paulxstretch/deps/juce/modules/juce_dsp/frequency/juce_FFT.cpp
essej 25bd5d8adb git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo:
  subdir:   "deps/juce"
  merged:   "b13f9084e"
upstream:
  origin:   "https://github.com/essej/JUCE.git"
  branch:   "sono6good"
  commit:   "b13f9084e"
git-subrepo:
  version:  "0.4.3"
  origin:   "https://github.com/ingydotnet/git-subrepo.git"
  commit:   "2f68596"
2022-04-18 17:51:22 -04:00

1003 lines
34 KiB
C++

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
struct FFT::Instance
{
virtual ~Instance() = default;
virtual void perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept = 0;
virtual void performRealOnlyForwardTransform (float*, bool) const noexcept = 0;
virtual void performRealOnlyInverseTransform (float*) const noexcept = 0;
};
struct FFT::Engine
{
Engine (int priorityToUse) : enginePriority (priorityToUse)
{
auto& list = getEngines();
list.add (this);
std::sort (list.begin(), list.end(), [] (Engine* a, Engine* b) { return b->enginePriority < a->enginePriority; });
}
virtual ~Engine() = default;
virtual FFT::Instance* create (int order) const = 0;
//==============================================================================
static FFT::Instance* createBestEngineForPlatform (int order)
{
for (auto* engine : getEngines())
if (auto* instance = engine->create (order))
return instance;
jassertfalse; // This should never happen as the fallback engine should always work!
return nullptr;
}
private:
static Array<Engine*>& getEngines()
{
static Array<Engine*> engines;
return engines;
}
int enginePriority; // used so that faster engines have priority over slower ones
};
template <typename InstanceToUse>
struct FFT::EngineImpl : public FFT::Engine
{
EngineImpl() : FFT::Engine (InstanceToUse::priority) {}
FFT::Instance* create (int order) const override { return InstanceToUse::create (order); }
};
//==============================================================================
//==============================================================================
struct FFTFallback : public FFT::Instance
{
// this should have the least priority of all engines
static constexpr int priority = -1;
static FFTFallback* create (int order)
{
return new FFTFallback (order);
}
FFTFallback (int order)
{
configForward.reset (new FFTConfig (1 << order, false));
configInverse.reset (new FFTConfig (1 << order, true));
size = 1 << order;
}
void perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept override
{
if (size == 1)
{
*output = *input;
return;
}
const SpinLock::ScopedLockType sl(processLock);
jassert (configForward != nullptr);
if (inverse)
{
configInverse->perform (input, output);
const float scaleFactor = 1.0f / (float) size;
for (int i = 0; i < size; ++i)
output[i] *= scaleFactor;
}
else
{
configForward->perform (input, output);
}
}
const size_t maxFFTScratchSpaceToAlloca = 256 * 1024;
void performRealOnlyForwardTransform (float* d, bool) const noexcept override
{
if (size == 1)
return;
const size_t scratchSize = 16 + (size_t) size * sizeof (Complex<float>);
if (scratchSize < maxFFTScratchSpaceToAlloca)
{
JUCE_BEGIN_IGNORE_WARNINGS_MSVC (6255)
