paulxstretch/deps/juce/modules/juce_box2d/box2d/Common/b2Math.h

727 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_MATH_H
#define B2_MATH_H
#include "b2Settings.h"
/// This function is used to ensure that a floating point number is
/// not a NaN or infinity.
inline bool b2IsValid(float32 x)
{
if (x != x)
{
// NaN.
return false;
}
float32 infinity = std::numeric_limits<float32>::infinity();
return -infinity < x && x < infinity;
}
/// This is a approximate yet fast inverse square-root.
inline float32 b2InvSqrt(float32 x)
{
union
{
float32 x;
juce::int32 i;
} convert;
convert.x = x;
float32 xhalf = 0.5f * x;
convert.i = 0x5f3759df - (convert.i >> 1);
x = convert.x;
x = x * (1.5f - xhalf * x * x);
return x;
}
#define b2Sqrt(x) std::sqrt(x)
#define b2Atan2(y, x) std::atan2(y, x)
/// A 2D column vector.
struct b2Vec2
{
/// Default constructor does nothing (for performance).
b2Vec2() {}
/// Construct using coordinates.
b2Vec2(float32 xCoord, float32 yCoord) : x(xCoord), y(yCoord) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_) { x = x_; y = y_; }
/// Negate this vector.
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
/// Read from and indexed element.
float32 operator () (juce::int32 i) const
{
return (&x)[i];
}
/// Write to an indexed element.
float32& operator () (juce::int32 i)
{
return (&x)[i];
}
/// Add a vector to this vector.
void operator += (const b2Vec2& v)
{
x += v.x; y += v.y;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec2& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this vector by a scalar.
void operator *= (float32 a)
{
x *= a; y *= a;
}
/// Get the length of this vector (the norm).
float32 Length() const
{
return b2Sqrt(x * x + y * y);
}
/// Get the length squared. For performance, use this instead of
/// b2Vec2::Length (if possible).
float32 LengthSquared() const
{
return x * x + y * y;
}
/// Convert this vector into a unit vector. Returns the length.
float32 Normalize()
{
float32 length = Length();
if (length < b2_epsilon)
{
return 0.0f;
}
float32 invLength = 1.0f / length;
x *= invLength;
y *= invLength;
return length;
}
/// Does this vector contain finite coordinates?
bool IsValid() const
{
return b2IsValid(x) && b2IsValid(y);
}
/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
b2Vec2 Skew() const
{
return b2Vec2(-y, x);
}
float32 x, y;
};
/// A 2D column vector with 3 elements.
struct b2Vec3
{
/// Default constructor does nothing (for performance).
b2Vec3() {}
/// Construct using coordinates.
b2Vec3(float32 xCoord, float32 yCoord, float32 zCoord) : x(xCoord), y(yCoord), z(zCoord) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; }
/// Negate this vector.
b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
/// Add a vector to this vector.
void operator += (const b2Vec3& v)
{
x += v.x; y += v.y; z += v.z;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec3& v)
{
x -= v.x; y -= v.y; z -= v.z;
}
/// Multiply this vector by a scalar.
void operator *= (float32 s)
{
x *= s; y *= s; z *= s;
}
float32 x, y, z;
};
/// A 2-by-2 matrix. Stored in column-major order.
struct b2Mat22
{
/// The default constructor does nothing (for performance).
b2Mat22() {}
/// Construct this matrix using columns.
b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
{
ex = c1;
ey = c2;
}
/// Construct this matrix using scalars.
b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
{
ex.x = a11; ex.y = a21;
ey.x = a12; ey.y = a22;
}
/// Initialize this matrix using columns.
void Set(const b2Vec2& c1, const b2Vec2& c2)
{
ex = c1;
ey = c2;
}
/// Set this to the identity matrix.
void SetIdentity()
{
ex.x = 1.0f; ey.x = 0.0f;
ex.y = 0.0f; ey.y = 1.0f;
}
/// Set this matrix to all zeros.
void SetZero()
{
ex.x = 0.0f; ey.x = 0.0f;
ex.y = 0.0f; ey.y = 0.0f;
}
b2Mat22 GetInverse() const
{
float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;
b2Mat22 B;
float32 det = a * d - b * c;
if (det != 0.0f)
{
det = 1.0f / det;
}
B.ex.x = det * d; B.ey.x = -det * b;
B.ex.y = -det * c; B.ey.y = det * a;
return B;
}
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec2 Solve(const b2Vec2& b) const
{
float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
float32 det = a11 * a22 - a12 * a21;
if (det != 0.0f)
{
det = 1.0f / det;
}
b2Vec2 x;
x.x = det * (a22 * b.x - a12 * b.y);
x.y = det * (a11 * b.y - a21 * b.x);
return x;
}
b2Vec2 ex, ey;
};
/// A 3-by-3 matrix. Stored in column-major order.
