git subrepo clone --branch=sono6good https://github.com/essej/JUCE.git deps/juce
subrepo: subdir: "deps/juce" merged: "b13f9084e" upstream: origin: "https://github.com/essej/JUCE.git" branch: "sono6good" commit: "b13f9084e" git-subrepo: version: "0.4.3" origin: "https://github.com/ingydotnet/git-subrepo.git" commit: "2f68596"
This commit is contained in:
1297
deps/juce/modules/juce_dsp/frequency/juce_Convolution.cpp
vendored
Normal file
1297
deps/juce/modules/juce_dsp/frequency/juce_Convolution.cpp
vendored
Normal file
File diff suppressed because it is too large
Load Diff
310
deps/juce/modules/juce_dsp/frequency/juce_Convolution.h
vendored
Normal file
310
deps/juce/modules/juce_dsp/frequency/juce_Convolution.h
vendored
Normal file
@ -0,0 +1,310 @@
|
||||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library.
|
||||
Copyright (c) 2020 - Raw Material Software Limited
|
||||
|
||||
JUCE is an open source library subject to commercial or open-source
|
||||
licensing.
|
||||
|
||||
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
|
||||
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
|
||||
|
||||
End User License Agreement: www.juce.com/juce-6-licence
|
||||
Privacy Policy: www.juce.com/juce-privacy-policy
|
||||
|
||||
Or: You may also use this code under the terms of the GPL v3 (see
|
||||
www.gnu.org/licenses).
|
||||
|
||||
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
||||
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
||||
DISCLAIMED.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
namespace juce
|
||||
{
|
||||
namespace dsp
|
||||
{
|
||||
|
||||
/**
|
||||
Used by the Convolution to dispatch engine-update messages on a background
|
||||
thread.
|
||||
|
||||
May be shared between multiple Convolution instances.
|
||||
|
||||
@tags{DSP}
|
||||
*/
|
||||
class JUCE_API ConvolutionMessageQueue
|
||||
{
|
||||
public:
|
||||
/** Initialises the queue to a default size.
|
||||
|
||||
If your Convolution is updated very frequently, or you are sharing
|
||||
this queue between multiple Convolutions, consider using the alternative
|
||||
constructor taking an explicit size argument.
|
||||
*/
|
||||
ConvolutionMessageQueue();
|
||||
~ConvolutionMessageQueue() noexcept;
|
||||
|
||||
/** Initialises the queue with the specified number of entries.
|
||||
|
||||
In general, the number of required entries scales with the number
|
||||
of Convolutions sharing the same Queue, and the frequency of updates
|
||||
to those Convolutions.
|
||||
*/
|
||||
explicit ConvolutionMessageQueue (int numEntries);
|
||||
|
||||
ConvolutionMessageQueue (ConvolutionMessageQueue&&) noexcept;
|
||||
ConvolutionMessageQueue& operator= (ConvolutionMessageQueue&&) noexcept;
|
||||
|
||||
ConvolutionMessageQueue (const ConvolutionMessageQueue&) = delete;
|
||||
ConvolutionMessageQueue& operator= (const ConvolutionMessageQueue&) = delete;
|
||||
|
||||
private:
|
||||
struct Impl;
|
||||
std::unique_ptr<Impl> pimpl;
|
||||
|
||||
friend class Convolution;
|
||||
};
|
||||
|
||||
/**
|
||||
Performs stereo partitioned convolution of an input signal with an
|
||||
impulse response in the frequency domain, using the JUCE FFT class.
|
||||
|
||||
This class provides some thread-safe functions to load impulse responses
|
||||
from audio files or memory on-the-fly without noticeable artefacts,
|
||||
performing resampling and trimming if necessary.
|
||||
|
||||
The processing performed by this class is equivalent to the time domain
|
||||
convolution done in the FIRFilter class, with a FIRFilter::Coefficients
|
||||
object having the samples of the impulse response as its coefficients.
|
||||
However, in general it is more efficient to do frequency domain
|
||||
convolution when the size of the impulse response is 64 samples or
|
||||
greater.
|
||||
|
||||
Note: The default operation of this class uses zero latency and a uniform
|
||||
partitioned algorithm. If the impulse response size is large, or if the
|
||||
algorithm is too CPU intensive, it is possible to use either a fixed
|
||||
latency version of the algorithm, or a simple non-uniform partitioned
|
||||
convolution algorithm.
|
||||
|
||||
Threading: It is not safe to interleave calls to the methods of this
|
||||
class. If you need to load new impulse responses during processing the
|
||||
load() calls must be synchronised with process() calls, which in practice
|
||||
means making the load() call from the audio thread. The
|
||||
loadImpulseResponse() functions *are* wait-free and are therefore
|
||||
suitable for use in a realtime context.
|
||||
|
||||
@see FIRFilter, FIRFilter::Coefficients, FFT
|
||||
|
||||
@tags{DSP}
|
||||
*/
|
||||
class JUCE_API Convolution
|
||||
{
|
||||
public:
|
||||
//==============================================================================
|
||||
/** Initialises an object for performing convolution in the frequency domain. */
|
||||
Convolution();
|
||||
|
||||
/** Initialises a convolution engine using a shared background message queue.
|
||||
|
||||
IMPORTANT: the queue *must* remain alive throughout the lifetime of the
|
||||
Convolution.
|
||||
*/
|
||||
explicit Convolution (ConvolutionMessageQueue& queue);
|
||||
|
||||
/** Contains configuration information for a convolution with a fixed latency. */
|
||||
struct Latency { int latencyInSamples; };
|
||||
|
||||
/** Initialises an object for performing convolution with a fixed latency.
|
||||
|
||||
If the requested latency is zero, the actual latency will also be zero.
|
||||
For requested latencies greater than zero, the actual latency will
|
||||
always at least as large as the requested latency. Using a fixed
|
||||
non-zero latency can reduce the CPU consumption of the convolution
|
||||
algorithm.
|
||||
|
||||
@param requiredLatency the minimum latency
|
||||
*/
|
||||
explicit Convolution (const Latency& requiredLatency);
|
||||
|
||||
/** Contains configuration information for a non-uniform convolution. */
|
||||
struct NonUniform { int headSizeInSamples; };
|
||||
|
||||
/** Initialises an object for performing convolution in the frequency domain
|
||||
using a non-uniform partitioned algorithm.
|
||||
|
||||
A requiredHeadSize of 256 samples or greater will improve the
|
||||
efficiency of the processing for IR sizes of 4096 samples or greater
|
||||
(recommended for reverberation IRs).
|
||||
|
||||
@param requiredHeadSize the head IR size for two stage non-uniform
|
||||
partitioned convolution
|
||||
*/
|
||||
explicit Convolution (const NonUniform& requiredHeadSize);
|
||||
|
||||
/** Behaves the same as the constructor taking a single Latency argument,
|
||||
but with a shared background message queue.
|
||||
|
||||
IMPORTANT: the queue *must* remain alive throughout the lifetime of the
|
||||
Convolution.
|
||||
*/
|
||||
Convolution (const Latency&, ConvolutionMessageQueue&);
|
||||
|
||||
/** Behaves the same as the constructor taking a single NonUniform argument,
|
||||
but with a shared background message queue.
|
||||
|
||||
IMPORTANT: the queue *must* remain alive throughout the lifetime of the
|
||||
Convolution.