performRealOnlyForwardTransform (static_cast<Complex<float>*> (alloca (scratchSize)), d);
JUCE_END_IGNORE_WARNINGS_MSVC
}
else
{
HeapBlock<char> heapSpace (scratchSize);
performRealOnlyForwardTransform (unalignedPointerCast<Complex<float>*> (heapSpace.getData()), d);
}
}
void performRealOnlyInverseTransform (float* d) const noexcept override
{
if (size == 1)
return;
const size_t scratchSize = 16 + (size_t) size * sizeof (Complex<float>);
if (scratchSize < maxFFTScratchSpaceToAlloca)
{
JUCE_BEGIN_IGNORE_WARNINGS_MSVC (6255)
performRealOnlyInverseTransform (static_cast<Complex<float>*> (alloca (scratchSize)), d);
JUCE_END_IGNORE_WARNINGS_MSVC
}
else
{
HeapBlock<char> heapSpace (scratchSize);
performRealOnlyInverseTransform (unalignedPointerCast<Complex<float>*> (heapSpace.getData()), d);
}
}
void performRealOnlyForwardTransform (Complex<float>* scratch, float* d) const noexcept
{
for (int i = 0; i < size; ++i)
scratch[i] = { d[i], 0 };
perform (scratch, reinterpret_cast<Complex<float>*> (d), false);
}
void performRealOnlyInverseTransform (Complex<float>* scratch, float* d) const noexcept
{
auto* input = reinterpret_cast<Complex<float>*> (d);
for (int i = size >> 1; i < size; ++i)
input[i] = std::conj (input[size - i]);
perform (input, scratch, true);
for (int i = 0; i < size; ++i)
{
d[i] = scratch[i].real();
d[i + size] = scratch[i].imag();
}
}
//==============================================================================
struct FFTConfig
{
FFTConfig (int sizeOfFFT, bool isInverse)
: fftSize (sizeOfFFT), inverse (isInverse), twiddleTable ((size_t) sizeOfFFT)
{
auto inverseFactor = (inverse ? 2.0 : -2.0) * MathConstants<double>::pi / (double) fftSize;
if (fftSize <= 4)
{
for (int i = 0; i < fftSize; ++i)
{
auto phase = i * inverseFactor;
twiddleTable[i] = { (float) std::cos (phase),
(float) std::sin (phase) };
}
}
else
{
for (int i = 0; i < fftSize / 4; ++i)
{
auto phase = i * inverseFactor;
twiddleTable[i] = { (float) std::cos (phase),
(float) std::sin (phase) };
}
for (int i = fftSize / 4; i < fftSize / 2; ++i)
{
auto other = twiddleTable[i - fftSize / 4];
twiddleTable[i] = { inverse ? -other.imag() : other.imag(),
inverse ? other.real() : -other.real() };
}
twiddleTable[fftSize / 2].real (-1.0f);
twiddleTable[fftSize / 2].imag (0.0f);
for (int i = fftSize / 2; i < fftSize; ++i)
{
auto index = fftSize / 2 - (i - fftSize / 2);
twiddleTable[i] = conj(twiddleTable[index]);
}
}
auto root = (int) std::sqrt ((double) fftSize);
int divisor = 4, n = fftSize;
for (int i = 0; i < numElementsInArray (factors); ++i)
{
while ((n % divisor) != 0)
{
if (divisor == 2) divisor = 3;
else if (divisor == 4) divisor = 2;
else divisor += 2;
if (divisor > root)
divisor = n;
}
n /= divisor;
jassert (divisor == 1 || divisor == 2 || divisor == 4);
factors[i].radix = divisor;
factors[i].length = n;
}
}
void perform (const Complex<float>* input, Complex<float>* output) const noexcept
{
perform (input, output, 1, 1, factors);
}
const int fftSize;
const bool inverse;
struct Factor { int radix, length; };
Factor factors[32];
HeapBlock<Complex<float>> twiddleTable;
void perform (const Complex<float>* input, Complex<float>* output, int stride, int strideIn, const Factor* facs) const noexcept
