paulxstretch/deps/juce/modules/juce_dsp/maths/juce_Matrix.h
essej 25bd5d8adb git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo:
  subdir:   "deps/juce"
  merged:   "b13f9084e"
upstream:
  origin:   "https://github.com/essej/JUCE.git"
  branch:   "sono6good"
  commit:   "b13f9084e"
git-subrepo:
  version:  "0.4.3"
  origin:   "https://github.com/ingydotnet/git-subrepo.git"
  commit:   "2f68596"
2022-04-18 17:51:22 -04:00

255 lines
11 KiB
C++

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2020 - Raw Material Software Limited
JUCE is an open source library subject to commercial or open-source
licensing.
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
End User License Agreement: www.juce.com/juce-6-licence
Privacy Policy: www.juce.com/juce-privacy-policy
Or: You may also use this code under the terms of the GPL v3 (see
www.gnu.org/licenses).
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
DISCLAIMED.
==============================================================================
*/
namespace juce
{
namespace dsp
{
/**
General matrix and vectors class, meant for classic math manipulation such as
additions, multiplications, and linear systems of equations solving.
@see LinearAlgebra
@tags{DSP}
*/
template <typename ElementType>
class Matrix
{
public:
//==============================================================================
/** Creates a new matrix with a given number of rows and columns. */
Matrix (size_t numRows, size_t numColumns)
: rows (numRows), columns (numColumns)
{
resize();
clear();
}
/** Creates a new matrix with a given number of rows and columns, with initial
data coming from an array, stored in row-major order.
*/
Matrix (size_t numRows, size_t numColumns, const ElementType* dataPointer)
: rows (numRows), columns (numColumns)
{
resize();
memcpy (data.getRawDataPointer(), dataPointer, rows * columns * sizeof (ElementType));
}
/** Creates a copy of another matrix. */
Matrix (const Matrix&) = default;
/** Moves a copy of another matrix. */
Matrix (Matrix&&) noexcept = default;
/** Creates a copy of another matrix. */
Matrix& operator= (const Matrix&) = default;
/** Moves another matrix into this one */
Matrix& operator= (Matrix&&) noexcept = default;
//==============================================================================
/** Creates the identity matrix */
static Matrix identity (size_t size);
/** Creates a Toeplitz Matrix from a vector with a given squared size */
static Matrix toeplitz (const Matrix& vector, size_t size);
/** Creates a squared size x size Hankel Matrix from a vector with an optional offset.
@param vector The vector from which the Hankel matrix should be generated.
Its number of rows should be at least 2 * (size - 1) + 1
@param size The size of resulting square matrix.
@param offset An optional offset into the given vector.
*/
static Matrix hankel (const Matrix& vector, size_t size, size_t offset = 0);
//==============================================================================
/** Returns the number of rows in the matrix. */
size_t getNumRows() const noexcept { return rows; }
/** Returns the number of columns in the matrix. */
size_t getNumColumns() const noexcept { return columns; }
/** Returns an Array of 2 integers with the number of rows and columns in the
matrix.
*/
Array<size_t> getSize() const noexcept { return { rows, columns }; }
/** Fills the contents of the matrix with zeroes. */
void clear() noexcept { zeromem (data.begin(), (size_t) data.size() * sizeof (ElementType)); }
//==============================================================================
/** Swaps the contents of two rows in the matrix and returns a reference to itself. */
Matrix& swapRows (size_t rowOne, size_t rowTwo) noexcept;
/** Swaps the contents of two columns in the matrix and returns a reference to itself. */
Matrix& swapColumns (size_t columnOne, size_t columnTwo) noexcept;
//==============================================================================
/** Returns the value of the matrix at a given row and column (for reading). */
inline ElementType operator() (size_t row, size_t column) const noexcept
{
jassert (row < rows && column < columns);
return data.getReference (static_cast<int> (dataAcceleration.getReference (static_cast<int> (row))) + static_cast<int> (column));
}
/** Returns the value of the matrix at a given row and column (for modifying). */
inline ElementType& operator() (size_t row, size_t column) noexcept
{
jassert (row < rows && column < columns);
return data.getReference (static_cast<int> (dataAcceleration.getReference (static_cast<int> (row))) + static_cast<int> (column));
}
/** Returns a pointer to the raw data of the matrix object, ordered in row-major
order (for modifying).