|
||||
*/
|
||||
Convolution (const NonUniform&, ConvolutionMessageQueue&);
|
||||
|
||||
~Convolution() noexcept;
|
||||
|
||||
//==============================================================================
|
||||
/** Must be called before first calling process.
|
||||
|
||||
In general, calls to loadImpulseResponse() load the impulse response (IR)
|
||||
asynchronously. The IR will become active once it has been completely loaded
|
||||
and processed, which may take some time.
|
||||
|
||||
Calling prepare() will ensure that the IR supplied to the most recent call to
|
||||
loadImpulseResponse() is fully initialised. This IR will then be active during
|
||||
the next call to process(). It is recommended to call loadImpulseResponse() *before*
|
||||
prepare() if a specific IR must be active during the first process() call.
|
||||
*/
|
||||
void prepare (const ProcessSpec&);
|
||||
|
||||
/** Resets the processing pipeline ready to start a new stream of data. */
|
||||
void reset() noexcept;
|
||||
|
||||
/** Performs the filter operation on the given set of samples with optional
|
||||
stereo processing.
|
||||
*/
|
||||
template <typename ProcessContext,
|
||||
std::enable_if_t<std::is_same<typename ProcessContext::SampleType, float>::value, int> = 0>
|
||||
void process (const ProcessContext& context) noexcept
|
||||
{
|
||||
processSamples (context.getInputBlock(), context.getOutputBlock(), context.isBypassed);
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
enum class Stereo { no, yes };
|
||||
enum class Trim { no, yes };
|
||||
enum class Normalise { no, yes };
|
||||
|
||||
//==============================================================================
|
||||
/** This function loads an impulse response audio file from memory, added in a
|
||||
JUCE project with the Projucer as binary data. It can load any of the audio
|
||||
formats registered in JUCE, and performs some resampling and pre-processing
|
||||
as well if needed.
|
||||
|
||||
Note: Don't try to use this function on float samples, since the data is
|
||||
expected to be an audio file in its binary format. Be sure that the original
|
||||
data remains constant throughout the lifetime of the Convolution object, as
|
||||
the loading process will happen on a background thread once this function has
|
||||
returned.
|
||||
|
||||
@param sourceData the block of data to use as the stream's source
|
||||
@param sourceDataSize the number of bytes in the source data block
|
||||
@param isStereo selects either stereo or mono
|
||||
@param requiresTrimming optionally trim the start and the end of the impulse response
|
||||
@param size the expected size for the impulse response after loading, can be
|
||||
set to 0 to requesting the original impulse response size
|
||||
@param requiresNormalisation optionally normalise the impulse response amplitude
|
||||
*/
|
||||
void loadImpulseResponse (const void* sourceData, size_t sourceDataSize,
|
||||
Stereo isStereo, Trim requiresTrimming, size_t size,
|
||||
Normalise requiresNormalisation = Normalise::yes);
|
||||
|
||||
/** This function loads an impulse response from an audio file. It can load any
|
||||
of the audio formats registered in JUCE, and performs some resampling and
|
||||
pre-processing as well if needed.
|
||||
|
||||
@param fileImpulseResponse the location of the audio file
|
||||
@param isStereo selects either stereo or mono
|
||||
@param requiresTrimming optionally trim the start and the end of the impulse response
|
||||
@param size the expected size for the impulse response after loading, can be
|
||||
set to 0 to requesting the original impulse response size
|
||||
@param requiresNormalisation optionally normalise the impulse response amplitude
|
||||
*/
|
||||
void loadImpulseResponse (const File& fileImpulseResponse,
|
||||
Stereo isStereo, Trim requiresTrimming, size_t size,
|
||||
Normalise requiresNormalisation = Normalise::yes);
|
||||
|
||||
/** This function loads an impulse response from an audio buffer.
|
||||
To avoid memory allocation on the audio thread, this function takes
|
||||
ownership of the buffer passed in.
|
||||
|
||||
If calling this function during processing, make sure that the buffer is
|
||||
not allocated on the audio thread (be careful of accidental copies!).
|
||||
If you need to pass arbitrary/generated buffers it's recommended to
|
||||
create these buffers on a separate thread and to use some wait-free
|
||||
construct (a lock-free queue or a SpinLock/GenericScopedTryLock combination)
|
||||
to transfer ownership to the audio thread without allocating.
|
||||
|
||||
@param buffer the AudioBuffer to use
|
||||
@param bufferSampleRate the sampleRate of the data in the AudioBuffer
|
||||
@param isStereo selects either stereo or mono
|
||||
@param requiresTrimming optionally trim the start and the end of the impulse response
|
||||
@param requiresNormalisation optionally normalise the impulse response amplitude
|
||||
*/
|
||||
void loadImpulseResponse (AudioBuffer<float>&& buffer, double bufferSampleRate,
|
||||
Stereo isStereo, Trim requiresTrimming, Normalise requiresNormalisation);
|
||||
|
||||
/** This function returns the size of the current IR in samples. */
|
||||
int getCurrentIRSize() const;
|
||||
|
||||
/** This function returns the current latency of the process in samples.
|
||||
|
||||
Note: This is the latency of the convolution engine, not the latency
|
||||
associated with the current impulse response choice that has to be
|
||||
considered separately (linear phase filters, for example).
|
||||
*/
|
||||
int getLatency() const;
|
||||
|
||||
private:
|
||||
//==============================================================================
|
||||
Convolution (const Latency&,
|
||||
const NonUniform&,
|
||||
OptionalScopedPointer<ConvolutionMessageQueue>&&);
|
||||
|
||||
void processSamples (const AudioBlock<const float>&, AudioBlock<float>&, bool isBypassed) noexcept;
|
||||
|
||||
class Mixer
|
||||
{
|
||||
public:
|
||||
void prepare (const ProcessSpec&);
|
||||
|
||||
template <typename ProcessWet>
|
||||
void processSamples (const AudioBlock<const float>&,
|
||||
AudioBlock<float>&,
|
||||
bool isBypassed,
|
||||
ProcessWet&&) noexcept;
|
||||
|
||||
void reset();
|
||||
|
||||
private:
|
||||
std::array<SmoothedValue<float>, 2> volumeDry, volumeWet;
|
||||
AudioBlock<float> dryBlock;
|
||||
HeapBlock<char> dryBlockStorage;
|
||||
double sampleRate = 0;
|
||||
bool currentIsBypassed = false;
|
||||
};
|
||||
|
||||
//==============================================================================
|
||||
class Impl;
|
||||
std::unique_ptr<Impl> pimpl;
|
||||
|
||||
//==============================================================================
|
||||
Mixer mixer;
|
||||
bool isActive = false;
|
||||
|
||||
//==============================================================================
|
||||
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (Convolution)
|
||||
};
|
||||
|
||||
} // namespace dsp
|
||||
} // namespace juce
|
581
deps/juce/modules/juce_dsp/frequency/juce_Convolution_test.cpp
vendored
Normal file
581
deps/juce/modules/juce_dsp/frequency/juce_Convolution_test.cpp
vendored
Normal file
@ -0,0 +1,581 @@
|
||||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library.
|
||||
Copyright (c) 2020 - Raw Material Software Limited
|
||||
|
||||
JUCE is an open source library subject to commercial or open-source
|
||||
licensing.
|
||||
|
||||
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
|
||||
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
|
||||
|
||||
End User License Agreement: www.juce.com/juce-6-licence
|
||||
Privacy Policy: www.juce.com/juce-privacy-policy
|
||||
|
||||
Or: You may also use this code under the terms of the GPL v3 (see
|
||||
www.gnu.org/licenses).