{
auto factor = *facs++;
auto* originalOutput = output;
auto* outputEnd = output + factor.radix * factor.length;
if (stride == 1 && factor.radix <= 5)
{
for (int i = 0; i < factor.radix; ++i)
perform (input + stride * strideIn * i, output + i * factor.length, stride * factor.radix, strideIn, facs);
butterfly (factor, output, stride);
return;
}
if (factor.length == 1)
{
do
{
*output++ = *input;
input += stride * strideIn;
}
while (output < outputEnd);
}
else
{
do
{
perform (input, output, stride * factor.radix, strideIn, facs);
input += stride * strideIn;
output += factor.length;
}
while (output < outputEnd);
}
butterfly (factor, originalOutput, stride);
}
void butterfly (const Factor factor, Complex<float>* data, int stride) const noexcept
{
switch (factor.radix)
{
case 1: break;
case 2: butterfly2 (data, stride, factor.length); return;
case 4: butterfly4 (data, stride, factor.length); return;
default: jassertfalse; break;
}
JUCE_BEGIN_IGNORE_WARNINGS_MSVC (6255)
auto* scratch = static_cast<Complex<float>*> (alloca ((size_t) factor.radix * sizeof (Complex<float>)));
JUCE_END_IGNORE_WARNINGS_MSVC
for (int i = 0; i < factor.length; ++i)
{
for (int k = i, q1 = 0; q1 < factor.radix; ++q1)
{
JUCE_BEGIN_IGNORE_WARNINGS_MSVC (6386)
scratch[q1] = data[k];
JUCE_END_IGNORE_WARNINGS_MSVC
k += factor.length;
}
for (int k = i, q1 = 0; q1 < factor.radix; ++q1)
{
int twiddleIndex = 0;
data[k] = scratch[0];
for (int q = 1; q < factor.radix; ++q)
{
twiddleIndex += stride * k;
if (twiddleIndex >= fftSize)
twiddleIndex -= fftSize;
JUCE_BEGIN_IGNORE_WARNINGS_MSVC (6385)
data[k] += scratch[q] * twiddleTable[twiddleIndex];
JUCE_END_IGNORE_WARNINGS_MSVC
}
k += factor.length;
}
}
}
void butterfly2 (Complex<float>* data, const int stride, const int length) const noexcept
{
auto* dataEnd = data + length;
auto* tw = twiddleTable.getData();
for (int i = length; --i >= 0;)
{
auto s = *dataEnd;
s *= (*tw);
tw += stride;
*dataEnd++ = *data - s;
*data++ += s;
}
}
void butterfly4 (Complex<float>* data, const int stride, const int length) const noexcept
{
auto lengthX2 = length * 2;
auto lengthX3 = length * 3;
auto strideX2 = stride * 2;
auto strideX3 = stride * 3;
auto* twiddle1 = twiddleTable.getData();
auto* twiddle2 = twiddle1;
auto* twiddle3 = twiddle1;
for (int i = length; --i >= 0;)
{
auto s0 = data[length] * *twiddle1;
auto s1 = data[lengthX2] * *twiddle2;
auto s2 = data[lengthX3] * *twiddle3;
auto s3 = s0; s3 += s2;
auto s4 = s0; s4 -= s2;
auto s5 = *data; s5 -= s1;
*data += s1;
data[lengthX2] = *data;
data[lengthX2] -= s3;
twiddle1 += stride;
twiddle2 += strideX2;
twiddle3 += strideX3;
*data += s3;
if (inverse)
{
data[length] = { s5.real() - s4.imag(),
s5.imag() + s4.real() };
data[lengthX3] = { s5.real() + s4.imag(),
s5.imag() - s4.real() };
}
else
{
data[length] = { s5.real() + s4.imag(),
s5.imag() - s4.real() };
data[lengthX3] = { s5.real() - s4.imag(),
s5.imag() + s4.real() };
}
++data;
}
}
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (FFTConfig)
};
//==============================================================================
SpinLock processLock;
std::unique_ptr<FFTConfig> configForward, configInverse;
