaindBStartUp = (isMaximumQuality ? -90.0f : -70.0f);
|
||||
auto gaindBStartDown = (isMaximumQuality ? -75.0f : -60.0f);
|
||||
auto gaindBFactorUp = (isMaximumQuality ? 10.0f : 8.0f);
|
||||
auto gaindBFactorDown = (isMaximumQuality ? 10.0f : 8.0f);
|
||||
|
||||
addOversamplingStage (FilterType::filterHalfBandFIREquiripple,
|
||||
twUp, gaindBStartUp + gaindBFactorUp * (float) n,
|
||||
twDown, gaindBStartDown + gaindBFactorDown * (float) n);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
Oversampling<SampleType>::~Oversampling()
|
||||
{
|
||||
stages.clear();
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::addDummyOversamplingStage()
|
||||
{
|
||||
stages.add (new OversamplingDummy<SampleType> (numChannels));
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::addOversamplingStage (FilterType type,
|
||||
float normalisedTransitionWidthUp,
|
||||
float stopbandAmplitudedBUp,
|
||||
float normalisedTransitionWidthDown,
|
||||
float stopbandAmplitudedBDown)
|
||||
{
|
||||
if (type == FilterType::filterHalfBandPolyphaseIIR)
|
||||
{
|
||||
stages.add (new Oversampling2TimesPolyphaseIIR<SampleType> (numChannels,
|
||||
normalisedTransitionWidthUp, stopbandAmplitudedBUp,
|
||||
normalisedTransitionWidthDown, stopbandAmplitudedBDown));
|
||||
}
|
||||
else
|
||||
{
|
||||
stages.add (new Oversampling2TimesEquirippleFIR<SampleType> (numChannels,
|
||||
normalisedTransitionWidthUp, stopbandAmplitudedBUp,
|
||||
normalisedTransitionWidthDown, stopbandAmplitudedBDown));
|
||||
}
|
||||
|
||||
factorOversampling *= 2;
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::clearOversamplingStages()
|
||||
{
|
||||
stages.clear();
|
||||
factorOversampling = 1u;
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::setUsingIntegerLatency (bool useIntegerLatency) noexcept
|
||||
{
|
||||
shouldUseIntegerLatency = useIntegerLatency;
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
SampleType Oversampling<SampleType>::getLatencyInSamples() const noexcept
|
||||
{
|
||||
auto latency = getUncompensatedLatency();
|
||||
return shouldUseIntegerLatency ? latency + fractionalDelay : latency;
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
SampleType Oversampling<SampleType>::getUncompensatedLatency() const noexcept
|
||||
{
|
||||
auto latency = static_cast<SampleType> (0);
|
||||
size_t order = 1;
|
||||
|
||||
for (auto* stage : stages)
|
||||
{
|
||||
order *= stage->factor;
|
||||
latency += stage->getLatencyInSamples() / static_cast<SampleType> (order);
|
||||
}
|
||||
|
||||
return latency;
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
size_t Oversampling<SampleType>::getOversamplingFactor() const noexcept
|
||||
{
|
||||
return factorOversampling;
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::initProcessing (size_t maximumNumberOfSamplesBeforeOversampling)
|
||||
{
|
||||
jassert (! stages.isEmpty());
|
||||
auto currentNumSamples = maximumNumberOfSamplesBeforeOversampling;
|
||||
|
||||
for (auto* stage : stages)
|
||||
{
|
||||
stage->initProcessing (currentNumSamples);
|
||||
currentNumSamples *= stage->factor;
|
||||
}
|
||||
|
||||
ProcessSpec spec = { 0.0, (uint32) maximumNumberOfSamplesBeforeOversampling, (uint32) numChannels };
|
||||
delay.prepare (spec);
|
||||
updateDelayLine();
|
||||
|
||||
isReady = true;
|
||||
reset();
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::reset() noexcept
|
||||
{
|
||||
jassert (! stages.isEmpty());
|
||||
|
||||
if (isReady)
|
||||
for (auto* stage : stages)
|
||||
stage->reset();
|
||||
|
||||
delay.reset();
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
AudioBlock<SampleType> Oversampling<SampleType>::processSamplesUp (const AudioBlock<const SampleType>& inputBlock) noexcept
|
||||
{
|
||||
jassert (! stages.isEmpty());
|
||||
|
||||
if (! isReady)
|
||||
return {};
|
||||
|
||||
auto* firstStage = stages.getUnchecked (0);
|
||||
firstStage->processSamplesUp (inputBlock);
|
||||
auto block = firstStage->getProcessedSamples (inputBlock.getNumSamples() * firstStage->factor);
|
||||
|
||||
for (int i = 1; i < stages.size(); ++i)
|
||||
{
|
||||
stages[i]->processSamplesUp (block);
|
||||
block = stages[i]->getProcessedSamples (block.getNumSamples() * stages[i]->factor);
|
||||
}
|
||||
|
||||
return block;
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::processSamplesDown (AudioBlock<SampleType>& outputBlock) noexcept
|
||||
{
|
||||
jassert (! stages.isEmpty());
|
||||
|
||||
if (! isReady)
|
||||
return;
|
||||
|
||||
auto currentNumSamples = outputBlock.getNumSamples();
|
||||
|
||||
for (int n = 0; n < stages.size() - 1; ++n)
|
||||
currentNumSamples *= stages.getUnchecked(n)->factor;
|
||||
|
||||
for (int n = stages.size() - 1; n > 0; --n)
|
||||
{
|
||||
auto& stage = *stages.getUnchecked(n);
|
||||
auto audioBlock = stages.getUnchecked (n - 1)->getProcessedSamples (currentNumSamples);
|
||||
stage.processSamplesDown (audioBlock);
|
||||
|
||||
currentNumSamples /= stage.factor;
|
||||
}
|
||||
|
||||
stages.getFirst()->processSamplesDown (outputBlock);
|
||||
|
||||
if (shouldUseIntegerLatency && fractionalDelay > static_cast<SampleType> (0.0))
|
||||
{
|
||||
auto context = ProcessContextReplacing<SampleType> (outputBlock);
|
||||
delay.process (context);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SampleType>
|
||||
void Oversampling<SampleType>::updateDelayLine()
|
||||
{
|
||||
auto latency = getUncompensatedLatency();
|
||||
fractionalDelay = static_cast<SampleType> (1.0) - (latency - std::floor (latency));
|
||||
|
||||
if (fractionalDelay == static_cast<SampleType> (1.0))
|
||||
fractionalDelay = static_cast<SampleType> (0.0);
|
||||
else if (fractionalDelay < static_cast<SampleType> (0.618))
|
||||
fractionalDelay += static_cast<SampleType> (1.0);
|
||||
|
||||
delay.setDelay (fractionalDelay);
|
||||
}
|
||||
|
||||
template class Oversampling<float>;
|
||||
template class Oversampling<double>;
|
||||
|
||||
} // namespace dsp
|
||||
} // namespace juce
|
Reference in New Issue
Block a user