|
||||
|
||||
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
||||
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
||||
DISCLAIMED.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
#if JUCE_ENABLE_ALLOCATION_HOOKS
|
||||
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE const UnitTestAllocationChecker checker (*this)
|
||||
#else
|
||||
#define JUCE_FAIL_ON_ALLOCATION_IN_SCOPE
|
||||
#endif
|
||||
|
||||
namespace juce
|
||||
{
|
||||
namespace dsp
|
||||
{
|
||||
namespace
|
||||
{
|
||||
|
||||
class ConvolutionTest : public UnitTest
|
||||
{
|
||||
template <typename Callback>
|
||||
static void nTimes (int n, Callback&& callback)
|
||||
{
|
||||
for (auto i = 0; i < n; ++i)
|
||||
callback();
|
||||
}
|
||||
|
||||
static AudioBuffer<float> makeRamp (int length)
|
||||
{
|
||||
AudioBuffer<float> result (1, length);
|
||||
result.clear();
|
||||
|
||||
const auto writePtr = result.getWritePointer (0);
|
||||
std::fill (writePtr, writePtr + length, 1.0f);
|
||||
result.applyGainRamp (0, length, 1.0f, 0.0f);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static AudioBuffer<float> makeStereoRamp (int length)
|
||||
{
|
||||
AudioBuffer<float> result (2, length);
|
||||
result.clear();
|
||||
|
||||
auto** channels = result.getArrayOfWritePointers();
|
||||
std::for_each (channels, channels + result.getNumChannels(), [length] (auto* channel)
|
||||
{
|
||||
std::fill (channel, channel + length, 1.0f);
|
||||
});
|
||||
|
||||
result.applyGainRamp (0, 0, length, 1.0f, 0.0f);
|
||||
result.applyGainRamp (1, 0, length, 0.0f, 1.0f);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void addDiracImpulse (const AudioBlock<float>& block)
|
||||
{
|
||||
block.clear();
|
||||
|
||||
for (size_t channel = 0; channel != block.getNumChannels(); ++channel)
|
||||
block.setSample ((int) channel, 0, 1.0f);
|
||||
}
|
||||
|
||||
void checkForNans (const AudioBlock<float>& block)
|
||||
{
|
||||
for (size_t channel = 0; channel != block.getNumChannels(); ++channel)
|
||||
for (size_t sample = 0; sample != block.getNumSamples(); ++sample)
|
||||
expect (! std::isnan (block.getSample ((int) channel, (int) sample)));
|
||||
}
|
||||
|
||||
void checkAllChannelsNonZero (const AudioBlock<float>& block)
|
||||
{
|
||||
for (size_t i = 0; i != block.getNumChannels(); ++i)
|
||||
{
|
||||
const auto* channel = block.getChannelPointer (i);
|
||||
|
||||
expect (std::any_of (channel, channel + block.getNumSamples(), [] (float sample)
|
||||
{
|
||||
return sample != 0.0f;
|
||||
}));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void nonAllocatingExpectWithinAbsoluteError (const T& a, const T& b, const T& error)
|
||||
{
|
||||
expect (std::abs (a - b) < error);
|
||||
}
|
||||
|
||||
enum class InitSequence { prepareThenLoad, loadThenPrepare };
|
||||
|
||||
void checkLatency (const Convolution& convolution, const Convolution::Latency& latency)
|
||||
{
|
||||
const auto reportedLatency = convolution.getLatency();
|
||||
|
||||
if (latency.latencyInSamples == 0)
|
||||
expect (reportedLatency == 0);
|
||||
|
||||
expect (reportedLatency >= latency.latencyInSamples);
|
||||
}
|
||||
|
||||
void checkLatency (const Convolution&, const Convolution::NonUniform&) {}
|
||||
|
||||
template <typename ConvolutionConfig>
|
||||
void testConvolution (const ProcessSpec& spec,
|
||||
const ConvolutionConfig& config,
|
||||
const AudioBuffer<float>& ir,
|
||||
double irSampleRate,
|
||||
Convolution::Stereo stereo,
|
||||
Convolution::Trim trim,
|
||||
Convolution::Normalise normalise,
|
||||
const AudioBlock<const float>& expectedResult,
|
||||
InitSequence initSequence)
|
||||
{
|
||||
AudioBuffer<float> buffer (static_cast<int> (spec.numChannels),
|
||||
static_cast<int> (spec.maximumBlockSize));
|
||||
AudioBlock<float> block { buffer };
|
||||
ProcessContextReplacing<float> context { block };
|
||||
|
||||
const auto numBlocksPerSecond = (int) std::ceil (spec.sampleRate / spec.maximumBlockSize);
|
||||
const auto numBlocksForImpulse = (int) std::ceil ((double) expectedResult.getNumSamples() / spec.maximumBlockSize);
|
||||
|
||||
AudioBuffer<float> outBuffer (static_cast<int> (spec.numChannels),
|
||||
numBlocksForImpulse * static_cast<int> (spec.maximumBlockSize));
|
||||
|
||||
Convolution convolution (config);
|
||||
|
||||
auto copiedIr = ir;
|
||||
|
||||
if (initSequence == InitSequence::loadThenPrepare)
|
||||
convolution.loadImpulseResponse (std::move (copiedIr), irSampleRate, stereo, trim, normalise);
|
||||
|
||||
convolution.prepare (spec);
|
||||
|
||||
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
|
||||
|
||||
if (initSequence == InitSequence::prepareThenLoad)
|
||||
convolution.loadImpulseResponse (std::move (copiedIr), irSampleRate, stereo, trim, normalise);
|
||||
|
||||
checkLatency (convolution, config);
|
||||
|
||||
auto processBlocksWithDiracImpulse = [&]
|
||||
{
|
||||
for (auto i = 0; i != numBlocksForImpulse; ++i)
|
||||
{
|
||||
if (i == 0)
|
||||
addDiracImpulse (block);
|
||||
else
|
||||
block.clear();
|
||||
|
||||
convolution.process (context);
|
||||
|
||||
for (auto c = 0; c != static_cast<int> (spec.numChannels); ++c)
|
||||
{
|
||||
outBuffer.copyFrom (c,
|
||||
i * static_cast<int> (spec.maximumBlockSize),
|
||||
block.getChannelPointer (static_cast<size_t> (c)),
|
||||
static_cast<int> (spec.maximumBlockSize));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// If we load an IR while the convolution is already running, we'll need to wait
|
||||
// for it to be loaded on a background thread
|
||||
if (initSequence == InitSequence::prepareThenLoad)
|
||||
{
|
||||
const auto time = Time::getMillisecondCounter();
|
||||
|
||||
// Wait 10 seconds to load the impulse response
|
||||
while (Time::getMillisecondCounter() - time < 10'000)
|
||||
{
|
||||
processBlocksWithDiracImpulse();
|
||||
|
||||
// Check if the impulse response was loaded
|
||||
if (block.getSample (0, 1) != 0.0f)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, our convolution should be loaded and the current IR size should
|
||||
// match the expected result size
|
||||
expect (convolution.getCurrentIRSize() == static_cast<int> (expectedResult.getNumSamples()));
|
||||
|
||||
// Make sure we get any smoothing out of the way
|
||||
nTimes (numBlocksPerSecond, processBlocksWithDiracImpulse);
|
||||
|
||||
nTimes (5, [&]
|
||||
{
|
||||
processBlocksWithDiracImpulse();
|
||||
|
||||
const auto actualLatency = static_cast<size_t> (convolution.getLatency());
|
||||
|
||||
// The output should be the same as the IR
|
||||
for (size_t c = 0; c != static_cast<size_t> (expectedResult.getNumChannels()); ++c)
|
||||
{
|
||||