int size;
};
FFT::EngineImpl<FFTFallback> fftFallback;
//==============================================================================
//==============================================================================
#if (JUCE_MAC || JUCE_IOS) && JUCE_USE_VDSP_FRAMEWORK
struct AppleFFT : public FFT::Instance
{
static constexpr int priority = 5;
static AppleFFT* create (int order)
{
return new AppleFFT (order);
}
AppleFFT (int orderToUse)
: order (static_cast<vDSP_Length> (orderToUse)),
fftSetup (vDSP_create_fftsetup (order, 2)),
forwardNormalisation (0.5f),
inverseNormalisation (1.0f / static_cast<float> (1 << order))
{}
~AppleFFT() override
{
if (fftSetup != nullptr)
{
vDSP_destroy_fftsetup (fftSetup);
fftSetup = nullptr;
}
}
void perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept override
{
auto size = (1 << order);
DSPSplitComplex splitInput (toSplitComplex (const_cast<Complex<float>*> (input)));
DSPSplitComplex splitOutput (toSplitComplex (output));
vDSP_fft_zop (fftSetup, &splitInput, 2, &splitOutput, 2,
order, inverse ? kFFTDirection_Inverse : kFFTDirection_Forward);
float factor = (inverse ? inverseNormalisation : forwardNormalisation * 2.0f);
vDSP_vsmul ((float*) output, 1, &factor, (float*) output, 1, static_cast<size_t> (size << 1));
}
void performRealOnlyForwardTransform (float* inoutData, bool ignoreNegativeFreqs) const noexcept override
{
auto size = (1 << order);
auto* inout = reinterpret_cast<Complex<float>*> (inoutData);
auto splitInOut (toSplitComplex (inout));
inoutData[size] = 0.0f;
vDSP_fft_zrip (fftSetup, &splitInOut, 2, order, kFFTDirection_Forward);
vDSP_vsmul (inoutData, 1, &forwardNormalisation, inoutData, 1, static_cast<size_t> (size << 1));
mirrorResult (inout, ignoreNegativeFreqs);
}
void performRealOnlyInverseTransform (float* inoutData) const noexcept override
{
auto* inout = reinterpret_cast<Complex<float>*> (inoutData);
auto size = (1 << order);
auto splitInOut (toSplitComplex (inout));
// Imaginary part of nyquist and DC frequencies are always zero
// so Apple uses the imaginary part of the DC frequency to store
// the real part of the nyquist frequency
if (size != 1)
inout[0] = Complex<float> (inout[0].real(), inout[size >> 1].real());
vDSP_fft_zrip (fftSetup, &splitInOut, 2, order, kFFTDirection_Inverse);
vDSP_vsmul (inoutData, 1, &inverseNormalisation, inoutData, 1, static_cast<size_t> (size << 1));
vDSP_vclr (inoutData + size, 1, static_cast<size_t> (size));
}
private:
//==============================================================================
void mirrorResult (Complex<float>* out, bool ignoreNegativeFreqs) const noexcept
{
auto size = (1 << order);
auto i = size >> 1;
// Imaginary part of nyquist and DC frequencies are always zero
// so Apple uses the imaginary part of the DC frequency to store
// the real part of the nyquist frequency
out[i++] = { out[0].imag(), 0.0 };
out[0] = { out[0].real(), 0.0 };
if (! ignoreNegativeFreqs)
for (; i < size; ++i)
out[i] = std::conj (out[size - i]);
}
static DSPSplitComplex toSplitComplex (Complex<float>* data) noexcept
{
// this assumes that Complex interleaves real and imaginary parts
// and is tightly packed.