*/
inline ElementType* getRawDataPointer() noexcept { return data.getRawDataPointer(); }
/** Returns a pointer to the raw data of the matrix object, ordered in row-major
order (for reading).
*/
inline const ElementType* getRawDataPointer() const noexcept { return data.begin(); }
//==============================================================================
/** Addition of two matrices */
inline Matrix& operator+= (const Matrix& other) noexcept { return apply (other, [] (ElementType a, ElementType b) { return a + b; } ); }
/** Subtraction of two matrices */
inline Matrix& operator-= (const Matrix& other) noexcept { return apply (other, [] (ElementType a, ElementType b) { return a - b; } ); }
/** Scalar multiplication */
inline Matrix& operator*= (ElementType scalar) noexcept
{
std::for_each (begin(), end(), [scalar] (ElementType& x) { x *= scalar; });
return *this;
}
/** Addition of two matrices */
inline Matrix operator+ (const Matrix& other) const { Matrix result (*this); result += other; return result; }
/** Addition of two matrices */
inline Matrix operator- (const Matrix& other) const { Matrix result (*this); result -= other; return result; }
/** Scalar multiplication */
inline Matrix operator* (ElementType scalar) const { Matrix result (*this); result *= scalar; return result; }
/** Matrix multiplication */
Matrix operator* (const Matrix& other) const;
/** Does a hadarmard product with the receiver and other and stores the result in the receiver */
inline Matrix& hadarmard (const Matrix& other) noexcept { return apply (other, [] (ElementType a, ElementType b) { return a * b; } ); }
/** Does a hadarmard product with a and b returns the result. */
static Matrix hadarmard (const Matrix& a, const Matrix& b) { Matrix result (a); result.hadarmard (b); return result; }
//==============================================================================
/** Compare to matrices with a given tolerance */
static bool compare (const Matrix& a, const Matrix& b, ElementType tolerance = 0) noexcept;
/* Comparison operator */
inline bool operator== (const Matrix& other) const noexcept { return compare (*this, other); }
//==============================================================================
/** Tells if the matrix is a square matrix */
bool isSquare() const noexcept { return rows == columns; }
/** Tells if the matrix is a vector */
bool isVector() const noexcept { return isOneColumnVector() || isOneRowVector(); }
/** Tells if the matrix is a one column vector */
bool isOneColumnVector() const noexcept { return columns == 1; }
/** Tells if the matrix is a one row vector */
bool isOneRowVector() const noexcept { return rows == 1; }
/** Tells if the matrix is a null matrix */
bool isNullMatrix() const noexcept { return rows == 0 || columns == 0; }
//==============================================================================
/** Solves a linear system of equations represented by this object and the argument b,
using various algorithms depending on the size of the arguments.
The matrix must be a square matrix N times N, and b must be a vector N times 1,
with the coefficients of b. After the execution of the algorithm,
the vector b will contain the solution.
Returns true if the linear system of equations was successfully solved.
*/
bool solve (Matrix& b) const noexcept;
//==============================================================================
/** Returns a String displaying in a convenient way the matrix contents. */
String toString() const;
//==============================================================================
ElementType* begin() noexcept { return data.begin(); }
ElementType* end() noexcept { return data.end(); }
const ElementType* begin() const noexcept { return &data.getReference (0); }
const ElementType* end() const noexcept { return begin() + data.size(); }
private:
//==============================================================================
/** Resizes the matrix. */
void resize()
{
data.resize (static_cast<int> (columns * rows));
dataAcceleration.resize (static_cast<int> (rows));
for (size_t i = 0; i < rows; ++i)
dataAcceleration.setUnchecked (static_cast<int> (i), i * columns);
}
template <typename BinaryOperation>
Matrix& apply (const Matrix& other, BinaryOperation binaryOp)
{
jassert (rows == other.rows && columns == other.columns);
auto* dst = getRawDataPointer();
for (auto src : other)
{
*dst = binaryOp (*dst, src);
++dst;
}
return *this;
}
//==============================================================================
Array<ElementType> data;
Array<size_t> dataAcceleration;
size_t rows, columns;
//==============================================================================
JUCE_LEAK_DETECTOR (Matrix)
};
} // namespace dsp
} // namespace juce