for (size_t i = 0; i != static_cast<size_t> (expectedResult.getNumSamples()); ++i)
|
||||
{
|
||||
const auto equivalentSample = i + actualLatency;
|
||||
|
||||
if (static_cast<int> (equivalentSample) >= outBuffer.getNumSamples())
|
||||
continue;
|
||||
|
||||
nonAllocatingExpectWithinAbsoluteError (outBuffer.getSample ((int) c, (int) equivalentSample),
|
||||
expectedResult.getSample ((int) c, (int) i),
|
||||
0.01f);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template <typename ConvolutionConfig>
|
||||
void testConvolution (const ProcessSpec& spec,
|
||||
const ConvolutionConfig& config,
|
||||
const AudioBuffer<float>& ir,
|
||||
double irSampleRate,
|
||||
Convolution::Stereo stereo,
|
||||
Convolution::Trim trim,
|
||||
Convolution::Normalise normalise,
|
||||
const AudioBlock<const float>& expectedResult)
|
||||
{
|
||||
for (const auto sequence : { InitSequence::prepareThenLoad, InitSequence::loadThenPrepare })
|
||||
testConvolution (spec, config, ir, irSampleRate, stereo, trim, normalise, expectedResult, sequence);
|
||||
}
|
||||
|
||||
public:
|
||||
ConvolutionTest()
|
||||
: UnitTest ("Convolution", UnitTestCategories::dsp)
|
||||
{}
|
||||
|
||||
void runTest() override
|
||||
{
|
||||
const ProcessSpec spec { 44100.0, 512, 2 };
|
||||
AudioBuffer<float> buffer (static_cast<int> (spec.numChannels),
|
||||
static_cast<int> (spec.maximumBlockSize));
|
||||
AudioBlock<float> block { buffer };
|
||||
ProcessContextReplacing<float> context { block };
|
||||
|
||||
const auto impulseData = []
|
||||
{
|
||||
Random random;
|
||||
AudioBuffer<float> result (2, 1000);
|
||||
|
||||
for (auto channel = 0; channel != result.getNumChannels(); ++channel)
|
||||
for (auto sample = 0; sample != result.getNumSamples(); ++sample)
|
||||
result.setSample (channel, sample, random.nextFloat());
|
||||
|
||||
return result;
|
||||
}();
|
||||
|
||||
beginTest ("Impulse responses can be loaded without allocating on the audio thread");
|
||||
{
|
||||
Convolution convolution;
|
||||
convolution.prepare (spec);
|
||||
|
||||
auto copy = impulseData;
|
||||
|
||||
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
|
||||
|
||||
nTimes (100, [&]
|
||||
{
|
||||
convolution.loadImpulseResponse (std::move (copy),
|
||||
1000,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no);
|
||||
addDiracImpulse (block);
|
||||
convolution.process (context);
|
||||
checkForNans (block);
|
||||
});
|
||||
}
|
||||
|
||||
beginTest ("Convolution can be reset without allocating on the audio thread");
|
||||
{
|
||||
Convolution convolution;
|
||||
convolution.prepare (spec);
|
||||
|
||||
auto copy = impulseData;
|
||||
|
||||
convolution.loadImpulseResponse (std::move (copy),
|
||||
1000,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::yes);
|
||||
|
||||
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
|
||||
|
||||
nTimes (100, [&]
|
||||
{
|
||||
addDiracImpulse (block);
|
||||
convolution.reset();
|
||||
convolution.process (context);
|
||||
convolution.reset();
|
||||
});
|
||||
|
||||
checkForNans (block);
|
||||
}
|
||||
|
||||
beginTest ("Completely empty IRs don't crash");
|
||||
{
|
||||
AudioBuffer<float> emptyBuffer;
|
||||
|
||||
Convolution convolution;
|
||||
convolution.prepare (spec);
|
||||
|
||||
auto copy = impulseData;
|
||||
|
||||
convolution.loadImpulseResponse (std::move (copy),
|
||||
2000,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::yes);
|
||||
|
||||
JUCE_FAIL_ON_ALLOCATION_IN_SCOPE;
|
||||
|
||||
nTimes (100, [&]
|
||||
{
|
||||
addDiracImpulse (block);
|
||||
convolution.reset();
|
||||
convolution.process (context);
|
||||
convolution.reset();
|
||||
});
|
||||
|
||||
checkForNans (block);
|
||||
}
|
||||
|
||||
beginTest ("Convolutions can cope with a change in samplerate and blocksize");
|
||||
{
|
||||
Convolution convolution;
|
||||
|
||||
auto copy = impulseData;
|
||||
convolution.loadImpulseResponse (std::move (copy),
|
||||
2000,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::no,
|
||||
Convolution::Normalise::yes);
|
||||
|
||||
const dsp::ProcessSpec specs[] = { { 96'000.0, 1024, 2 },
|
||||
{ 48'000.0, 512, 2 },
|
||||
{ 44'100.0, 256, 2 } };
|
||||
|
||||
for (const auto& thisSpec : specs)
|
||||
{
|
||||
convolution.prepare (thisSpec);
|
||||
|
||||
expectWithinAbsoluteError ((double) convolution.getCurrentIRSize(),
|
||||
thisSpec.sampleRate * 0.5,
|
||||
1.0);
|
||||
|
||||
juce::AudioBuffer<float> thisBuffer ((int) thisSpec.numChannels,
|
||||
(int) thisSpec.maximumBlockSize);
|
||||
AudioBlock<float> thisBlock { thisBuffer };
|
||||
ProcessContextReplacing<float> thisContext { thisBlock };
|
||||
|
||||
nTimes (100, [&]
|
||||
{
|
||||
addDiracImpulse (thisBlock);
|
||||
convolution.process (thisContext);
|
||||
|
||||
checkForNans (thisBlock);
|
||||
checkAllChannelsNonZero (thisBlock);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
beginTest ("Short uniform convolutions work");
|
||||
{
|
||||
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) / 2);
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { 0 },
|
||||
ramp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
ramp);
|
||||
}
|
||||
|
||||
beginTest ("Longer uniform convolutions work");
|
||||
{
|
||||
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { 0 },
|
||||
ramp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
ramp);
|
||||
}
|
||||
|
||||
beginTest ("Normalisation works");
|
||||
{
|
||||
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
|
||||
|
||||
auto copy = ramp;
|
||||
const auto channels = copy.getArrayOfWritePointers();
|
||||
const auto numChannels = copy.getNumChannels();
|
||||
const auto numSamples = copy.getNumSamples();
|
||||
|
||||
const auto factor = 0.125f / std::sqrt (std::accumulate (channels, channels + numChannels, 0.0f,
|
||||
[numSamples] (auto max, auto* channel)
|
||||
{
|
||||
return juce::jmax (max, std::accumulate (channel, channel + numSamples, 0.0f,
|
||||
[] (auto sum, auto sample)
|
||||
{
|
||||
return sum + sample * sample;
|
||||
}));
|
||||
}));
|
||||
|
||||
std::for_each (channels, channels + numChannels, [factor, numSamples] (auto* channel)
|
||||
{
|
||||
FloatVectorOperations::multiply (channel, factor, numSamples);
|
||||
});
|
||||
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { 0 },
|
||||
ramp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::yes,
|
||||
copy);
|
||||
}
|
||||
|
||||
beginTest ("Stereo convolutions work");
|
||||
{
|
||||
const auto ramp = makeStereoRamp (static_cast<int> (spec.maximumBlockSize) * 5);
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { 0 },
|
||||
ramp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
ramp);
|
||||
}
|
||||
|
||||