return { reinterpret_cast<float*> (data),
reinterpret_cast<float*> (data) + 1};
}
//==============================================================================
vDSP_Length order;
FFTSetup fftSetup;
float forwardNormalisation, inverseNormalisation;
};
FFT::EngineImpl<AppleFFT> appleFFT;
#endif
//==============================================================================
//==============================================================================
#if JUCE_DSP_USE_SHARED_FFTW || JUCE_DSP_USE_STATIC_FFTW
#if JUCE_DSP_USE_STATIC_FFTW
extern "C"
{
void* fftwf_plan_dft_1d (int, void*, void*, int, int);
void* fftwf_plan_dft_r2c_1d (int, void*, void*, int);
void* fftwf_plan_dft_c2r_1d (int, void*, void*, int);
void fftwf_destroy_plan (void*);
void fftwf_execute_dft (void*, void*, void*);
void fftwf_execute_dft_r2c (void*, void*, void*);
void fftwf_execute_dft_c2r (void*, void*, void*);
}
#endif
struct FFTWImpl : public FFT::Instance
{
#if JUCE_DSP_USE_STATIC_FFTW
// if the JUCE developer has gone through the hassle of statically
// linking in fftw, they probably want to use it
static constexpr int priority = 10;
#else
static constexpr int priority = 3;
#endif
struct FFTWPlan;
using FFTWPlanRef = FFTWPlan*;
enum
{
measure = 0,
unaligned = (1 << 1),
estimate = (1 << 6)
};
struct Symbols
{
FFTWPlanRef (*plan_dft_fftw) (unsigned, Complex<float>*, Complex<float>*, int, unsigned);
FFTWPlanRef (*plan_r2c_fftw) (unsigned, float*, Complex<float>*, unsigned);
FFTWPlanRef (*plan_c2r_fftw) (unsigned, Complex<float>*, float*, unsigned);
void (*destroy_fftw) (FFTWPlanRef);
void (*execute_dft_fftw) (FFTWPlanRef, const Complex<float>*, Complex<float>*);
void (*execute_r2c_fftw) (FFTWPlanRef, float*, Complex<float>*);
void (*execute_c2r_fftw) (FFTWPlanRef, Complex<float>*, float*);
#if JUCE_DSP_USE_STATIC_FFTW
template <typename FuncPtr, typename ActualSymbolType>
static bool symbol (FuncPtr& dst, ActualSymbolType sym)
{
dst = reinterpret_cast<FuncPtr> (sym);
return true;
}
#else
template <typename FuncPtr>
static bool symbol (DynamicLibrary& lib, FuncPtr& dst, const char* name)
{
dst = reinterpret_cast<FuncPtr> (lib.getFunction (name));
return (dst != nullptr);
}
#endif
};
static FFTWImpl* create (int order)
{
DynamicLibrary lib;
#if ! JUCE_DSP_USE_STATIC_FFTW
#if JUCE_MAC
auto libName = "libfftw3f.dylib";
#elif JUCE_WINDOWS
auto libName = "libfftw3f.dll";
#else
auto libName = "libfftw3f.so";
#endif
if (lib.open (libName))
#endif
{
Symbols symbols;
#if JUCE_DSP_USE_STATIC_FFTW
if (! Symbols::symbol (symbols.plan_dft_fftw, fftwf_plan_dft_1d)) return nullptr;
if (! Symbols::symbol (symbols.plan_r2c_fftw, fftwf_plan_dft_r2c_1d)) return nullptr;
if (! Symbols::symbol (symbols.plan_c2r_fftw, fftwf_plan_dft_c2r_1d)) return nullptr;
if (! Symbols::symbol (symbols.destroy_fftw, fftwf_destroy_plan)) return nullptr;
if (! Symbols::symbol (symbols.execute_dft_fftw, fftwf_execute_dft)) return nullptr;
if (! Symbols::symbol (symbols.execute_r2c_fftw, fftwf_execute_dft_r2c)) return nullptr;
if (! Symbols::symbol (symbols.execute_c2r_fftw, fftwf_execute_dft_c2r)) return nullptr;
#else
if (! Symbols::symbol (lib, symbols.plan_dft_fftw, "fftwf_plan_dft_1d")) return nullptr;
if (! Symbols::symbol (lib, symbols.plan_r2c_fftw, "fftwf_plan_dft_r2c_1d")) return nullptr;
if (! Symbols::symbol (lib, symbols.plan_c2r_fftw, "fftwf_plan_dft_c2r_1d")) return nullptr;
