paulxstretch/deps/juce/examples/Audio/SimpleFFTDemo.h
essej 25bd5d8adb git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo:
  subdir:   "deps/juce"
  merged:   "b13f9084e"
upstream:
  origin:   "https://github.com/essej/JUCE.git"
  branch:   "sono6good"
  commit:   "b13f9084e"
git-subrepo:
  version:  "0.4.3"
  origin:   "https://github.com/ingydotnet/git-subrepo.git"
  commit:   "2f68596"
2022-04-18 17:51:22 -04:00

190 lines
6.1 KiB
C++

/*
==============================================================================
This file is part of the JUCE examples.
Copyright (c) 2020 - Raw Material Software Limited
The code included in this file is provided under the terms of the ISC license
http://www.isc.org/downloads/software-support-policy/isc-license. Permission
To use, copy, modify, and/or distribute this software for any purpose with or
without fee is hereby granted provided that the above copyright notice and
this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES,
WHETHER EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR
PURPOSE, ARE DISCLAIMED.
==============================================================================
*/
/*******************************************************************************
The block below describes the properties of this PIP. A PIP is a short snippet
of code that can be read by the Projucer and used to generate a JUCE project.
BEGIN_JUCE_PIP_METADATA
name: SimpleFFTDemo
version: 1.0.0
vendor: JUCE
website: http://juce.com
description: Simple FFT application.
dependencies: juce_audio_basics, juce_audio_devices, juce_audio_formats,
juce_audio_processors, juce_audio_utils, juce_core,
juce_data_structures, juce_dsp, juce_events, juce_graphics,
juce_gui_basics, juce_gui_extra
exporters: xcode_mac, vs2019, linux_make, androidstudio, xcode_iphone
moduleFlags: JUCE_STRICT_REFCOUNTEDPOINTER=1
type: Component
mainClass: SimpleFFTDemo
useLocalCopy: 1
END_JUCE_PIP_METADATA
*******************************************************************************/
#pragma once
//==============================================================================
class SimpleFFTDemo : public AudioAppComponent,
private Timer
{
public:
SimpleFFTDemo() :
#ifdef JUCE_DEMO_RUNNER
AudioAppComponent (getSharedAudioDeviceManager (1, 0)),
#endif
forwardFFT (fftOrder),
spectrogramImage (Image::RGB, 512, 512, true)
{
setOpaque (true);
#ifndef JUCE_DEMO_RUNNER
RuntimePermissions::request (RuntimePermissions::recordAudio,
[this] (bool granted)
{
int numInputChannels = granted ? 2 : 0;
setAudioChannels (numInputChannels, 2);
});
#else
setAudioChannels (2, 2);
#endif
startTimerHz (60);
setSize (700, 500);
}
~SimpleFFTDemo() override
{
shutdownAudio();
}
//==============================================================================
void prepareToPlay (int /*samplesPerBlockExpected*/, double /*newSampleRate*/) override
{
// (nothing to do here)
}
void releaseResources() override
{
// (nothing to do here)
}
void getNextAudioBlock (const AudioSourceChannelInfo& bufferToFill) override
{
if (bufferToFill.buffer->getNumChannels() > 0)
{
const auto* channelData = bufferToFill.buffer->getReadPointer (0, bufferToFill.startSample);
for (auto i = 0; i < bufferToFill.numSamples; ++i)
pushNextSampleIntoFifo (channelData[i]);
bufferToFill.clearActiveBufferRegion();
}
}
//==============================================================================
void paint (Graphics& g) override
{
g.fillAll (Colours::black);
g.setOpacity (1.0f);
g.drawImage (spectrogramImage, getLocalBounds().toFloat());
}
void timerCallback() override
{
if (nextFFTBlockReady)
{
drawNextLineOfSpectrogram();
nextFFTBlockReady = false;
repaint();
}
}
void pushNextSampleIntoFifo (float sample) noexcept
{
// if the fifo contains enough data, set a flag to say
// that the next line should now be rendered..
if (fifoIndex == fftSize)
{
if (! nextFFTBlockReady)
{
zeromem (fftData, sizeof (fftData));
memcpy (fftData, fifo, sizeof (fifo));
nextFFTBlockReady = true;
}
fifoIndex = 0;
}
fifo[fifoIndex++] = sample;
}
void drawNextLineOfSpectrogram()
{
auto rightHandEdge = spectrogramImage.getWidth() - 1;
auto imageHeight = spectrogramImage.getHeight();
// first, shuffle our image leftwards by 1 pixel..
spectrogramImage.moveImageSection (0, 0, 1, 0, rightHandEdge, imageHeight);
// then render our FFT data..
forwardFFT.performFrequencyOnlyForwardTransform (fftData);
// find the range of values produced, so we can scale our rendering to
// show up the detail clearly
auto maxLevel = FloatVectorOperations::findMinAndMax (fftData, fftSize / 2);
for (auto y = 1; y < imageHeight; ++y)
{
auto skewedProportionY = 1.0f - std::exp (std::log ((float) y / (float) imageHeight) * 0.2f);
auto fftDataIndex = jlimit (0, fftSize / 2, (int) (skewedProportionY * (int) fftSize / 2));
auto level = jmap (fftData[fftDataIndex], 0.0f, jmax (maxLevel.getEnd(), 1e-5f), 0.0f, 1.0f);
spectrogramImage.setPixelAt (rightHandEdge, y, Colour::fromHSV (level, 1.0f, level, 1.0f));
}
}
enum
{
fftOrder = 10,
fftSize = 1 << fftOrder
};
private:
dsp::FFT forwardFFT;
Image spectrogramImage;
float fifo [fftSize];
float fftData [2 * fftSize];
int fifoIndex = 0;
bool nextFFTBlockReady = false;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (SimpleFFTDemo)
};