beginTest ("Stereo IRs only use first channel if stereo is disabled");
|
||||
{
|
||||
const auto length = static_cast<int> (spec.maximumBlockSize) * 5;
|
||||
const auto ramp = makeStereoRamp (length);
|
||||
|
||||
const float* channels[] { ramp.getReadPointer (0), ramp.getReadPointer (0) };
|
||||
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { 0 },
|
||||
ramp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::no,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
AudioBlock<const float> (channels, numElementsInArray (channels), length));
|
||||
}
|
||||
|
||||
beginTest ("IRs with extra silence are trimmed appropriately");
|
||||
{
|
||||
const auto length = static_cast<int> (spec.maximumBlockSize) * 3;
|
||||
const auto ramp = makeRamp (length);
|
||||
AudioBuffer<float> paddedRamp (ramp.getNumChannels(), ramp.getNumSamples() * 2);
|
||||
paddedRamp.clear();
|
||||
|
||||
const auto offset = (paddedRamp.getNumSamples() - ramp.getNumSamples()) / 2;
|
||||
|
||||
for (auto channel = 0; channel != ramp.getNumChannels(); ++channel)
|
||||
paddedRamp.copyFrom (channel, offset, ramp.getReadPointer (channel), length);
|
||||
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { 0 },
|
||||
paddedRamp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::no,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
ramp);
|
||||
}
|
||||
|
||||
beginTest ("IRs are resampled if their sample rate is different to the playback rate");
|
||||
{
|
||||
for (const auto resampleRatio : { 0.1, 0.5, 2.0, 10.0 })
|
||||
{
|
||||
const auto length = static_cast<int> (spec.maximumBlockSize) * 2;
|
||||
const auto ramp = makeStereoRamp (length);
|
||||
|
||||
const auto resampled = [&]
|
||||
{
|
||||
AudioBuffer<float> original = ramp;
|
||||
MemoryAudioSource memorySource (original, false);
|
||||
ResamplingAudioSource resamplingSource (&memorySource, false, original.getNumChannels());
|
||||
|
||||
const auto finalSize = roundToInt (original.getNumSamples() / resampleRatio);
|
||||
resamplingSource.setResamplingRatio (resampleRatio);
|
||||
resamplingSource.prepareToPlay (finalSize, spec.sampleRate * resampleRatio);
|
||||
|
||||
AudioBuffer<float> result (original.getNumChannels(), finalSize);
|
||||
resamplingSource.getNextAudioBlock ({ &result, 0, result.getNumSamples() });
|
||||
|
||||
result.applyGain ((float) resampleRatio);
|
||||
|
||||
return result;
|
||||
}();
|
||||
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { 0 },
|
||||
ramp,
|
||||
spec.sampleRate * resampleRatio,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
resampled);
|
||||
}
|
||||
}
|
||||
|
||||
beginTest ("Non-uniform convolutions work");
|
||||
{
|
||||
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
|
||||
|
||||
for (auto headSize : { spec.maximumBlockSize / 2, spec.maximumBlockSize, spec.maximumBlockSize * 9 })
|
||||
{
|
||||
testConvolution (spec,
|
||||
Convolution::NonUniform { static_cast<int> (headSize) },
|
||||
ramp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
ramp);
|
||||
}
|
||||
}
|
||||
|
||||
beginTest ("Convolutions with latency work");
|
||||
{
|
||||
const auto ramp = makeRamp (static_cast<int> (spec.maximumBlockSize) * 8);
|
||||
using BlockSize = decltype (spec.maximumBlockSize);
|
||||
|
||||
for (auto latency : { static_cast<BlockSize> (0),
|
||||
spec.maximumBlockSize / 3,
|
||||
spec.maximumBlockSize,
|
||||
spec.maximumBlockSize * 2,
|
||||
static_cast<BlockSize> (spec.maximumBlockSize * 2.5) })
|
||||
{
|
||||
testConvolution (spec,
|
||||
Convolution::Latency { static_cast<int> (latency) },
|
||||
ramp,
|
||||
spec.sampleRate,
|
||||
Convolution::Stereo::yes,
|
||||
Convolution::Trim::yes,
|
||||
Convolution::Normalise::no,
|
||||
ramp);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
ConvolutionTest convolutionUnitTest;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef JUCE_FAIL_ON_ALLOCATION_IN_SCOPE
|
1002
deps/juce/modules/juce_dsp/frequency/juce_FFT.cpp
vendored
Normal file
1002
deps/juce/modules/juce_dsp/frequency/juce_FFT.cpp
vendored
Normal file
File diff suppressed because it is too large
Load Diff
127
deps/juce/modules/juce_dsp/frequency/juce_FFT.h
vendored
Normal file
127
deps/juce/modules/juce_dsp/frequency/juce_FFT.h
vendored
Normal file
@ -0,0 +1,127 @@
|
||||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library.
|
||||
Copyright (c) 2020 - Raw Material Software Limited
|
||||
|
||||
JUCE is an open source library subject to commercial or open-source
|
||||
licensing.
|
||||
|
||||
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
|
||||
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
|
||||
|
||||
End User License Agreement: www.juce.com/juce-6-licence
|
||||
Privacy Policy: www.juce.com/juce-privacy-policy
|
||||
|
||||
Or: You may also use this code under the terms of the GPL v3 (see
|
||||
www.gnu.org/licenses).
|
||||
|
||||
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
||||
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
||||
DISCLAIMED.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
namespace juce
|
||||
{
|
||||
namespace dsp
|
||||
{
|
||||
|
||||
/**
|
||||
Performs a fast fourier transform.
|
||||
|
||||
This is only a simple low-footprint implementation and isn't tuned for speed - it may
|
||||
be useful for simple applications where one of the more complex FFT libraries would be
|
||||
overkill. (But in the future it may end up becoming optimised of course...)
|
||||
|
||||
The FFT class itself contains lookup tables, so there's some overhead in creating
|
||||
one, you should create and cache an FFT object for each size/direction of transform
|
||||
that you need, and re-use them to perform the actual operation.
|
||||
|
||||
@tags{DSP}
|
||||
*/
|
||||
class JUCE_API FFT
|
||||
{
|
||||
public:
|
||||
//==============================================================================
|
||||
/** Initialises an object for performing forward and inverse FFT with the given size.
|
||||
The number of points the FFT will operate on will be 2 ^ order.
|
||||
*/
|
||||
FFT (int order);
|
||||
|
||||
/** Move constructor. */
|
||||
FFT (FFT&&) noexcept;
|
||||
|
||||
/** Move assignment operator. */
|
||||
FFT& operator= (FFT&&) noexcept;
|
||||
|
||||
/** Destructor. */
|
||||
~FFT();
|
||||
|
||||
//==============================================================================
|
||||
/** Performs an out-of-place FFT, either forward or inverse.
|
||||
The arrays must contain at least getSize() elements.
|
||||
*/
|
||||
void perform (const Complex<float>* input, Complex<float>* output, bool inverse) const noexcept;
|
||||
|
||||
/** Performs an in-place forward transform on a block of real data.