if (! Symbols::symbol (lib, symbols.destroy_fftw, "fftwf_destroy_plan")) return nullptr;
if (! Symbols::symbol (lib, symbols.execute_dft_fftw, "fftwf_execute_dft")) return nullptr;
if (! Symbols::symbol (lib, symbols.execute_r2c_fftw, "fftwf_execute_dft_r2c")) return nullptr;
if (! Symbols::symbol (lib, symbols.execute_c2r_fftw, "fftwf_execute_dft_c2r")) return nullptr;
#endif
return new FFTWImpl (static_cast<size_t> (order), std::move (lib), symbols);
}
return nullptr;
}
FFTWImpl (size_t orderToUse, DynamicLibrary&& libraryToUse, const Symbols& symbols)
: fftwLibrary (std::move (libraryToUse)), fftw (symbols), order (static_cast<size_t> (orderToUse))
{
ScopedLock lock (getFFTWPlanLock());
auto n = (1u << order);
HeapBlock<Complex<float>> in (n), out (n);
c2cForward = fftw.plan_dft_fftw (n, in.getData(), out.getData(), -1, unaligned | estimate);
c2cInverse = fftw.plan_dft_fftw (n, in.getData(), out.getData(), +1, unaligned | estimate);
r2c = fftw.plan_r2c_fftw (n, (float*) in.getData(), in.getData(), unaligned | estimate);
c2r = fftw.plan_c2r_fftw (n, in.getData(), (float*) in.getData(), unaligned | estimate);
}
~FFTWImpl() override
{
ScopedLock lock (getFFTWPlanLock());
fftw.destroy_fftw (c2cForward);
fftw.destroy_fftw (c2cInverse);
fftw.destroy_fftw (r2c);
fftw.destroy_fftw (c2r);
}
void perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept override
{
if (inverse)
{
auto n = (1u << order);
fftw.execute_dft_fftw (c2cInverse, input, output);
FloatVectorOperations::multiply ((float*) output, 1.0f / static_cast<float> (n), (int) n << 1);
}
else
{
fftw.execute_dft_fftw (c2cForward, input, output);
}
}
void performRealOnlyForwardTransform (float* inputOutputData, bool ignoreNegativeFreqs) const noexcept override
{
if (order == 0)
return;
auto* out = reinterpret_cast<Complex<float>*> (inputOutputData);
fftw.execute_r2c_fftw (r2c, inputOutputData, out);
auto size = (1 << order);
if (! ignoreNegativeFreqs)
for (int i = size >> 1; i < size; ++i)
out[i] = std::conj (out[size - i]);
}
void performRealOnlyInverseTransform (float* inputOutputData) const noexcept override
{
auto n = (1u << order);
fftw.execute_c2r_fftw (c2r, (Complex<float>*) inputOutputData, inputOutputData);
FloatVectorOperations::multiply ((float*) inputOutputData, 1.0f / static_cast<float> (n), (int) n);
}
//==============================================================================
// fftw's plan_* and destroy_* methods are NOT thread safe. So we need to share
// a lock between all instances of FFTWImpl
static CriticalSection& getFFTWPlanLock() noexcept
{
static CriticalSection cs;
return cs;
}
//==============================================================================
DynamicLibrary fftwLibrary;
Symbols fftw;
size_t order;
FFTWPlanRef c2cForward, c2cInverse, r2c, c2r;
};
FFT::EngineImpl<FFTWImpl> fftwEngine;
#endif
//==============================================================================
//==============================================================================
#if JUCE_DSP_USE_INTEL_MKL
struct IntelFFT : public FFT::Instance
{
static constexpr int priority = 8;
static bool succeeded (MKL_LONG status) noexcept { return status == 0; }
static IntelFFT* create (int orderToUse)
{
DFTI_DESCRIPTOR_HANDLE mklc2c, mklc2r;
if (DftiCreateDescriptor (&mklc2c, DFTI_SINGLE, DFTI_COMPLEX, 1, 1 << orderToUse) == 0)
{