struct b2Mat33
{
/// The default constructor does nothing (for performance).
b2Mat33() {}
/// Construct this matrix using columns.
b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
{
ex = c1;
ey = c2;
ez = c3;
}
/// Set this matrix to all zeros.
void SetZero()
{
ex.SetZero();
ey.SetZero();
ez.SetZero();
}
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
b2Vec3 Solve33(const b2Vec3& b) const;
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases. Solve only the upper
/// 2-by-2 matrix equation.
b2Vec2 Solve22(const b2Vec2& b) const;
/// Get the inverse of this matrix as a 2-by-2.
/// Returns the zero matrix if singular.
void GetInverse22(b2Mat33* M) const;
/// Get the symmetric inverse of this matrix as a 3-by-3.
/// Returns the zero matrix if singular.
void GetSymInverse33(b2Mat33* M) const;
b2Vec3 ex, ey, ez;
};
/// Rotation
struct b2Rot
{
b2Rot() {}
/// Initialize from an angle in radians
explicit b2Rot(float32 angle)
{
/// TODO_ERIN optimize
s = sinf(angle);
c = cosf(angle);
}
/// Set using an angle in radians.
void Set(float32 angle)
{
/// TODO_ERIN optimize
s = sinf(angle);
c = cosf(angle);
}
/// Set to the identity rotation
void SetIdentity()
{
s = 0.0f;
c = 1.0f;
}
/// Get the angle in radians
float32 GetAngle() const
{
return b2Atan2(s, c);
}
/// Get the x-axis
b2Vec2 GetXAxis() const
{
return b2Vec2(c, s);
}
/// Get the u-axis
b2Vec2 GetYAxis() const
{
return b2Vec2(-s, c);
}
/// Sine and cosine
float32 s, c;
};
/// A transform contains translation and rotation. It is used to represent
/// the position and orientation of rigid frames.
struct b2Transform
{
/// The default constructor does nothing.
b2Transform() {}
/// Initialize using a position vector and a rotation.
b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
/// Set this to the identity transform.
void SetIdentity()
{
p.SetZero();
q.SetIdentity();
}
/// Set this based on the position and angle.
void Set(const b2Vec2& position, float32 angle)
{
p = position;
q.Set(angle);
}
b2Vec2 p;
b2Rot q;
};
/// This describes the motion of a body/shape for TOI computation.
/// Shapes are defined with respect to the body origin, which may
/// no coincide with the center of mass. However, to support dynamics
/// we must interpolate the center of mass position.
struct b2Sweep
{
/// Get the interpolated transform at a specific time.
/// @param beta is a factor in [0,1], where 0 indicates alpha0.
void GetTransform(b2Transform* xfb, float32 beta) const;
/// Advance the sweep forward, yielding a new initial state.
/// @param alpha the new initial time.
void Advance(float32 alpha);
/// Normalize the angles.
void Normalize();
b2Vec2 localCenter; ///< local center of mass position
b2Vec2 c0, c; ///< center world positions
float32 a0, a; ///< world angles
/// Fraction of the current time step in the range [0,1]
/// c0 and a0 are the positions at alpha0.
float32 alpha0;
};
/// Useful constant
extern const b2Vec2 b2Vec2_zero;
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a vector and a scalar. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
{
return b2Vec2(s * a.y, -s * a.x);
}
/// Perform the cross product on a scalar and a vector. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
{
return b2Vec2(-s * a.y, s * a.x);
}
/// Multiply a matrix times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another.
inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
{
return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
}
/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another (inverse transform).
inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
{
return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
}
/// Add two vectors component-wise.
inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(a.x + b.x, a.y + b.y);
}
/// Subtract two vectors component-wise.
inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(a.x - b.x, a.y - b.y);
}
inline b2Vec2 operator * (float32 s, const b2Vec2& a)
{
return b2Vec2(s * a.x, s * a.y);
}
inline bool operator == (const b2Vec2& a, const b2Vec2& b)
{
return a.x == b.x && a.y == b.y;
}
inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
{
b2Vec2 c = a - b;
return c.Length();
}
inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
{
b2Vec2 c = a - b;
return b2Dot(c, c);
}
inline b2Vec3 operator * (float32 s, const b2Vec3& a)
{
return b2Vec3(s * a.x, s * a.y, s * a.z);
}
/// Add two vectors component-wise.
inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
}
/// Subtract two vectors component-wise.
inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
}
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
/// Perform the cross product on two vectors.
inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
{
return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
{
return b2Mat22(A.ex + B.ex, A.ey + B.ey);
}
// A * B
inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
{
return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
}
// A^T * B
inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
{
b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
return b2Mat22(c1, c2);
}
/// Multiply a matrix times a vector.
inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
{
return v.x * A.ex + v.y * A.ey + v.z * A.ez;
}
/// Multiply a matrix times a vector.
inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
{
return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
}
/// Multiply two rotations: q * r
inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
{
// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
// [qs qc] [rs rc] [qs*rc+qc*rs -qs*rs+qc*rc]
// s = qs * rc + qc * rs
// c = qc * rc - qs * rs
b2Rot qr;
qr.s = q.s * r.c + q.c * r.s;
qr.c = q.c * r.c - q.s * r.s;
return qr;
}
/// Transpose multiply two rotations: qT * r
inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
{
// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
// [-qs qc] [rs rc] [-qs*rc+qc*rs qs*rs+qc*rc]
// s = qc * rs - qs * rc
// c = qc * rc + qs * rs
b2Rot qr;
qr.s = q.c * r.s - q.s * r.c;
qr.c = q.c * r.c + q.s * r.s;
return qr;
}
/// Rotate a vector
inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
{
return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
}
/// Inverse rotate a vector
inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
{
return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
}
inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
{
float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
return b2Vec2(x, y);
}
inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
{
float32 px = v.x - T.p.x;
float32 py = v.y - T.p.y;
float32 x = (T.q.c * px + T.q.s * py);
float32 y = (-T.q.s * px + T.q.c * py);
return b2Vec2(x, y);
}
// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
// = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
{
b2Transform C;
C.q = b2Mul(A.q, B.q);
C.p = b2Mul(A.q, B.p) + A.p;
return C;
}
// v2 = A.q' * (B.q * v1 + B.p - A.p)
// = A.q' * B.q * v1 + A.q' * (B.p - A.p)
inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
{
b2Transform C;
C.q = b2MulT(A.q, B.q);
C.p = b2MulT(A.q, B.p - A.p);
return C;
}
template <typename T>
inline T b2Abs(T a)
{
return a > T(0) ? a : -a;
}
inline b2Vec2 b2Abs(const b2Vec2& a)
{
return b2Vec2(b2Abs(a.x), b2Abs(a.y));
}
inline b2Mat22 b2Abs(const b2Mat22& A)
{
return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
}
template <typename T>
inline T b2Min(T a, T b)
{
return a < b ? a : b;
}
inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
}
template <typename T>
inline T b2Max(T a, T b)
{
return a > b ? a : b;
}
inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
{
return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
}
template <typename T>
inline T b2Clamp(T a, T low, T high)
{
return b2Max(low, b2Min(a, high));
}
inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
{
return b2Max(low, b2Min(a, high));
}
template<typename T> inline void b2Swap(T& a, T& b)
{
T tmp = a;
a = b;
b = tmp;
}
/// "Next Largest Power of 2
/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
/// largest power of 2. For a 32-bit value:"
inline juce::uint32 b2NextPowerOfTwo(juce::uint32 x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
inline bool b2IsPowerOfTwo(juce::uint32 x)
{
bool result = x > 0 && (x & (x - 1)) == 0;
return result;
}
inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const
{
xf->p = (1.0f - beta) * c0 + beta * c;
float32 angle = (1.0f - beta) * a0 + beta * a;
xf->q.Set(angle);
// Shift to origin
xf->p -= b2Mul(xf->q, localCenter);
}
inline void b2Sweep::Advance(float32 alpha)
{
b2Assert(alpha0 < 1.0f);
float32 beta = (alpha - alpha0) / (1.0f - alpha0);
c0 = (1.0f - beta) * c0 + beta * c;
a0 = (1.0f - beta) * a0 + beta * a;
alpha0 = alpha;
}
/// Normalize an angle in radians to be between -pi and pi
inline void b2Sweep::Normalize()
{
float32 twoPi = 2.0f * b2_pi;
float32 d = twoPi * floorf(a0 / twoPi);
a0 -= d;
a -= d;
}
#endif