|
||||
|
||||
As the coefficients of the negative frequencies (frequencies higher than
|
||||
N/2 or pi) are the complex conjugate of their positive counterparts,
|
||||
it may not be necessary to calculate them for your particular application.
|
||||
You can use dontCalculateNegativeFrequencies to let the FFT
|
||||
engine know that you do not plan on using them. Note that this is only a
|
||||
hint: some FFT engines (currently only the Fallback engine), will still
|
||||
calculate the negative frequencies even if dontCalculateNegativeFrequencies
|
||||
is true.
|
||||
|
||||
The size of the array passed in must be 2 * getSize(), and the first half
|
||||
should contain your raw input sample data. On return, if
|
||||
dontCalculateNegativeFrequencies is false, the array will contain size
|
||||
complex real + imaginary parts data interleaved. If
|
||||
dontCalculateNegativeFrequencies is true, the array will contain at least
|
||||
(size / 2) + 1 complex numbers. Both outputs can be passed to
|
||||
performRealOnlyInverseTransform() in order to convert it back to reals.
|
||||
*/
|
||||
void performRealOnlyForwardTransform (float* inputOutputData,
|
||||
bool dontCalculateNegativeFrequencies = false) const noexcept;
|
||||
|
||||
/** Performs a reverse operation to data created in performRealOnlyForwardTransform().
|
||||
|
||||
Although performRealOnlyInverseTransform will only use the first ((size / 2) + 1)
|
||||
complex numbers, the size of the array passed in must still be 2 * getSize(), as some
|
||||
FFT engines require the extra space for the calculation. On return, the first half of the
|
||||
array will contain the reconstituted samples.
|
||||
*/
|
||||
void performRealOnlyInverseTransform (float* inputOutputData) const noexcept;
|
||||
|
||||
/** Takes an array and simply transforms it to the magnitude frequency response
|
||||
spectrum. This may be handy for things like frequency displays or analysis.
|
||||
The size of the array passed in must be 2 * getSize().
|
||||
*/
|
||||
void performFrequencyOnlyForwardTransform (float* inputOutputData) const noexcept;
|
||||
|
||||
/** Returns the number of data points that this FFT was created to work with. */
|
||||
int getSize() const noexcept { return size; }
|
||||
|
||||
//==============================================================================
|
||||
#ifndef DOXYGEN
|
||||
/* internal */
|
||||
struct Instance;
|
||||
template <typename> struct EngineImpl;
|
||||
#endif
|
||||
|
||||
private:
|
||||
//==============================================================================
|
||||
struct Engine;
|
||||
|
||||
std::unique_ptr<Instance> engine;
|
||||
int size;
|
||||
|
||||
//==============================================================================
|
||||
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (FFT)
|
||||
};
|
||||
|
||||
} // namespace dsp
|
||||
} // namespace juce
|
214
deps/juce/modules/juce_dsp/frequency/juce_FFT_test.cpp
vendored
Normal file
214
deps/juce/modules/juce_dsp/frequency/juce_FFT_test.cpp
vendored
Normal file
@ -0,0 +1,214 @@
|
||||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library.
|
||||
Copyright (c) 2020 - Raw Material Software Limited
|
||||
|
||||
JUCE is an open source library subject to commercial or open-source
|
||||
licensing.
|
||||
|
||||
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
|
||||
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
|
||||
|
||||
End User License Agreement: www.juce.com/juce-6-licence
|
||||
Privacy Policy: www.juce.com/juce-privacy-policy
|
||||
|
||||
Or: You may also use this code under the terms of the GPL v3 (see
|
||||
www.gnu.org/licenses).
|
||||
|
||||
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
||||
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
||||
DISCLAIMED.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
namespace juce
|
||||
{
|
||||
namespace dsp
|
||||
{
|
||||
|
||||
struct FFTUnitTest : public UnitTest
|
||||
{
|
||||
FFTUnitTest()
|
||||
: UnitTest ("FFT", UnitTestCategories::dsp)
|
||||
{}
|
||||
|
||||
static void fillRandom (Random& random, Complex<float>* buffer, size_t n)
|
||||
{
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
buffer[i] = Complex<float> ((2.0f * random.nextFloat()) - 1.0f,
|
||||
(2.0f * random.nextFloat()) - 1.0f);
|
||||
}
|
||||
|
||||
static void fillRandom (Random& random, float* buffer, size_t n)
|
||||
{
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
buffer[i] = (2.0f * random.nextFloat()) - 1.0f;
|
||||
}
|
||||
|
||||
static Complex<float> freqConvolution (const Complex<float>* in, float freq, size_t n)
|
||||
{
|
||||
Complex<float> sum (0.0, 0.0);
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
sum += in[i] * exp (Complex<float> (0, static_cast<float> (i) * freq));
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
static void performReferenceFourier (const Complex<float>* in, Complex<float>* out,
|
||||
size_t n, bool reverse)
|
||||
{
|
||||
auto base_freq = static_cast<float> (((reverse ? 1.0 : -1.0) * MathConstants<double>::twoPi)
|
||||
/ static_cast<float> (n));
|
||||
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
out[i] = freqConvolution (in, static_cast<float>(i) * base_freq, n);
|
||||
}
|
||||
|
||||
static void performReferenceFourier (const float* in, Complex<float>* out,
|
||||
size_t n, bool reverse)
|
||||
{
|
||||
HeapBlock<Complex<float>> buffer (n);
|
||||
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
buffer.getData()[i] = Complex<float> (in[i], 0.0f);
|
||||
|
||||
float base_freq = static_cast<float> (((reverse ? 1.0 : -1.0) * MathConstants<double>::twoPi)
|
||||
/ static_cast<float> (n));
|
||||
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
out[i] = freqConvolution (buffer.getData(), static_cast<float>(i) * base_freq, n);
|
||||
}
|
||||
|
||||
|
||||
//==============================================================================
|
||||
template <typename Type>
|
||||
static bool checkArrayIsSimilar (Type* a, Type* b, size_t n) noexcept
|
||||
{
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
if (std::abs (a[i] - b[i]) > 1e-3f)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct RealTest
|
||||
{
|
||||
static void run (FFTUnitTest& u)
|
||||
{
|
||||
Random random (378272);
|
||||
|
||||
for (size_t order = 0; order <= 8; ++order)
|
||||
{
|
||||
auto n = (1u << order);
|
||||
|
||||
FFT fft ((int) order);
|
||||
|
||||
HeapBlock<float> input (n);
|
||||
HeapBlock<Complex<float>> reference (n), output (n);
|
||||
|
||||
fillRandom (random, input.getData(), n);
|
||||
performReferenceFourier (input.getData(), reference.getData(), n, false);
|
||||
|
||||
// fill only first half with real numbers
|
||||
zeromem (output.getData(), n * sizeof (Complex<float>));
|
||||
memcpy (reinterpret_cast<float*> (output.getData()), input.getData(), n * sizeof (float));
|
||||
|
||||
fft.performRealOnlyForwardTransform ((float*) output.getData());
|
||||
u.expect (checkArrayIsSimilar (reference.getData(), output.getData(), n));