if (succeeded (DftiSetValue (mklc2c, DFTI_PLACEMENT, DFTI_NOT_INPLACE))
&& succeeded (DftiSetValue (mklc2c, DFTI_BACKWARD_SCALE, 1.0f / static_cast<float> (1 << orderToUse)))
&& succeeded (DftiCommitDescriptor (mklc2c)))
{
if (succeeded (DftiCreateDescriptor (&mklc2r, DFTI_SINGLE, DFTI_REAL, 1, 1 << orderToUse)))
{
if (succeeded (DftiSetValue (mklc2r, DFTI_PLACEMENT, DFTI_INPLACE))
&& succeeded (DftiSetValue (mklc2r, DFTI_BACKWARD_SCALE, 1.0f / static_cast<float> (1 << orderToUse)))
&& succeeded (DftiCommitDescriptor (mklc2r)))
{
return new IntelFFT (static_cast<size_t> (orderToUse), mklc2c, mklc2r);
}
DftiFreeDescriptor (&mklc2r);
}
}
DftiFreeDescriptor (&mklc2c);
}
return {};
}
IntelFFT (size_t orderToUse, DFTI_DESCRIPTOR_HANDLE c2cToUse, DFTI_DESCRIPTOR_HANDLE cr2ToUse)
: order (orderToUse), c2c (c2cToUse), c2r (cr2ToUse)
{}
~IntelFFT()
{
DftiFreeDescriptor (&c2c);
DftiFreeDescriptor (&c2r);
}
void perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept override
{
if (inverse)
DftiComputeBackward (c2c, (void*) input, output);
else
DftiComputeForward (c2c, (void*) input, output);
}
void performRealOnlyForwardTransform (float* inputOutputData, bool ignoreNegativeFreqs) const noexcept override
{
if (order == 0)
return;
DftiComputeForward (c2r, inputOutputData);
auto* out = reinterpret_cast<Complex<float>*> (inputOutputData);
auto size = (1 << order);
if (! ignoreNegativeFreqs)
for (int i = size >> 1; i < size; ++i)
out[i] = std::conj (out[size - i]);
}
void performRealOnlyInverseTransform (float* inputOutputData) const noexcept override
{
DftiComputeBackward (c2r, inputOutputData);
}
size_t order;
DFTI_DESCRIPTOR_HANDLE c2c, c2r;
};
FFT::EngineImpl<IntelFFT> fftwEngine;
#endif
//==============================================================================
//==============================================================================
// Visual Studio should define no more than one of these, depending on the
// setting at 'Project' > 'Properties' > 'Configuration Properties' > 'Intel
// Performance Libraries' > 'Use Intel(R) IPP'
#if _IPP_SEQUENTIAL_STATIC || _IPP_SEQUENTIAL_DYNAMIC || _IPP_PARALLEL_STATIC || _IPP_PARALLEL_DYNAMIC
class IntelPerformancePrimitivesFFT : public FFT::Instance
{
public:
static constexpr auto priority = 9;
static IntelPerformancePrimitivesFFT* create (const int order)
{
auto complexContext = Context<ComplexTraits>::create (order);
auto realContext = Context<RealTraits> ::create (order);
if (complexContext.isValid() && realContext.isValid())
return new IntelPerformancePrimitivesFFT (std::move (complexContext), std::move (realContext), order);
return {};
}
void perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept override
{
if (inverse)
{
ippsFFTInv_CToC_32fc (reinterpret_cast<const Ipp32fc*> (input),
reinterpret_cast<Ipp32fc*> (output),
cplx.specPtr,
cplx.workBuf.get());
}
else
{
ippsFFTFwd_CToC_32fc (reinterpret_cast<const Ipp32fc*> (input),
reinterpret_cast<Ipp32fc*> (output),
cplx.specPtr,
cplx.workBuf.get());
}
}
void performRealOnlyForwardTransform (float* inoutData, bool ignoreNegativeFreqs) const noexcept override
{
ippsFFTFwd_RToCCS_32f_I (inoutData, real.specPtr, real.workBuf.get());
if (order == 0)
return;
auto* out = reinterpret_cast<Complex<float>*> (inoutData);
const auto size = (1 << order);
if (! ignoreNegativeFreqs)
for (auto i = size >> 1; i < size; ++i)
out[i] = std::conj (out[size - i]);