|
||||
|
||||
// fill only first half with real numbers
|
||||
zeromem (output.getData(), n * sizeof (Complex<float>));
|
||||
memcpy (reinterpret_cast<float*> (output.getData()), input.getData(), n * sizeof (float));
|
||||
|
||||
fft.performRealOnlyForwardTransform ((float*) output.getData(), true);
|
||||
std::fill (reference.getData() + ((n >> 1) + 1), reference.getData() + n, std::complex<float> (0.0f));
|
||||
u.expect (checkArrayIsSimilar (reference.getData(), output.getData(), (n >> 1) + 1));
|
||||
|
||||
memcpy (output.getData(), reference.getData(), n * sizeof (Complex<float>));
|
||||
fft.performRealOnlyInverseTransform ((float*) output.getData());
|
||||
u.expect (checkArrayIsSimilar ((float*) output.getData(), input.getData(), n));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct FrequencyOnlyTest
|
||||
{
|
||||
static void run(FFTUnitTest& u)
|
||||
{
|
||||
Random random (378272);
|
||||
for (size_t order = 0; order <= 8; ++order)
|
||||
{
|
||||
auto n = (1u << order);
|
||||
|
||||
FFT fft ((int) order);
|
||||
|
||||
HeapBlock<float> inout (n << 1), reference (n << 1);
|
||||
HeapBlock<Complex<float>> frequency (n);
|
||||
|
||||
fillRandom (random, inout.getData(), n);
|
||||
zeromem (reference.getData(), sizeof (float) * ((size_t) n << 1));
|
||||
performReferenceFourier (inout.getData(), frequency.getData(), n, false);
|
||||
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
reference.getData()[i] = std::abs (frequency.getData()[i]);
|
||||
|
||||
fft.performFrequencyOnlyForwardTransform (inout.getData());
|
||||
|
||||
u.expect (checkArrayIsSimilar (inout.getData(), reference.getData(), n));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct ComplexTest
|
||||
{
|
||||
static void run(FFTUnitTest& u)
|
||||
{
|
||||
Random random (378272);
|
||||
|
||||
for (size_t order = 0; order <= 7; ++order)
|
||||
{
|
||||
auto n = (1u << order);
|
||||
|
||||
FFT fft ((int) order);
|
||||
|
||||
HeapBlock<Complex<float>> input (n), buffer (n), output (n), reference (n);
|
||||
|
||||
fillRandom (random, input.getData(), n);
|
||||
performReferenceFourier (input.getData(), reference.getData(), n, false);
|
||||
|
||||
memcpy (buffer.getData(), input.getData(), sizeof (Complex<float>) * n);
|
||||
fft.perform (buffer.getData(), output.getData(), false);
|
||||
|
||||
u.expect (checkArrayIsSimilar (output.getData(), reference.getData(), n));
|
||||
|
||||
memcpy (buffer.getData(), reference.getData(), sizeof (Complex<float>) * n);
|
||||
fft.perform (buffer.getData(), output.getData(), true);
|
||||
|
||||
|
||||
u.expect (checkArrayIsSimilar (output.getData(), input.getData(), n));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <class TheTest>
|
||||
void runTestForAllTypes (const char* unitTestName)
|
||||
{
|
||||
beginTest (unitTestName);
|
||||
|
||||
TheTest::run (*this);
|
||||
}
|
||||
|
||||
void runTest() override
|
||||
{
|
||||
runTestForAllTypes<RealTest> ("Real input numbers Test");
|
||||
runTestForAllTypes<FrequencyOnlyTest> ("Frequency only Test");
|
||||
runTestForAllTypes<ComplexTest> ("Complex input numbers Test");
|
||||
}
|
||||
};
|
||||
|
||||
static FFTUnitTest fftUnitTest;
|
||||
|
||||
} // namespace dsp
|
||||
} // namespace juce
|
196
deps/juce/modules/juce_dsp/frequency/juce_Windowing.cpp
vendored
Normal file
196
deps/juce/modules/juce_dsp/frequency/juce_Windowing.cpp
vendored
Normal file
@ -0,0 +1,196 @@
|
||||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library.
|
||||
Copyright (c) 2020 - Raw Material Software Limited
|
||||
|
||||
JUCE is an open source library subject to commercial or open-source
|
||||
licensing.
|
||||
|
||||
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
|
||||
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
|
||||
|
||||
End User License Agreement: www.juce.com/juce-6-licence
|
||||
Privacy Policy: www.juce.com/juce-privacy-policy
|
||||
|
||||
Or: You may also use this code under the terms of the GPL v3 (see
|
||||
www.gnu.org/licenses).
|
||||
|
||||
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
||||
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
||||
DISCLAIMED.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
namespace juce
|
||||
{
|
||||
namespace dsp
|
||||
{
|
||||
|
||||
template <typename FloatType>
|
||||
static FloatType ncos (size_t order, size_t i, size_t size) noexcept
|
||||
{
|
||||
return std::cos (static_cast<FloatType> (order * i)
|
||||
* MathConstants<FloatType>::pi / static_cast<FloatType> (size - 1));
|
||||
}
|
||||
|
||||
template <typename FloatType>
|
||||
WindowingFunction<FloatType>::WindowingFunction (size_t size, WindowingMethod type, bool normalise, FloatType beta)
|
||||
{
|
||||
fillWindowingTables (size, type, normalise, beta);
|
||||
}
|
||||
|
||||
template <typename FloatType>
|
||||
void WindowingFunction<FloatType>::fillWindowingTables (size_t size, WindowingMethod type,
|
||||
bool normalise, FloatType beta) noexcept
|
||||
{
|
||||
windowTable.resize (static_cast<int> (size));
|
||||
fillWindowingTables (windowTable.getRawDataPointer(), size, type, normalise, beta);
|
||||
}
|
||||
|
||||
template <typename FloatType>
|
||||
void WindowingFunction<FloatType>::fillWindowingTables (FloatType* samples, size_t size,
|
||||
WindowingMethod type, bool normalise,
|
||||
FloatType beta) noexcept
|
||||
{
|
||||
switch (type)
|
||||
{
|
||||
case rectangular:
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
samples[i] = static_cast<FloatType> (1);
|
||||
}
|
||||
break;
|
||||
|
||||
case triangular:
|
||||
{
|
||||
auto halfSlots = static_cast<FloatType> (0.5) * static_cast<FloatType> (size - 1);
|
||||
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
samples[i] = static_cast<FloatType> (1.0) - std::abs ((static_cast<FloatType> (i) - halfSlots) / halfSlots);
|
||||
}
|
||||
break;
|
||||
|
||||
case hann:
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
{
|
||||
auto cos2 = ncos<FloatType> (2, i, size);
|
||||
samples[i] = static_cast<FloatType> (0.5 - 0.5 * cos2);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case hamming:
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
{
|
||||
auto cos2 = ncos<FloatType> (2, i, size);
|
||||
samples[i] = static_cast<FloatType> (0.54 - 0.46 * cos2);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case blackman:
|
||||
{
|
||||
constexpr FloatType alpha = 0.16f;
|
||||
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
{
|
||||
auto cos2 = ncos<FloatType> (2, i, size);
|
||||
auto cos4 = ncos<FloatType> (4, i, size);
|
||||
|
||||
samples[i] = static_cast<FloatType> (0.5 * (1 - alpha) - 0.5 * cos2 + 0.5 * alpha * cos4);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case blackmanHarris:
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
{
|
||||
auto cos2 = ncos<FloatType> (2, i, size);
|
||||
auto cos4 = ncos<FloatType> (4, i, size);
|
||||
auto cos6 = ncos<FloatType> (6, i, size);
|
||||
|
||||
samples[i] = static_cast<FloatType> (0.35875 - 0.48829 * cos2 + 0.14128 * cos4 - 0.01168 * cos6);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case flatTop:
|
||||
{
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
{
|
||||
auto cos2 = ncos<FloatType> (2, i, size);
|
||||
auto cos4 = ncos<FloatType> (4, i, size);
|
||||
auto cos6 = ncos<FloatType> (6, i, size);
|
||||
auto cos8 = ncos<FloatType> (8, i, size);
|
||||
|
||||
samples[i] = static_cast<FloatType> (1.0 - 1.93 * cos2 + 1.29 * cos4 - 0.388 * cos6 + 0.028 * cos8);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case kaiser:
|
||||
{
|
||||
const double factor = 1.0 / SpecialFunctions::besselI0 (beta);
|
||||
const auto doubleSize = (double) size;
|
||||
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
samples[i] = static_cast<FloatType> (SpecialFunctions::besselI0 (beta * std::sqrt (1.0 - std::pow (((double) i - 0.5 * (doubleSize - 1.0))
|
||||
/ ( 0.5 * (doubleSize - 1.0)), 2.0)))
|
||||
* factor);
|
||||
}
|
||||
break;
|
||||
|
||||
case numWindowingMethods:
|
||||
default:
|
||||
jassertfalse;
|
||||
break;
|
||||
}
|
||||
|
||||
// DC frequency amplitude must be one
|
||||
if (normalise)
|
||||
{
|
||||
FloatType sum (0);
|
||||
|
||||
for (size_t i = 0; i < size; ++i)
|
||||
sum += samples[i];
|
||||
|
||||
auto factor = static_cast<FloatType> (size) / sum;
|
||||
|
||||
FloatVectorOperations::multiply (samples, factor, static_cast<int> (size));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename FloatType>
|
||||
void WindowingFunction<FloatType>::multiplyWithWindowingTable (FloatType* samples, size_t size) noexcept
|
||||
{
|
||||
FloatVectorOperations::multiply (samples, windowTable.getRawDataPointer(), jmin (static_cast<int> (size), windowTable.size()));
|
||||
}
|
||||
|
||||
template <typename FloatType>
|
||||
const char* WindowingFunction<FloatType>::getWindowingMethodName (WindowingMethod type) noexcept
|
||||
{
|
||||
switch (type)
|
||||
{
|
||||
case rectangular: return "Rectangular";
|
||||
case triangular: return "Triangular";
|
||||
case hann: return "Hann";
|
||||
case hamming: return "Hamming";
|
||||
case blackman: return "Blackman";
|
||||
case blackmanHarris: return "Blackman-Harris";
|
||||
case flatTop: return "Flat Top";
|
||||
case kaiser: return "Kaiser";
|
||||
case numWindowingMethods:
|
||||
default: jassertfalse; return "";
|
||||
}
|
||||
}
|
||||
|
||||
template class WindowingFunction<float>;
|
||||
template class WindowingFunction<double>;
|
||||
|
||||
} // namespace dsp
|
||||
} // namespace juce
|
111
deps/juce/modules/juce_dsp/frequency/juce_Windowing.h
vendored
Normal file
111
deps/juce/modules/juce_dsp/frequency/juce_Windowing.h
vendored
Normal file
@ -0,0 +1,111 @@
|
||||
/*
|
||||
==============================================================================
|
||||
|
||||
This file is part of the JUCE library.
|
||||
Copyright (c) 2020 - Raw Material Software Limited
|
||||
|
||||
JUCE is an open source library subject to commercial or open-source
|
||||
licensing.
|
||||
|
||||
By using JUCE, you agree to the terms of both the JUCE 6 End-User License
|
||||
Agreement and JUCE Privacy Policy (both effective as of the 16th June 2020).
|
||||
|
||||
End User License Agreement: www.juce.com/juce-6-licence
|
||||
Privacy Policy: www.juce.com/juce-privacy-policy
|
||||
|
||||
Or: You may also use this code under the terms of the GPL v3 (see
|
||||
www.gnu.org/licenses).
|
||||
|
||||
JUCE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY, AND ALL WARRANTIES, WHETHER
|
||||
EXPRESSED OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR PURPOSE, ARE
|
||||
DISCLAIMED.
|
||||
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
namespace juce
|
||||
{
|
||||
namespace dsp
|
||||
{
|
||||
|
||||
/**
|
||||
A class which provides multiple windowing functions useful for filter design
|
||||
and spectrum analyzers.
|
||||
|
||||
The different functions provided here can be used by creating either a
|
||||
WindowingFunction object, or a static function to fill an array with the
|
||||
windowing method samples.
|
||||
|
||||
@tags{DSP}
|
||||
*/
|
||||
template <typename FloatType>
|
||||
class JUCE_API WindowingFunction
|
||||
{
|
||||
public:
|
||||
//==============================================================================
|
||||
/** The windowing methods available. */
|
||||
enum WindowingMethod
|
||||
{
|
||||
rectangular = 0,
|
||||
triangular,
|
||||
hann,
|
||||
hamming,
|
||||
blackman,
|
||||
blackmanHarris,
|
||||
flatTop,
|
||||
kaiser,
|
||||
numWindowingMethods
|
||||
};
|
||||
|
||||
//==============================================================================
|
||||
/** This constructor automatically fills a buffer of the specified size using
|
||||
the fillWindowingTables function and the specified arguments.
|
||||
|
||||
@see fillWindowingTables
|
||||
*/
|
||||
WindowingFunction (size_t size, WindowingMethod,
|
||||
bool normalise = true, FloatType beta = 0);
|
||||
|
||||
//==============================================================================
|
||||
/** Fills the content of the object array with a given windowing method table.
|
||||
|
||||
@param size the size of the destination buffer allocated in the object
|
||||
@param type the type of windowing method being used
|
||||
@param normalise if the result must be normalised, creating a DC amplitude
|
||||
response of one
|
||||
@param beta an optional argument useful only for Kaiser's method
|
||||
which must be positive and sets the properties of the
|
||||
method (bandwidth and attenuation increases with beta)
|
||||
*/
|
||||
void fillWindowingTables (size_t size, WindowingMethod type,
|
||||
bool normalise = true, FloatType beta = 0) noexcept;
|
||||
|
||||
/** Fills the content of an array with a given windowing method table.
|
||||
|
||||
@param samples the destination buffer pointer
|
||||
@param size the size of the destination buffer allocated in the object
|
||||
@param normalise if the result must be normalised, creating a DC amplitude
|
||||
response of one
|
||||
@param beta an optional argument useful only for Kaiser's method,
|
||||
which must be positive and sets the properties of the
|
||||
method (bandwidth and attenuation increases with beta)
|
||||
*/
|
||||
static void fillWindowingTables (FloatType* samples, size_t size, WindowingMethod,
|
||||
bool normalise = true, FloatType beta = 0) noexcept;
|
||||
|
||||
/** Multiplies the content of a buffer with the given window. */
|
||||
void multiplyWithWindowingTable (FloatType* samples, size_t size) noexcept;
|
||||
|
||||
/** Returns the name of a given windowing method. */
|
||||
static const char* getWindowingMethodName (WindowingMethod) noexcept;
|
||||
|
||||
|
||||
private:
|
||||
//==============================================================================
|
||||
Array<FloatType> windowTable;
|
||||
|
||||
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (WindowingFunction)
|
||||
};
|
||||
|
||||
} // namespace dsp
|
||||
} // namespace juce
|
Reference in New Issue
Block a user