}
void performRealOnlyInverseTransform (float* inoutData) const noexcept override
{
ippsFFTInv_CCSToR_32f_I (inoutData, real.specPtr, real.workBuf.get());
}
private:
static constexpr auto flag = IPP_FFT_DIV_INV_BY_N;
static constexpr auto hint = ippAlgHintFast;
struct IppFree
{
template <typename Ptr>
void operator() (Ptr* ptr) const noexcept { ippsFree (ptr); }
};
using IppPtr = std::unique_ptr<Ipp8u[], IppFree>;
template <typename Traits>
struct Context
{
using SpecPtr = typename Traits::Spec*;
static Context create (const int order)
{
int specSize = 0, initSize = 0, workSize = 0;
if (Traits::getSize (order, flag, hint, &specSize, &initSize, &workSize) != ippStsNoErr)
return {};
const auto initBuf = IppPtr (ippsMalloc_8u (initSize));
auto specBuf = IppPtr (ippsMalloc_8u (specSize));
SpecPtr specPtr = nullptr;
if (Traits::init (&specPtr, order, flag, hint, specBuf.get(), initBuf.get()) != ippStsNoErr)
return {};
if (reinterpret_cast<const Ipp8u*> (specPtr) != specBuf.get())
return {};
return { std::move (specBuf), IppPtr (ippsMalloc_8u (workSize)), specPtr };
}
Context() noexcept = default;
Context (IppPtr&& spec, IppPtr&& work, typename Traits::Spec* ptr) noexcept
: specBuf (std::move (spec)), workBuf (std::move (work)), specPtr (ptr)
{}
bool isValid() const noexcept { return specPtr != nullptr; }
IppPtr specBuf, workBuf;
SpecPtr specPtr = nullptr;
};
struct ComplexTraits
{
static constexpr auto getSize = ippsFFTGetSize_C_32fc;
static constexpr auto init = ippsFFTInit_C_32fc;
using Spec = IppsFFTSpec_C_32fc;
};
struct RealTraits
{
static constexpr auto getSize = ippsFFTGetSize_R_32f;
static constexpr auto init = ippsFFTInit_R_32f;
using Spec = IppsFFTSpec_R_32f;
};
IntelPerformancePrimitivesFFT (Context<ComplexTraits>&& complexToUse,
Context<RealTraits>&& realToUse,
const int orderToUse)
: cplx (std::move (complexToUse)),
real (std::move (realToUse)),
order (orderToUse)
{}
Context<ComplexTraits> cplx;
Context<RealTraits> real;
int order = 0;
};
FFT::EngineImpl<IntelPerformancePrimitivesFFT> intelPerformancePrimitivesFFT;
#endif
//==============================================================================
//==============================================================================
FFT::FFT (int order)
: engine (FFT::Engine::createBestEngineForPlatform (order)),
size (1 << order)
{
}
FFT::FFT (FFT&&) noexcept = default;
FFT& FFT::operator= (FFT&&) noexcept = default;
FFT::~FFT() = default;
void FFT::perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept
{
if (engine != nullptr)
engine->perform (input, output, inverse);
}
void FFT::performRealOnlyForwardTransform (float* inputOutputData, bool ignoreNeagtiveFreqs) const noexcept
{
if (engine != nullptr)
engine->performRealOnlyForwardTransform (inputOutputData, ignoreNeagtiveFreqs);
}
void FFT::performRealOnlyInverseTransform (float* inputOutputData) const noexcept
{
if (engine != nullptr)
engine->performRealOnlyInverseTransform (inputOutputData);
}
void FFT::performFrequencyOnlyForwardTransform (float* inputOutputData) const noexcept
{
if (size == 1)
return;
performRealOnlyForwardTransform (inputOutputData);
auto* out = reinterpret_cast<Complex<float>*> (inputOutputData);
for (int i = 0; i < size; ++i)
inputOutputData[i] = std::abs (out[i]);
zeromem (&inputOutputData[size], static_cast<size_t> (size) * sizeof (float));
}
} // namespace dsp
} // namespace juce